1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
#![deny(unconditional_recursion)]
#![feature(test)]
#![warn(missing_copy_implementations)]
#![warn(missing_debug_implementations)]
#![warn(missing_docs)]
#![warn(trivial_casts)]
#![warn(trivial_numeric_casts)]
#![warn(unsafe_code)]
#![warn(unused_import_braces)]

//! This module exports the API for defining a simple lexer based on a deterministic finite state
//! automaton.
//!
//! Lexers defined using the Flexer are capable of lexing languages of significant complexity, and
//! while they're defined in a simple way (akin to regular grammars), they can work even with
//! context-sensitive languages.
//!
//! The process of defining a lexer involves the user doing the following:
//!
//! 1.  Creating a `Lexer` type that wraps the [`Flexer`].
//! 2.  Creating a `State` type, to hold the user-defined lexing state.
//! 3.  Implementing [`State`] for the `State` type.
//! 4.  Implementing [`Definition`] for the `Lexer`, along with lexing transition rules to lex the
//!     language.
//!
//! The result of defining a lexer using the flexer is a hybrid of the code written using this
//! library, and also the code that this library generates to specialize your lexer.
//!
//! # Writing a Lexer
//!
//! As the Flexer is a library for writing lexers, it would be remiss of us not to include a worked
//! example for how to define a lexer. The following example defines a lexer for a small language,
//! and shows you how to integrate the flexer code generation step with your project's build.
//!
//! ## The Language
//!
//! We're going to define a lexer for a very simple language, represented by the following
//! [EBNF](https://en.wikipedia.org/wiki/Extended_Backus%E2%80%93Naur_form) grammar.
//!
//! ```plain
//! a-word      = 'a'+;
//! b-word      = 'b'+;
//! word        = a-word | b-word;
//! space       = ' ';
//! spaced-word = space, word;
//! language    = word, spaced-word*;
//! ```
//!
//! ## The Lexer's Output
//!
//! Every lexer needs the ability to write a stream of tokens as its output. A flexer-based lexer
//! can use any type that it wants as its output type, but this language is going to use a very
//! simple `Token` type, wrapped into a `TokenStream`.
//!
//! ```
//! #[derive(Clone)]
//! pub enum Token {
//!     /// A word from the input, consisting of a sequence of all `a` or all `b`.
//!     Word(String),
//!     /// A token that the lexer is unable to recognise.
//!     Unrecognized(String)
//! }
//!
//! #[derive(Clone,Default)]
//! pub struct TokenStream {
//!     tokens:Vec<Token>
//! }
//!
//! impl TokenStream {
//!     pub fn push(&mut self,token:Token) {
//!         self.tokens.push(token)
//!     }
//! }
//! ```
//!
//! These tokens will be inserted into the token stream by our lexer as it recognises valid portions
//! of our language.
//!
//! Whatever you choose as the `Output` type of your lexer, it will need to implement both
//! [`std::clone::Clone`] and [`std::default::Default`].
//!
//! ## The Lexer's State
//!
//! Every Flexer-based lexer operates over a state that holds all of the user-defined state
//! information required to define the particular lexer. This state type must conform to the
//! [`State`] trait, which defines important functionality that it must provide to the flexer.
//!
//! In our language, we want to only be able to match words with a preceding space character once
//! we've seen an initial word that doesn't have one. To this end, we need a state in our lexer to
//! record that we've 'seen' the first word. As required by the [`State`] trait, we also need to
//! provide the flexer with an initial state, the state registry, and the bookmarks we use.
//!
//! ```
//! use enso_flexer::group;
//! use enso_flexer::prelude::reader::BookmarkManager;
//! use enso_flexer::State;
//! #
//! #
//! # // === Token ===
//! #
//! # #[derive(Clone)]
//! # pub enum Token {
//! #     /// A word from the input, consisting of a sequence of all `a` or all `b`.
//! #     Word(String),
//! #     /// A token that the lexer is unable to recognise.
//! #     Unrecognized(String)
//! # }
//! #
//! # #[derive(Clone,Default)]
//! # pub struct TokenStream {
//! #     tokens:Vec<Token>
//! # }
//! #
//! # impl TokenStream {
//! #     pub fn push(&mut self,token:Token) {
//! #         self.tokens.push(token)
//! #     }
//! # }
//!
//!
//! // === LexerState ===
//!
//! #[derive(Debug)]
//! pub struct LexerState {
//!     /// The registry for groups in the lexer.
//!     lexer_states:group::Registry,
//!     /// The initial state of the lexer.
//!     initial_state:group::Identifier,
//!     /// The state entered when the first word has been seen.
//!     seen_first_word_state:group::Identifier,
//!     /// The bookmarks for this lexer.
//!     bookmarks:BookmarkManager
//! }
//! ```
//!
//! The flexer library provides useful functionality to help with defining your lexer state, such as
//! [`group::Registry`] for containing the various states through which your lexer may transition,
//! amd [`prelude::reader::BookmarkManager`] for storing bookmarks.
//!
//! > ### Bookmarks
//! > In order to enable arbitrary lookahead, the flexer provides a system for "bookmarking" a point
//! > in the input stream so that the lexer may return to it later. In fact, this mechanism is used
//! > _by default_ in the implementation to deal with overlapping rules, and so the
