epaint 0.10.0

Minimal 2D graphics library for GUI work
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
//! Color conversions and types.
//!
//! If you want a compact color representation, use [`Color32`].
//! If you want to manipulate RGBA colors use [`Rgba`].
//! If you want to manipulate colors in a way closer to how humans think about colors, use [`HsvaGamma`].

use emath::clamp;

/// This format is used for space-efficient color representation (32 bits).
///
/// Instead of manipulating this directly it is often better
/// to first convert it to either [`Rgba`] or [`Hsva`].
///
/// Internally this uses 0-255 gamma space `sRGBA` color with premultiplied alpha.
/// Alpha channel is in linear space.
#[derive(Clone, Copy, Debug, Default, Eq, Hash, PartialEq)]
#[cfg_attr(feature = "persistence", derive(serde::Deserialize, serde::Serialize))]
pub struct Color32(pub(crate) [u8; 4]);

impl std::ops::Index<usize> for Color32 {
    type Output = u8;
    fn index(&self, index: usize) -> &u8 {
        &self.0[index]
    }
}

impl std::ops::IndexMut<usize> for Color32 {
    fn index_mut(&mut self, index: usize) -> &mut u8 {
        &mut self.0[index]
    }
}

#[deprecated = "Replaced by Color32::from_rgb… family of functions."]
pub const fn srgba(r: u8, g: u8, b: u8, a: u8) -> Color32 {
    Color32::from_rgba_premultiplied(r, g, b, a)
}

impl Color32 {
    pub const TRANSPARENT: Color32 = Color32::from_rgba_premultiplied(0, 0, 0, 0);
    pub const BLACK: Color32 = Color32::from_rgb(0, 0, 0);
    pub const LIGHT_GRAY: Color32 = Color32::from_rgb(220, 220, 220);
    pub const GRAY: Color32 = Color32::from_rgb(160, 160, 160);
    pub const WHITE: Color32 = Color32::from_rgb(255, 255, 255);
    pub const RED: Color32 = Color32::from_rgb(255, 0, 0);
    pub const YELLOW: Color32 = Color32::from_rgb(255, 255, 0);
    pub const GREEN: Color32 = Color32::from_rgb(0, 255, 0);
    pub const BLUE: Color32 = Color32::from_rgb(0, 0, 255);
    pub const LIGHT_BLUE: Color32 = Color32::from_rgb(140, 160, 255);
    pub const GOLD: Color32 = Color32::from_rgb(255, 215, 0);

    pub const fn from_rgb(r: u8, g: u8, b: u8) -> Self {
        Self([r, g, b, 255])
    }

    pub const fn from_rgb_additive(r: u8, g: u8, b: u8) -> Self {
        Self([r, g, b, 0])
    }

    /// From `sRGBA` with premultiplied alpha.
    pub const fn from_rgba_premultiplied(r: u8, g: u8, b: u8, a: u8) -> Self {
        Self([r, g, b, a])
    }

    /// From `sRGBA` WITHOUT premultiplied alpha.
    pub fn from_rgba_unmultiplied(r: u8, g: u8, b: u8, a: u8) -> Self {
        if a == 255 {
            Self::from_rgba_premultiplied(r, g, b, 255) // common-case optimization
        } else if a == 0 {
            Self::TRANSPARENT // common-case optimization
        } else {
            let r_lin = linear_f32_from_gamma_u8(r);
            let g_lin = linear_f32_from_gamma_u8(g);
            let b_lin = linear_f32_from_gamma_u8(b);
            let a_lin = linear_f32_from_linear_u8(a);

            let r = gamma_u8_from_linear_f32(r_lin * a_lin);
            let g = gamma_u8_from_linear_f32(g_lin * a_lin);
            let b = gamma_u8_from_linear_f32(b_lin * a_lin);