//! > [`prelude::reader::BookmarkManager`] provides some bookmarks for you by default.
//! >
//! > As a user, however, you can define additional bookmarks as part of your state, and mark or
//! > return to them as part of your lexer's transition functions (more on this below).
//!
//! Now that we have our state type, we need to define an implementation of [`State`] for it. This
//! is a mostly trivial exercise, but two functions ([`State::new()`] and [`State::specialize`])
//! require special attention. We'll look at both below.
//!
//! ```
//! use enso_flexer::generate;
//! # use enso_flexer::group;
//! use enso_flexer::generate::GenError;
//! use enso_flexer::prelude::AnyLogger;
//! # use enso_flexer::prelude::reader::BookmarkManager;
//! # use enso_flexer::State;
//! #
//! #
//! # // === Token ===
//! #
//! # #[derive(Clone)]
//! # pub enum Token {
//! #     /// A word from the input, consisting of a sequence of all `a` or all `b`.
//! #     Word(String),
//! #     /// A token that the lexer is unable to recognise.
//! #     Unrecognized(String)
//! # }
//! #
//! # #[derive(Clone,Default)]
//! # pub struct TokenStream {
//! #     tokens:Vec<Token>
//! # }
//! #
//! # impl TokenStream {
//! #     pub fn push(&mut self,token:Token) {
//! #         self.tokens.push(token)
//! #     }
//! # }
//! #
//! #
//! # // === LexerState ===
//! #
//! # #[derive(Debug)]
//! # pub struct LexerState {
//! #     /// The registry for groups in the lexer.
//! #     lexer_states:group::Registry,
//! #     /// The initial state of the lexer.
//! #     initial_state:group::Identifier,
//! #     /// The state entered when the first word has been seen.
//! #     seen_first_word_state:group::Identifier,
//! #     /// The bookmarks for this lexer.
//! #     bookmarks:BookmarkManager
//! # }
//!
//! impl enso_flexer::State for LexerState {
//!     fn new(_logger:&impl AnyLogger) -> Self {
//!         // Here we construct all of the elements needed for our lexer state. This function can
//!         // contain arbitrarily complex logic and is only called once at initialization time.
//!         let mut lexer_states      = group::Registry::default();
//!         let initial_state         = lexer_states.define_group("ROOT",None);
//!         let seen_first_word_state = lexer_states.define_group("SEEN FIRST WORD",None);
//!         let bookmarks             = BookmarkManager::new();
//!         Self{lexer_states,initial_state,seen_first_word_state,bookmarks}
//!     }
//!
//!     fn initial_state(&self) -> group::Identifier {
//!         self.initial_state
//!     }
//!
//!     fn groups(&self) -> &group::Registry {
//!         &self.lexer_states
//!     }
//!
//!     fn groups_mut(&mut self) -> &mut group::Registry {
//!         &mut self.lexer_states
//!     }
//!
//!     fn bookmarks(&self) -> &BookmarkManager {
//!         &self.bookmarks
//!     }
//!
//!     fn bookmarks_mut(&mut self) -> &mut BookmarkManager {
//!         &mut self.bookmarks
//!     }
//!
//!     fn specialize(&self) -> Result<String,GenError> {
//!         // It is very important to pass both the type name of your lexer and your output
//!         // correctly here. This function should always be implemented as a call to the
//!         // below-used function.
//!         generate::specialize(self,"TestLexer","Token")
//!     }
//! }
//! ```
//!
//! ## Defining the Lexer Type
//!
//! With our state type defined, we now have the prerequisites for defining the lexer itself!
//!
//! The notion behind the way we define lexers in the flexer is to use a chain of
//! [`std::ops::Deref`] implementations to make the disparate parts feel like a cohesive whole.
//! The [`Flexer`] itself already implements deref to your state type, so all that remains is to do
//! the following:
//!
//! 1.  Define your lexer struct itself, containing an instance of the [`Flexer`], parametrised by
//!     your state and output types.
//!
//! ```
//! use enso_flexer::Flexer;
//! # use enso_flexer::generate;
//! # use enso_flexer::group;
//! # use enso_flexer::prelude::GenError;
//! # use enso_flexer::prelude::AnyLogger;
//! use enso_flexer::prelude::logger::Disabled;
//! # use enso_flexer::prelude::reader::BookmarkManager;
//! # use enso_flexer::State;
//!
//! type Logger = Disabled;
//! #
//! #
//! # // === Token ===
//! #
//! # #[derive(Clone)]
//! # pub enum Token {
//! #     /// A word from the input, consisting of a sequence of all `a` or all `b`.
//! #     Word(String),
//! #     /// A token that the lexer is unable to recognise.
//! #     Unrecognized(String)
//! # }
//! #
//! # #[derive(Clone,Default)]
//! # pub struct TokenStream {
//! #     tokens:Vec<Token>
//! # }
//! #
//! # impl TokenStream {
//! #     pub fn push(&mut self,token:Token) {
//! #         self.tokens.push(token)
//! #     }
//! # }
//! #
//! #
//! # // === LexerState ===
//! #
//! # #[derive(Debug)]
//! # pub struct LexerState {
//! #     /// The registry for groups in the lexer.
//! #     lexer_states:group::Registry,
//! #     /// The initial state of the lexer.
//! #     initial_state:group::Identifier,
//! #     /// The state entered when the first word has been seen.
//! #     seen_first_word_state:group::Identifier,
//! #     /// The bookmarks for this lexer.
//! #     bookmarks:BookmarkManager
//! # }
//! #
//! # impl enso_flexer::State for LexerState {
//! #     fn new(_logger:&impl AnyLogger) -> Self {
//! #         // Here we construct all of the elements needed for our lexer state. This function can
//! #         // contain arbitrarily complex logic and is only called once at initialization time.
//! #         let mut lexer_states      = group::Registry::default();
//! #         let initial_state         = lexer_states.define_group("ROOT",None);
//! #         let seen_first_word_state = lexer_states.define_group("SEEN FIRST WORD",None);
//! #         let bookmarks             = BookmarkManager::new();
//! #         Self{lexer_states,initial_state,seen_first_word_state,bookmarks}
//! #     }
//! #
//! #     fn initial_state(&self) -> group::Identifier {
//! #         self.initial_state
//! #     }
//! #
//! #     fn groups(&self) -> &group::Registry {
//! #         &self.lexer_states
//! #     }
//! #
//! #     fn groups_mut(&mut self) -> &mut group::Registry {
//! #         &mut self.lexer_states
//! #     }
//! #
//! #     fn bookmarks(&self) -> &BookmarkManager {
//! #         &self.bookmarks
//! #     }
//! #
//! #     fn bookmarks_mut(&mut self) -> &mut BookmarkManager {
//! #         &mut self.bookmarks
//! #     }
//! #
//! #     fn specialize(&self) -> Result<String,GenError> {
//! #         // It is very important to pass both the type name of your lexer and your output
//! #         // correctly here. This function should always be implemented as a call to the
//! #         // below-used function.
//! #         generate::specialize(self,"TestLexer","Token")
//! #     }
//! # }
//!
//!
//! // === Lexer ===
//!
//! pub struct Lexer {
//!    lexer:Flexer<LexerState,TokenStream,Logger>
//! }
//! ```
//!
//! You'll note that the `Flexer` also takes a logging implementation from the Enso logging library
//! as a type parameter. This lets the client of the library configure the behaviour of logging in
//! their lexer. We recommend aliasing the current logger type (as shown above) for ease of use.
//!
//! 2.  Implement a `new()` function for your lexer.
//!
//! ```
//! # use enso_flexer::Flexer;
//! # use enso_flexer::generate;
//! # use enso_flexer::group;
//! # use enso_flexer::prelude::AnyLogger;
//! # use enso_flexer::prelude::GenError;
//! # use enso_flexer::prelude::logger::Disabled;
//! # use enso_flexer::prelude::reader::BookmarkManager;
//! # use enso_flexer::State;
//! #
//! # type Logger = Disabled;
//! #
//! #
//! # // === Token ===
//! #
//! # #[derive(Clone)]
//! # pub enum Token {
//! #     /// A word from the input, consisting of a sequence of all `a` or all `b`.
//! #     Word(String),
//! #     /// A token that the lexer is unable to recognise.
//! #     Unrecognized(String)
//! # }
//! #
//! # #[derive(Clone,Default)]
//! # pub struct TokenStream {
//! #     tokens:Vec<Token>
//! # }
//! #
//! # impl TokenStream {
//! #     pub fn push(&mut self,token:Token) {
//! #         self.tokens.push(token)
//! #     }
//! # }
//! #
//! #
//! # // === LexerState ===
//! #
//! # #[derive(Debug)]
//! # pub struct LexerState {
//! #     /// The registry for groups in the lexer.
//! #     lexer_states:group::Registry,
//! #     /// The initial state of the lexer.
//! #     initial_state:group::Identifier,
//! #     /// The state entered when the first word has been seen.
//! #     seen_first_word_state:group::Identifier,
//! #     /// The bookmarks for this lexer.
//! #     bookmarks:BookmarkManager
//! # }
//! #
//! # impl enso_flexer::State for LexerState {
//! #     fn new(_logger:&impl AnyLogger) -> Self {
//! #         // Here we construct all of the elements needed for our lexer state. This function can
//! #         // contain arbitrarily complex logic and is only called once at initialization time.
//! #         let mut lexer_states      = group::Registry::default();
//! #         let initial_state         = lexer_states.define_group("ROOT",None);
//! #         let seen_first_word_state = lexer_states.define_group("SEEN FIRST WORD",None);
//! #         let bookmarks             = BookmarkManager::new();
//! #         Self{lexer_states,initial_state,seen_first_word_state,bookmarks}
//! #     }
//! #
//! #     fn initial_state(&self) -> group::Identifier {
//! #         self.initial_state
//! #     }
//! #
//! #     fn groups(&self) -> &group::Registry {
//! #         &self.lexer_states
//! #     }
//! #
//! #     fn groups_mut(&mut self) -> &mut group::Registry {
//! #         &mut self.lexer_states
//! #     }
//! #
//! #     fn bookmarks(&self) -> &BookmarkManager {
//! #         &self.bookmarks
//! #     }
//! #
//! #     fn bookmarks_mut(&mut self) -> &mut BookmarkManager {
//! #         &mut self.bookmarks
//! #     }
//! #
//! #     fn specialize(&self) -> Result<String,GenError> {
//! #         // It is very important to pass both the type name of your lexer and your output
//! #         // correctly here. This function should always be implemented as a call to the
//! #         // below-used function.
//! #         generate::specialize(self,"TestLexer","Token")
//! #     }
//! # }
//! #
//! #
//! # // === Lexer ===
//! #
//! # pub struct Lexer {
//! #    lexer:Flexer<LexerState,TokenStream,Logger>
//! # }
//!
//! impl Lexer {
//!     pub fn new() -> Self {
//!         let lexer = Flexer::new(Logger::new("Lexer"));
//!         Lexer{lexer}
//!     }
//! }
//! ```
//!
//! 3.  Define [`std::ops::Deref`] and [`std::ops::DerefMut`] for your lexer.