            Self::from_rgba_premultiplied(r, g, b, a)
        }
    }

    #[deprecated = "Use from_rgb(..), from_rgba_premultiplied(..) or from_srgba_unmultiplied(..)"]
    pub const fn new(r: u8, g: u8, b: u8, a: u8) -> Self {
        Self([r, g, b, a])
    }

    pub const fn from_gray(l: u8) -> Self {
        Self([l, l, l, 255])
    }

    pub const fn from_black_alpha(a: u8) -> Self {
        Self([0, 0, 0, a])
    }

    pub fn from_white_alpha(a: u8) -> Self {
        Rgba::from_white_alpha(linear_f32_from_linear_u8(a)).into()
    }

    pub const fn from_additive_luminance(l: u8) -> Self {
        Self([l, l, l, 0])
    }

    pub fn is_opaque(&self) -> bool {
        self.a() == 255
    }

    pub fn r(&self) -> u8 {
        self.0[0]
    }
    pub fn g(&self) -> u8 {
        self.0[1]
    }
    pub fn b(&self) -> u8 {
        self.0[2]
    }
    pub fn a(&self) -> u8 {
        self.0[3]
    }

    /// Returns an opaque version of self
    pub fn to_opaque(self) -> Self {
        Rgba::from(self).to_opaque().into()
    }

    /// Returns an additive version of self
    pub fn additive(self) -> Self {
        let [r, g, b, _] = self.to_array();
        Self([r, g, b, 0])
    }

    /// Premultiplied RGBA
    pub fn to_array(&self) -> [u8; 4] {
        [self.r(), self.g(), self.b(), self.a()]
    }

    /// Premultiplied RGBA
    pub fn to_tuple(&self) -> (u8, u8, u8, u8) {
        (self.r(), self.g(), self.b(), self.a())
    }

    /// Multiply with 0.5 to make color half as opaque.
    pub fn linear_multiply(self, factor: f32) -> Color32 {
        debug_assert!(0.0 <= factor && factor <= 1.0);
        // As an unfortunate side-effect of using premultiplied alpha
        // we need a somewhat expensive conversion to linear space and back.
        Rgba::from(self).multiply(factor).into()
    }
}

// ----------------------------------------------------------------------------

/// 0-1 linear space `RGBA` color with premultiplied alpha.
#[derive(Clone, Copy, Debug, Default, PartialEq)]
#[cfg_attr(feature = "persistence", derive(serde::Deserialize, serde::Serialize))]
pub struct Rgba(pub(crate) [f32; 4]);

impl std::ops::Index<usize> for Rgba {
    type Output = f32;
    fn index(&self, index: usize) -> &f32 {
        &self.0[index]
    }
}

impl std::ops::IndexMut<usize> for Rgba {
    fn index_mut(&mut self, index: usize) -> &mut f32 {
        &mut self.0[index]
    }
}

impl Rgba {
    pub const TRANSPARENT: Rgba = Rgba::from_rgba_premultiplied(0.0, 0.0, 0.0, 0.0);
    pub const BLACK: Rgba = Rgba::from_rgb(0.0, 0.0, 0.0);
    pub const WHITE: Rgba = Rgba::from_rgb(1.0, 1.0, 1.0);
    pub const RED: Rgba = Rgba::from_rgb(1.0, 0.0, 0.0);
    pub const GREEN: Rgba = Rgba::from_rgb(0.0, 1.0, 0.0);
    pub const BLUE: Rgba = Rgba::from_rgb(0.0, 0.0, 1.0);

    pub const fn from_rgba_premultiplied(r: f32, g: f32, b: f32, a: f32) -> Self {
        Self([r, g, b, a])
    }

    pub const fn from_rgb(r: f32, g: f32, b: f32) -> Self {
        Self([r, g, b, 1.0])
    }

    pub const fn from_gray(l: f32) -> Self {
        Self([l, l, l, 1.0])
    }

    pub fn from_luminance_alpha(l: f32, a: f32) -> Self {
        debug_assert!(0.0 <= l && l <= 1.0);
        debug_assert!(0.0 <= a && a <= 1.0);
        Self([l * a, l * a, l * a, a])
    }

    /// Transparent black
    pub fn from_black_alpha(a: f32) -> Self {
        debug_assert!(0.0 <= a && a <= 1.0);
        Self([0.0, 0.0, 0.0, a])
    }