//!
//! ```
//! # use enso_flexer::Flexer;
//! # use enso_flexer::generate;
//! # use enso_flexer::group;
//! # use enso_flexer::prelude::AnyLogger;
//! # use enso_flexer::prelude::GenError;
//! # use enso_flexer::prelude::logger::Disabled;
//! # use enso_flexer::prelude::reader::BookmarkManager;
//! # use enso_flexer::State;
//! use std::ops::Deref;
//! use std::ops::DerefMut;
//! #
//! # type Logger = Disabled;
//! #
//! #
//! # // === Token ===
//! #
//! # #[derive(Clone)]
//! # pub enum Token {
//! #     /// A word from the input, consisting of a sequence of all `a` or all `b`.
//! #     Word(String),
//! #     /// A token that the lexer is unable to recognise.
//! #     Unrecognized(String)
//! # }
//! #
//! # #[derive(Clone,Default)]
//! # pub struct TokenStream {
//! #     tokens:Vec<Token>
//! # }
//! #
//! # impl TokenStream {
//! #     pub fn push(&mut self,token:Token) {
//! #         self.tokens.push(token)
//! #     }
//! # }
//! #
//! #
//! # // === LexerState ===
//! #
//! # #[derive(Debug)]
//! # pub struct LexerState {
//! #     /// The registry for groups in the lexer.
//! #     lexer_states:group::Registry,
//! #     /// The initial state of the lexer.
//! #     initial_state:group::Identifier,
//! #     /// The state entered when the first word has been seen.
//! #     seen_first_word_state:group::Identifier,
//! #     /// The bookmarks for this lexer.
//! #     bookmarks:BookmarkManager
//! # }
//! #
//! # impl enso_flexer::State for LexerState {
//! #     fn new(_logger:&impl AnyLogger) -> Self {
//! #         // Here we construct all of the elements needed for our lexer state. This function can
//! #         // contain arbitrarily complex logic and is only called once at initialization time.
//! #         let mut lexer_states      = group::Registry::default();
//! #         let initial_state         = lexer_states.define_group("ROOT",None);
//! #         let seen_first_word_state = lexer_states.define_group("SEEN FIRST WORD",None);
//! #         let bookmarks             = BookmarkManager::new();
//! #         Self{lexer_states,initial_state,seen_first_word_state,bookmarks}
//! #     }
//! #
//! #     fn initial_state(&self) -> group::Identifier {
//! #         self.initial_state
//! #     }
//! #
//! #     fn groups(&self) -> &group::Registry {
//! #         &self.lexer_states
//! #     }
//! #
//! #     fn groups_mut(&mut self) -> &mut group::Registry {
//! #         &mut self.lexer_states
//! #     }
//! #
//! #     fn bookmarks(&self) -> &BookmarkManager {
//! #         &self.bookmarks
//! #     }
//! #
//! #     fn bookmarks_mut(&mut self) -> &mut BookmarkManager {
//! #         &mut self.bookmarks
//! #     }
//! #
//! #     fn specialize(&self) -> Result<String,GenError> {
//! #         // It is very important to pass both the type name of your lexer and your output
//! #         // correctly here. This function should always be implemented as a call to the
//! #         // below-used function.
//! #         generate::specialize(self,"TestLexer","Token")
//! #     }
//! # }
//! #
//! #
//! # // === Lexer ===
//! #
//! # pub struct Lexer {
//! #    lexer:Flexer<LexerState,TokenStream,Logger>
//! # }
//! #
//! # impl Lexer {
//! #     pub fn new() -> Self {
//! #         let lexer = Flexer::new(Logger::new("Lexer"));
//! #         Lexer{lexer}
//! #     }
//! # }
//!
//! impl Deref for Lexer {
//!     type Target = Flexer<LexerState,TokenStream,Logger> ;
//!     fn deref(&self) -> &Self::Target {
//!         &self.lexer
//!     }
//! }
//! impl DerefMut for Lexer {
//!     fn deref_mut(&mut self) -> &mut Self::Target {
//!         &mut self.lexer
//!     }
//! }
//! ```
//!
//! You'll note that here we've instantiated the flexer with a `Logger`. This is used for providing
//! debug information during development, and can be accessed from all scopes of your lexer. In
//! release mode, however, logging calls at the "trace", "debug", and "info" levels are optimised
//! away.
//!
//! ## Defining the Lexing Rules
//!
//! Flexer-based lexers operate by matching on a series of [`automata::pattern::Pattern`]s that
//! describe the language that it is trying to lex. It combines these patterns with "transition
//! functions" that may execute arbitrary code when a pattern matches on the lexer's input.
//!
//! In order to define the lexing rules, we need to implement [`Definition`] for our lexer,
//! particularly the [`Definition::define()`] function.
//!
//! ```
//! use enso_flexer::automata::pattern::Pattern;
//! # use enso_flexer::Flexer;
//! # use enso_flexer::generate;
//! use enso_flexer::group::Registry;
//! # use enso_flexer::group;
//! # use enso_flexer::prelude::AnyLogger;
//! # use enso_flexer::prelude::GenError;
//! # use enso_flexer::prelude::logger::Disabled;
//! # use enso_flexer::prelude::reader::BookmarkManager;
//! # use enso_flexer::State;
//! use enso_flexer;
//! # use std::ops::Deref;
//! # use std::ops::DerefMut;
//! #
//! # type Logger = Disabled;
//! #
//! #
//! # // === Token ===
//! #
//! # #[derive(Clone)]
//! # pub enum Token {
//! #     /// A word from the input, consisting of a sequence of all `a` or all `b`.
//! #     Word(String),
//! #     /// A token that the lexer is unable to recognise.
//! #     Unrecognized(String)
//! # }
//! #
//! # #[derive(Clone,Default)]
//! # pub struct TokenStream {
//! #     tokens:Vec<Token>
//! # }
//! #