    /// Transparent white
    pub fn from_white_alpha(a: f32) -> Self {
        debug_assert!(0.0 <= a && a <= 1.0);
        Self([a, a, a, a])
    }

    /// Return an additive version of this color (alpha = 0)
    pub fn additive(self) -> Self {
        let [r, g, b, _] = self.0;
        Self([r, g, b, 0.0])
    }

    /// Multiply with e.g. 0.5 to make us half transparent
    pub fn multiply(self, alpha: f32) -> Self {
        Self([
            alpha * self[0],
            alpha * self[1],
            alpha * self[2],
            alpha * self[3],
        ])
    }

    pub fn r(&self) -> f32 {
        self.0[0]
    }
    pub fn g(&self) -> f32 {
        self.0[1]
    }
    pub fn b(&self) -> f32 {
        self.0[2]
    }
    pub fn a(&self) -> f32 {
        self.0[3]
    }

    /// How perceptually intense (bright) is the color?
    pub fn intensity(&self) -> f32 {
        0.3 * self.r() + 0.59 * self.g() + 0.11 * self.b()
    }

    /// Returns an opaque version of self
    pub fn to_opaque(&self) -> Self {
        if self.a() == 0.0 {
            // Additive or fully transparent black.
            Self::from_rgba_premultiplied(self.r(), self.g(), self.b(), 1.0)
        } else {
            // un-multiply alpha:
            Self::from_rgba_premultiplied(
                self.r() / self.a(),
                self.g() / self.a(),
                self.b() / self.a(),
                1.0,
            )
        }
    }
}

impl std::ops::Add for Rgba {
    type Output = Rgba;
    fn add(self, rhs: Rgba) -> Rgba {
        Rgba([
            self[0] + rhs[0],
            self[1] + rhs[1],
            self[2] + rhs[2],
            self[3] + rhs[3],
        ])
    }
}

impl std::ops::Mul<Rgba> for Rgba {
    type Output = Rgba;
    fn mul(self, other: Rgba) -> Rgba {
        Rgba([
            self[0] * other[0],
            self[1] * other[1],
            self[2] * other[2],
            self[3] * other[3],
        ])
    }
}

impl std::ops::Mul<f32> for Rgba {
    type Output = Rgba;
    fn mul(self, factor: f32) -> Rgba {
        Rgba([
            self[0] * factor,
            self[1] * factor,
            self[2] * factor,
            self[3] * factor,
        ])
    }
}

impl std::ops::Mul<Rgba> for f32 {
    type Output = Rgba;
    fn mul(self, rgba: Rgba) -> Rgba {
        Rgba([
            self * rgba[0],
            self * rgba[1],
            self * rgba[2],
            self * rgba[3],
        ])
    }
}

// ----------------------------------------------------------------------------
// Color conversion:

impl From<Color32> for Rgba {
    fn from(srgba: Color32) -> Rgba {
        Rgba([
            linear_f32_from_gamma_u8(srgba[0]),
            linear_f32_from_gamma_u8(srgba[1]),
            linear_f32_from_gamma_u8(srgba[2]),
            linear_f32_from_linear_u8(srgba[3]),
        ])
    }
}

impl From<Rgba> for Color32 {
    fn from(rgba: Rgba) -> Color32 {
        Color32([
            gamma_u8_from_linear_f32(rgba[0]),
            gamma_u8_from_linear_f32(rgba[1]),
            gamma_u8_from_linear_f32(rgba[2]),
            linear_u8_from_linear_f32(rgba[3]),
        ])
    }
}

/// gamma [0, 255] -> linear [0, 1].
pub fn linear_f32_from_gamma_u8(s: u8) -> f32 {
    if s <= 10 {
        s as f32 / 3294.6
    } else {
        ((s as f32 + 14.025) / 269.025).powf(2.4)
    }
}

/// linear [0, 255] -> linear [0, 1].
/// Useful for alpha-channel.
pub fn linear_f32_from_linear_u8(a: u8) -> f32 {
    a as f32 / 255.0
}