//! # impl TokenStream {
//! #     pub fn push(&mut self,token:Token) {
//! #         self.tokens.push(token)
//! #     }
//! # }
//! #
//! #
//! # // === LexerState ===
//! #
//! # #[derive(Debug)]
//! # pub struct LexerState {
//! #     /// The registry for groups in the lexer.
//! #     lexer_states:group::Registry,
//! #     /// The initial state of the lexer.
//! #     initial_state:group::Identifier,
//! #     /// The state entered when the first word has been seen.
//! #     seen_first_word_state:group::Identifier,
//! #     /// The bookmarks for this lexer.
//! #     bookmarks:BookmarkManager
//! # }
//! #
//! # impl enso_flexer::State for LexerState {
//! #     fn new(_logger:&impl AnyLogger) -> Self {
//! #         // Here we construct all of the elements needed for our lexer state. This function can
//! #         // contain arbitrarily complex logic and is only called once at initialization time.
//! #         let mut lexer_states      = group::Registry::default();
//! #         let initial_state         = lexer_states.define_group("ROOT",None);
//! #         let seen_first_word_state = lexer_states.define_group("SEEN FIRST WORD",None);
//! #         let bookmarks             = BookmarkManager::new();
//! #         Self{lexer_states,initial_state,seen_first_word_state,bookmarks}
//! #     }
//! #
//! #     fn initial_state(&self) -> group::Identifier {
//! #         self.initial_state
//! #     }
//! #
//! #     fn groups(&self) -> &group::Registry {
//! #         &self.lexer_states
//! #     }
//! #
//! #     fn groups_mut(&mut self) -> &mut group::Registry {
//! #         &mut self.lexer_states
//! #     }
//! #
//! #     fn bookmarks(&self) -> &BookmarkManager {
//! #         &self.bookmarks
//! #     }
//! #
//! #     fn bookmarks_mut(&mut self) -> &mut BookmarkManager {
//! #         &mut self.bookmarks
//! #     }
//! #
//! #     fn specialize(&self) -> Result<String,GenError> {
//! #         // It is very important to pass both the type name of your lexer and your output
//! #         // correctly here. This function should always be implemented as a call to the
//! #         // below-used function.
//! #         generate::specialize(self,"TestLexer","Token")
//! #     }
//! # }
//! #
//! #
//! # // === Lexer ===
//! #
//! # pub struct Lexer {
//! #    lexer:Flexer<LexerState,TokenStream,Logger>
//! # }
//! #
//! # impl Lexer {
//! #     pub fn new() -> Self {
//! #         let lexer = Flexer::new(Logger::new("Lexer"));
//! #         Lexer{lexer}
//! #     }
//! # }
//! #
//! # impl Deref for Lexer {
//! #     type Target = Flexer<LexerState,TokenStream,Logger> ;
//! #     fn deref(&self) -> &Self::Target {
//! #         &self.lexer
//! #     }
//! # }
//! # impl DerefMut for Lexer {
//! #     fn deref_mut(&mut self) -> &mut Self::Target {
//! #         &mut self.lexer
//! #     }
//! # }
//!
//! impl enso_flexer::Definition for Lexer {
//!     fn define() -> Self {
//!         // First we instantiate our lexer. Definitions take place _directly_ on the lexer, and
//!         // manipulate runtime state.
//!         let mut lexer = Self::new();
//!
//!         // Then, we define the patterns that we're going to use. For an overview of the p
//!         let a_word        = Pattern::char('a').many1();
//!         let b_word        = Pattern::char('b').many1();
//!         let space         = Pattern::char(' ');
//!         let spaced_a_word = &space >> &a_word;
//!         let spaced_b_word = &space >> &b_word;
//!         let any           = Pattern::any();
//!         let end           = Pattern::eof();
//!
//!         // Next, we define groups of lexer rules. This uses the groups that we've defined in our
//!         // lexer's state, and the patterns we've defined above.
//!         let root_group_id = lexer.initial_state;
//!         let root_group    = lexer.groups_mut().group_mut(root_group_id);
//!         root_group.create_rule(&a_word,"self.on_first_word(reader)");
//!         root_group.create_rule(&b_word,"self.on_first_word(reader)");
//!         root_group.create_rule(&end,   "self.on_no_err_suffix_first_word(reader)");
//!         root_group.create_rule(&any,   "self.on_err_suffix_first_word(reader)");
//!
//!         let seen_first_word_group_id = lexer.seen_first_word_state;
//!         let seen_first_word_group    = lexer.groups_mut().group_mut(seen_first_word_group_id);
//!         seen_first_word_group.create_rule(&spaced_a_word,"self.on_spaced_word(reader)");
//!         seen_first_word_group.create_rule(&spaced_b_word,"self.on_spaced_word(reader)");
//!         seen_first_word_group.create_rule(&end,          "self.on_no_err_suffix(reader)");
//!         seen_first_word_group.create_rule(&any,          "self.on_err_suffix(reader)");
//!
//!         lexer
//!     }
//!
//!     /// This function just returns the lexer's groups.
//!     fn groups(&self) -> &Registry {
//!         self.lexer.groups()
//!     }
//!
//!     /// Code you want to run before lexing begins.
//!     fn set_up(&mut self) {}
//!
//!     /// Code you want to run after lexing finishes.
//!     fn tear_down(&mut self) {}
//! }
//! ```
//!
//! > ### Transition Functions
//! > You may be wondering why the transition functions are specified as strings. This allows us to
//! > generate highly-efficient, specialized code for your lexer once you define it. More on this
//! > later.
//!
//! A [`group::Group`] in the lexer is like a state that operates on a stack. A transition function
//! can arbitrarily activate or deactivate a group on the flexer's stack, allowing you to perform
//! context-sensitive lexing behaviour. For more information (including on how to use parent groups
//! to inherit rules), see the relevant module.
//!
//! For more information on the [`automata::pattern::Pattern`] APIs used above, please see the
//! relevant module in this crate.
//!
//! ## Defining the Transition Functions
//!
//! You'll have noticed that, up above, we told the rules to use a bunch of transition functions
//! that we've not yet talked about. These functions can be defined anywhere you like, as long as
//! they are in scope in the file in which you are defining your lexer. We do, however, recommend
//! defining them on your lexer itself, so they can access and manipulate lexer state, so that's
//! what we're going to do here.
//!
//! ```
//! # use enso_flexer::automata::pattern::Pattern;
//! # use enso_flexer::Flexer;
//! # use enso_flexer::generate;
//! # use enso_flexer::group::Registry;
//! # use enso_flexer::group;
//! # use enso_flexer::prelude::AnyLogger;
//! use enso_flexer::prelude::ReaderOps;
//! # use enso_flexer::prelude::GenError;
//! # use enso_flexer::prelude::logger::Disabled;
//! # use enso_flexer::prelude::reader::BookmarkManager;
//! # use enso_flexer::State;
//! # use enso_flexer;
//! # use std::ops::Deref;
//! # use std::ops::DerefMut;
//! #
//! # type Logger = Disabled;
//! #
//! #
//! # // === Token ===
//! #
//! # #[derive(Clone)]
//! # pub enum Token {
//! #     /// A word from the input, consisting of a sequence of all `a` or all `b`.
//! #     Word(String),
//! #     /// A token that the lexer is unable to recognise.
//! #     Unrecognized(String)
//! # }
//! #
//! # #[derive(Clone,Default)]
//! # pub struct TokenStream {
//! #     tokens:Vec<Token>
//! # }
//! #
//! # impl TokenStream {
//! #     pub fn push(&mut self,token:Token) {
//! #         self.tokens.push(token)
//! #     }
//! # }
//! #
//! #
//! # // === LexerState ===
//! #
//! # #[derive(Debug)]
//! # pub struct LexerState {
//! #     /// The registry for groups in the lexer.
//! #     lexer_states:group::Registry,
//! #     /// The initial state of the lexer.
//! #     initial_state:group::Identifier,
//! #     /// The state entered when the first word has been seen.
//! #     seen_first_word_state:group::Identifier,
//! #     /// The bookmarks for this lexer.
//! #     bookmarks:BookmarkManager
//! # }
//! #
//! # impl enso_flexer::State for LexerState {
//! #     fn new(_logger:&impl AnyLogger) -> Self {
//! #         // Here we construct all of the elements needed for our lexer state. This function can
//! #         // contain arbitrarily complex logic and is only called once at initialization time.
//! #         let mut lexer_states      = group::Registry::default();
//! #         let initial_state         = lexer_states.define_group("ROOT",None);
//! #         let seen_first_word_state = lexer_states.define_group("SEEN FIRST WORD",None);
//! #         let bookmarks             = BookmarkManager::new();
//! #         Self{lexer_states,initial_state,seen_first_word_state,bookmarks}
//! #     }
//! #
//! #     fn initial_state(&self) -> group::Identifier {
//! #         self.initial_state
//! #     }
//! #
//! #     fn groups(&self) -> &group::Registry {
//! #         &self.lexer_states
//! #     }
//! #
//! #     fn groups_mut(&mut self) -> &mut group::Registry {
//! #         &mut self.lexer_states
//! #     }
//! #
//! #     fn bookmarks(&self) -> &BookmarkManager {
//! #         &self.bookmarks
//! #     }
//! #
//! #     fn bookmarks_mut(&mut self) -> &mut BookmarkManager {
//! #         &mut self.bookmarks
//! #     }
//! #
//! #     fn specialize(&self) -> Result<String,GenError> {
//! #         // It is very important to pass both the type name of your lexer and your output
//! #         // correctly here. This function should always be implemented as a call to the
//! #         // below-used function.
//! #         generate::specialize(self,"TestLexer","Token")
//! #     }
//! # }
//! #
//! #
//! # // === Lexer ===
//! #
//! # pub struct Lexer {
//! #    lexer:Flexer<LexerState,TokenStream,Logger>
//! # }
//! #
//! # impl Lexer {
//! #     pub fn new() -> Self {
//! #         let lexer = Flexer::new(Logger::new("Lexer"));
//! #         Lexer{lexer}
//! #     }
//! # }
//! #
//! # impl Deref for Lexer {
//! #     type Target = Flexer<LexerState,TokenStream,Logger> ;
//! #     fn deref(&self) -> &Self::Target {
//! #         &self.lexer
//! #     }
//! # }
//! # impl DerefMut for Lexer {
//! #     fn deref_mut(&mut self) -> &mut Self::Target {
//! #         &mut self.lexer
//! #     }
//! # }
//! #
//! # impl enso_flexer::Definition for Lexer {
//! #     fn define() -> Self {
//! #         // First we instantiate our lexer. Definitions take place _directly_ on the lexer, and
//! #         // manipulate runtime state.
//! #         let mut lexer = Self::new();
//! #
//! #         // Then, we define the patterns that we're going to use. For an overview of the p
//! #         let a_word        = Pattern::char('a').many1();
//! #         let b_word        = Pattern::char('b').many1();
//! #         let space         = Pattern::char(' ');
//! #         let spaced_a_word = &space >> &a_word;