/// linear [0, 1] -> gamma [0, 255] (clamped).
/// Values outside this range will be clamped to the range.
pub fn gamma_u8_from_linear_f32(l: f32) -> u8 {
    if l <= 0.0 {
        0
    } else if l <= 0.0031308 {
        (3294.6 * l).round() as u8
    } else if l <= 1.0 {
        (269.025 * l.powf(1.0 / 2.4) - 14.025).round() as u8
    } else {
        255
    }
}

/// linear [0, 1] -> linear [0, 255] (clamped).
/// Useful for alpha-channel.
pub fn linear_u8_from_linear_f32(a: f32) -> u8 {
    clamp(a * 255.0, 0.0..=255.0).round() as u8
}

#[test]
pub fn test_srgba_conversion() {
    #![allow(clippy::float_cmp)]
    for b in 0..=255 {
        let l = linear_f32_from_gamma_u8(b);
        assert!(0.0 <= l && l <= 1.0);
        assert_eq!(gamma_u8_from_linear_f32(l), b);
    }
}

/// gamma [0, 1] -> linear [0, 1] (not clamped).
/// Works for numbers outside this range (e.g. negative numbers).
pub fn linear_from_gamma(gamma: f32) -> f32 {
    if gamma < 0.0 {
        -linear_from_gamma(-gamma)
    } else if gamma <= 0.04045 {
        gamma / 12.92
    } else {
        ((gamma + 0.055) / 1.055).powf(2.4)
    }
}

/// linear [0, 1] -> gamma [0, 1] (not clamped).
/// Works for numbers outside this range (e.g. negative numbers).
pub fn gamma_from_linear(linear: f32) -> f32 {
    if linear < 0.0 {
        -gamma_from_linear(-linear)
    } else if linear <= 0.0031308 {
        12.92 * linear
    } else {
        1.055 * linear.powf(1.0 / 2.4) - 0.055
    }
}

// ----------------------------------------------------------------------------

/// Hue, saturation, value, alpha. All in the range [0, 1].
/// No premultiplied alpha.
#[derive(Clone, Copy, Debug, Default, PartialEq)]
pub struct Hsva {
    /// hue 0-1
    pub h: f32,
    /// saturation 0-1
    pub s: f32,
    /// value 0-1
    pub v: f32,
    /// alpha 0-1. A negative value signifies an additive color (and alpha is ignored).
    pub a: f32,
}

impl Hsva {
    pub fn new(h: f32, s: f32, v: f32, a: f32) -> Self {
        Self { h, s, v, a }
    }

    /// From `sRGBA` with premultiplied alpha
    pub fn from_srgba_premultiplied(srgba: [u8; 4]) -> Self {
        Self::from_rgba_premultiplied([
            linear_f32_from_gamma_u8(srgba[0]),
            linear_f32_from_gamma_u8(srgba[1]),
            linear_f32_from_gamma_u8(srgba[2]),
            linear_f32_from_linear_u8(srgba[3]),
        ])
    }

    /// From `sRGBA` without premultiplied alpha
    pub fn from_srgba_unmultiplied(srgba: [u8; 4]) -> Self {
        Self::from_rgba_unmultiplied([
            linear_f32_from_gamma_u8(srgba[0]),
            linear_f32_from_gamma_u8(srgba[1]),
            linear_f32_from_gamma_u8(srgba[2]),
            linear_f32_from_linear_u8(srgba[3]),
        ])
    }

    /// From linear RGBA with premultiplied alpha
    pub fn from_rgba_premultiplied([r, g, b, a]: [f32; 4]) -> Self {
        #![allow(clippy::many_single_char_names)]
        if a == 0.0 {
            if r == 0.0 && b == 0.0 && a == 0.0 {
                Hsva::default()
            } else {
                Hsva::from_additive_rgb([r, g, b])
            }
        } else {
            let (h, s, v) = hsv_from_rgb([r / a, g / a, b / a]);
            Hsva { h, s, v, a }
        }
    }