//! #         let spaced_b_word = &space >> &b_word;
//! #         let any           = Pattern::any();
//! #         let end           = Pattern::eof();
//! #
//! #         // Next, we define groups of lexer rules. This uses the groups that we've defined in our
//! #         // lexer's state, and the patterns we've defined above.
//! #         let root_group_id = lexer.initial_state;
//! #         let root_group    = lexer.groups_mut().group_mut(root_group_id);
//! #         root_group.create_rule(&a_word,"self.on_first_word(reader)");
//! #         root_group.create_rule(&b_word,"self.on_first_word(reader)");
//! #         root_group.create_rule(&end,   "self.on_no_err_suffix_first_word(reader)");
//! #         root_group.create_rule(&any,   "self.on_err_suffix_first_word(reader)");
//! #
//! #         let seen_first_word_group_id = lexer.seen_first_word_state;
//! #         let seen_first_word_group    = lexer.groups_mut().group_mut(seen_first_word_group_id);
//! #         seen_first_word_group.create_rule(&spaced_a_word,"self.on_spaced_word(reader)");
//! #         seen_first_word_group.create_rule(&spaced_b_word,"self.on_spaced_word(reader)");
//! #         seen_first_word_group.create_rule(&end,          "self.on_no_err_suffix(reader)");
//! #         seen_first_word_group.create_rule(&any,          "self.on_err_suffix(reader)");
//! #
//! #         lexer
//! #     }
//! #
//! #     /// This function just returns the lexer's groups.
//! #     fn groups(&self) -> &Registry {
//! #         self.lexer.groups()
//! #     }
//! #
//! #     /// Code you want to run before lexing begins.
//! #     fn set_up(&mut self) {}
//! #
//! #     /// Code you want to run after lexing finishes.
//! #     fn tear_down(&mut self) {}
//! # }
//!
//! impl Lexer {
//!      pub fn on_first_word<R:ReaderOps>(&mut self, _reader:&mut R) {
//!         let str = self.current_match.clone();
//!         let ast = Token::Word(str);
//!         self.output.push(ast);
//!         let id = self.seen_first_word_state;
//!         self.push_state(id);
//!     }
//!
//!     pub fn on_spaced_word<R:ReaderOps>(&mut self, _reader:&mut R) {
//!         let str = self.current_match.clone();
//!         let ast = Token::Word(String::from(str.trim()));
//!         self.output.push(ast);
//!     }
//!
//!     pub fn on_err_suffix_first_word<R:ReaderOps>(&mut self, _reader:&mut R) {
//!         let ast = Token::Unrecognized(self.current_match.clone());
//!         self.output.push(ast);
//!     }
//!
//!     pub fn on_err_suffix<R:ReaderOps>(&mut self, reader:&mut R) {
//!         self.on_err_suffix_first_word(reader);
//!         self.pop_state();
//!     }
//!
//!     pub fn on_no_err_suffix_first_word<R:ReaderOps>(&mut self, _reader:&mut R) {}
//!
//!     pub fn on_no_err_suffix<R:ReaderOps>(&mut self, reader:&mut R) {
//!         self.on_no_err_suffix_first_word(reader);
//!         self.pop_state();
//!     }
//! }
//! ```
//!
//! > ### Magic Transition Functions
//! > The transition functions are the 'secret sauce', so to speak, of the Flexer. They are called
//! > when a rule matches, and allow arbitrary code to manipulate the lexer. This means that the
//! > flexer can be used to define very complex grammars while still keeping a simple interface and
//! > ensuring performant execution.
//!
//! You'll note that all of these functions have a couple of things in common:
//!
//! 1.  They have a type parameter `R` that conforms to the [`prelude::LazyReader`] trait.
//! 2.  They take an argument of type `R`, that is the reader over which the lexer is running as the
//!     _first_ non-`self` argument to the function.
//! 3.  Any additional arguments must be valid in the scope in which the specialisation rules are
//!     going to be generated.
//!
//! Both of these, combined, allow the transition functions to manipulate the text being read by the
//! lexer.
//!
//! ## Specializing the Lexer
//!
//! In order to actually _use_ the lexer that you've defined, you need to specialize it to the rules
//! that you define. Unfortunately, `cargo` doesn't have support for post-build hooks, and so this
//! is a little more involved than we'd like it to be.
//!
//! 1.  Create a file that performs the definition of the lexer as above. It can use multiple files
//!     in its crate as long as they are publicly exposed.
//! 2.  Create a separate cargo project that has a prebuild hook in its `build.rs`.
//! 3.  In that build.rs, you need to:
//!     1. Import the lexer definition and instantiate it using `::define()`.
//!     2. Call [`State::specialize()`] on the resultant lexer. This will generate a string that
//!        contains the optimised lexer implementation.
//!     3. Write both the generated code and the code from the original lexer definition into an
//!        output file.
//! 4.  Re-export this output file from your cargo project's `lib.rs`.
//!
//! The process of specialization will generate quite a bit of code, but most importantly it will
//! generate `pub fn run<R:LazyReader>(&mut self, mut reader:R) -> Result<Output>`, where `Output`
//! is your lexer's token type. All of these functions are defined on your lexer type (the one whose
//! name is provided to `specialize()`.
//!
//! ## In Summary
//!
//! The flexer allows its clients to define highly optimised lexer implementations that are capable
//! of lexing languages of a high complexity.