    /// From linear RGBA without premultiplied alpha
    pub fn from_rgba_unmultiplied([r, g, b, a]: [f32; 4]) -> Self {
        #![allow(clippy::many_single_char_names)]
        let (h, s, v) = hsv_from_rgb([r, g, b]);
        Hsva { h, s, v, a }
    }

    pub fn from_additive_rgb(rgb: [f32; 3]) -> Self {
        let (h, s, v) = hsv_from_rgb(rgb);
        Hsva {
            h,
            s,
            v,
            a: -0.5, // anything negative is treated as additive
        }
    }

    pub fn from_rgb(rgb: [f32; 3]) -> Self {
        let (h, s, v) = hsv_from_rgb(rgb);
        Hsva { h, s, v, a: 1.0 }
    }

    pub fn from_srgb([r, g, b]: [u8; 3]) -> Self {
        Self::from_rgb([
            linear_f32_from_gamma_u8(r),
            linear_f32_from_gamma_u8(g),
            linear_f32_from_gamma_u8(b),
        ])
    }

    // ------------------------------------------------------------------------

    pub fn to_opaque(self) -> Self {
        Self { a: 1.0, ..self }
    }

    pub fn to_rgb(&self) -> [f32; 3] {
        rgb_from_hsv((self.h, self.s, self.v))
    }

    pub fn to_srgb(&self) -> [u8; 3] {
        let [r, g, b] = self.to_rgb();
        [
            gamma_u8_from_linear_f32(r),
            gamma_u8_from_linear_f32(g),
            gamma_u8_from_linear_f32(b),
        ]
    }

    pub fn to_rgba_premultiplied(&self) -> [f32; 4] {
        let [r, g, b, a] = self.to_rgba_unmultiplied();
        let additive = a < 0.0;
        if additive {
            [r, g, b, 0.0]
        } else {
            [a * r, a * g, a * b, a]
        }
    }

    /// Represents additive colors using a negative alpha.
    pub fn to_rgba_unmultiplied(&self) -> [f32; 4] {
        let Hsva { h, s, v, a } = *self;
        let [r, g, b] = rgb_from_hsv((h, s, v));
        [r, g, b, a]
    }

    pub fn to_srgba_premultiplied(&self) -> [u8; 4] {
        let [r, g, b, a] = self.to_rgba_premultiplied();
        [
            gamma_u8_from_linear_f32(r),
            gamma_u8_from_linear_f32(g),
            gamma_u8_from_linear_f32(b),
            linear_u8_from_linear_f32(a),
        ]
    }

    pub fn to_srgba_unmultiplied(&self) -> [u8; 4] {
        let [r, g, b, a] = self.to_rgba_unmultiplied();
        [
            gamma_u8_from_linear_f32(r),
            gamma_u8_from_linear_f32(g),
            gamma_u8_from_linear_f32(b),
            linear_u8_from_linear_f32(a.abs()),
        ]
    }
}

impl From<Hsva> for Rgba {
    fn from(hsva: Hsva) -> Rgba {
        Rgba(hsva.to_rgba_premultiplied())
    }
}
impl From<Rgba> for Hsva {
    fn from(rgba: Rgba) -> Hsva {
        Self::from_rgba_premultiplied(rgba.0)
    }
}

impl From<Hsva> for Color32 {
    fn from(hsva: Hsva) -> Color32 {
        Color32::from(Rgba::from(hsva))
    }
}
impl From<Color32> for Hsva {
    fn from(srgba: Color32) -> Hsva {
        Hsva::from(Rgba::from(srgba))
    }
}

/// All ranges in 0-1, rgb is linear.
pub fn hsv_from_rgb([r, g, b]: [f32; 3]) -> (f32, f32, f32) {
    #![allow(clippy::float_cmp)]
    #![allow(clippy::many_single_char_names)]
    let min = r.min(g.min(b));
    let max = r.max(g.max(b)); // value

    let range = max - min;

    let h = if max == min {
        0.0 // hue is undefined
    } else if max == r {
        (g - b) / (6.0 * range)
    } else if max == g {
        (b - r) / (6.0 * range) + 1.0 / 3.0
    } else {
        // max == b
        (r - g) / (6.0 * range) + 2.0 / 3.0
    };
    let h = (h + 1.0).fract(); // wrap
    let s = if max == 0.0 { 0.0 } else { 1.0 - min / max };
    (h, s, max)
}

/// All ranges in 0-1, rgb is linear.
pub fn rgb_from_hsv((h, s, v): (f32, f32, f32)) -> [f32; 3] {
    #![allow(clippy::many_single_char_names)]
    let h = (h.fract() + 1.0).fract(); // wrap
    let s = clamp(s, 0.0..=1.0);

    let f = h * 6.0 - (h * 6.0).floor();
    let p = v * (1.0 - s);
    let q = v * (1.0 - f * s);
    let t = v * (1.0 - (1.0 - f) * s);

    match (h * 6.0).floor() as i32 % 6 {
        0 => [v, t, p],
        1 => [q, v, p],
        2 => [p, v, t],
        3 => [p, q, v],
        4 => [t, p, v],
        5 => [v, p, q],
        _ => unreachable!(),
    }
}

#[test]
#[ignore] // a bit expensive
fn test_hsv_roundtrip() {
    for r in 0..=255 {
        for g in 0..=255 {
            for b in 0..=255 {
                let srgba = Color32::from_rgb(r, g, b);
                let hsva = Hsva::from(srgba);
                assert_eq!(srgba, Color32::from(hsva));
            }
        }
    }
}

// ----------------------------------------------------------------------------

/// Like Hsva but with the `v` value (brightness) being gamma corrected
/// so that it is somewhat perceptually even.
#[derive(Clone, Copy, Debug, Default, PartialEq)]
pub struct HsvaGamma {
    /// hue 0-1
    pub h: f32,
    /// saturation 0-1
    pub s: f32,
    /// value 0-1, in gamma-space (~perceptually even)
    pub v: f32,
    /// alpha 0-1. A negative value signifies an additive color (and alpha is ignored).
    pub a: f32,
}

impl From<HsvaGamma> for Rgba {
    fn from(hsvag: HsvaGamma) -> Rgba {
        Hsva::from(hsvag).into()
    }
}

impl From<HsvaGamma> for Color32 {
    fn from(hsvag: HsvaGamma) -> Color32 {
        Rgba::from(hsvag).into()
    }
}

impl From<HsvaGamma> for Hsva {
    fn from(hsvag: HsvaGamma) -> Hsva {
        let HsvaGamma { h, s, v, a } = hsvag;
        Hsva {
            h,
            s,
            v: linear_from_gamma(v),
            a,
        }
    }
}

impl From<Rgba> for HsvaGamma {
    fn from(rgba: Rgba) -> HsvaGamma {
        Hsva::from(rgba).into()
    }
}

impl From<Color32> for HsvaGamma {
    fn from(srgba: Color32) -> HsvaGamma {
        Hsva::from(srgba).into()
    }
}

impl From<Hsva> for HsvaGamma {
    fn from(hsva: Hsva) -> HsvaGamma {
        let Hsva { h, s, v, a } = hsva;
        HsvaGamma {
            h,
            s,
            v: gamma_from_linear(v),
            a,
        }
    }
}

// ----------------------------------------------------------------------------

/// Cheap and ugly.
/// Made for graying out disabled `Ui`:s.
pub fn tint_color_towards(color: Color32, target: Color32) -> Color32 {
    let [mut r, mut g, mut b, mut a] = color.to_array();

    if a == 0 {
        r /= 2;
        g /= 2;
        b /= 2;
    } else if a < 170 {
        // Cheapish and looks ok.
        // Works for e.g. grid stripes.
        let div = (2 * 255 / a as i32) as u8;
        r = r / 2 + target.r() / div;
        g = g / 2 + target.g() / div;
        b = b / 2 + target.b() / div;
        a /= 2;
    } else {
        r = r / 2 + target.r() / 2;
        g = g / 2 + target.g() / 2;
        b = b / 2 + target.b() / 2;
    }
    Color32::from_rgba_premultiplied(r, g, b, a)
}