use crate::prelude::*;
use prelude::logger::*;

use crate::generate::GenError;
use prelude::logger::AnyLogger;
use prelude::reader::BookmarkManager;

pub use enso_automata as automata;
pub use enso_automata::char;
pub use enso_automata::literal;
pub mod generate;
pub mod group;

/// Useful libraries for working with the flexer.
pub mod prelude {
    pub use crate::generate::GenError;
    pub use enso_prelude::*;
    pub use lazy_reader::ReaderOps;
    pub use lazy_reader::Reader;
    pub use logger::AnyLogger;
    pub use logger::macros::*;

    /// The lazy reader library.
    pub mod reader {
        pub use lazy_reader::*;
    }

    /// The Enso logging library.
    pub mod logger {
        pub use enso_logger::*;
        pub use enso_logger::WarningLogger as Disabled;
        pub use enso_logger::TraceLogger as Enabled;
    }
}



// =================
// === Constants ===
// =================

mod constants {
    /// The number of 'frames' to reserve in the state stack, aiming to avoid re-allocation in hot
    /// code paths.
    pub const STATE_STACK_RESERVATION:usize = 1024;
}



// ==============
// === Flexer ===
// ==============

/// The flexer is an engine for generating lexers.
///
/// Akin to flex and other lexer generators, it is given a definition as a series of rules from
/// which it then generates code for a highly optimised lexer implemented on top of a
/// [DFA](https://en.wikipedia.org/wiki/Deterministic_finite_automaton).
///
/// Lexers defined using the flexer work on a stack of _states_, where a state is represented by a
/// [`crate::group::Group`]. Being in a given state (represented below by the top of the
/// `state_stack`) means that the flexer can match a certain set of rules associated with that
/// state. The user may cause the lexer to transition between states by pushing and popping states
/// on the stack, thus allowing a much more flexible lexing engine than pure regular grammars.
#[derive(Clone,Debug)]
pub struct Flexer<Definition,Output,Logger> {
    /// The stack of states that are active during lexer execution.
    pub state_stack:NonEmptyVec<group::Identifier>,
    /// The result of the current stage of the DFA.
    pub status:StageStatus,
    /// The tokens that have been lexed.
    pub output:Output,
    /// The text of the current match of the lexer.
    pub current_match:String,
    /// A logger for the flexer, accessible in user definitions.
    pub logger:Logger,
    /// The definition of the user-provided state for the lexer.
    definition:Definition,
}

impl<Definition,Output,Logger> Flexer<Definition,Output,Logger>
where Definition : State,
      Logger     : AnyLogger<Owned=Logger>,
      Output     : Default {
    /// Create a new lexer instance.
    pub fn new(parent_logger:impl AnyLogger) -> Flexer<Definition,Output,Logger> {
        let logger           = <Logger>::sub(&parent_logger,"Flexer");
        let status           = default();
        let output           = default();
        let definition       = Definition::new(&logger);
        let initial_state_id = definition.initial_state();
        let mut state_stack  = NonEmptyVec::singleton(initial_state_id);
        let current_match    = default();

        state_stack.reserve(constants::STATE_STACK_RESERVATION);
        Flexer{state_stack,status,output,current_match,logger,definition}
    }
}

impl<Definition,Output,Logger> Flexer<Definition,Output,Logger>
where Definition : State,
      Output     : Clone,
      Logger     : AnyLogger<Owned=Logger> + LoggerOps<logger::entry::level::Debug> {
    /// Get the lexer result.
    pub fn result(&mut self) -> &Output {
        &self.output
    }

    /// Get the lexer's initial state.
    pub fn initial_state(&self) -> group::Identifier {
        self.definition.initial_state()
    }

    /// Get the state that the lexer is currently in.
    pub fn current_state(&self) -> group::Identifier {
        *self.state_stack.last()
    }

    /// Tell the lexer to enter the state described by `state`.
    pub fn push_state(&mut self, state:group::Identifier) {
        self.logger.group_begin(logger::entry::level::Debug,false,
            ||format!("Enter State: {}",self.groups().group(state).name.as_str())
        );
        self.state_stack.push(state);
    }

    /// End the current state, returning the popped state identifier if one was ended.
    ///
    /// It will never end the initial state of the lexer.
    pub fn pop_state(&mut self) -> Option<group::Identifier> {
        let result = self.state_stack.pop();
        match result {
            None        => (),
            Some(ident) => debug!(self.logger,"Leave State: {self.groups().group(ident).name}"),
        };
        self.logger.group_end(logger::entry::level::Debug);
        result
    }

    /// End states until the specified `state` is reached, leaving the lexer in `state`.
    ///
    /// If `state` does not exist on the lexer's stack, then the lexer will be left in the root
    /// state. Additionally, this function cannot pop the final occurrence of the root state.
    pub fn pop_states_until(&mut self, state:group::Identifier) -> group::Identifier {
        while self.current_state() != state && self.current_state() != self.initial_state() {
            self.pop_state();
        }
        *self.state_stack.last()
    }

    /// End states up to and including the first instance of `state`, returning the identifier of
    /// the new state the lexer is in.
    ///
    /// If `state` does not exist on the lexer's stack, the lexer will be left in the root state.
    /// Additionally, this function cannot pop the final occurrence of the root state.
    pub fn pop_states_including(&mut self, state:group::Identifier) -> group::Identifier {
        while self.current_state() != state && self.current_state() != self.initial_state() {
            self.pop_state();
        }
        self.pop_state();
        *self.state_stack.last()
    }

    /// Check if the lexer is currently in the state described by `state`.
    pub fn is_in_state(&self, state:group::Identifier) -> bool {
        self.current_state() == state
    }

    /// Check if the lexer is currently inside `state` at some point in the state stack.
    pub fn is_inside_state(&self, state:group::Identifier) -> bool {
        self.state_stack.iter().rev().any(|s| *s == state)
    }
}

// === Trait Impls ===

impl<Definition,Output,Logger> Deref for Flexer<Definition,Output,Logger> {
    type Target = Definition;
    fn deref(&self) -> &Self::Target {
        &self.definition
    }
}

impl<Definition,Output,Logger> DerefMut for Flexer<Definition,Output,Logger> {
    fn deref_mut(&mut self) -> &mut Self::Target {
        &mut self.definition
    }
}



// ==================
// === SubStateId ===
// ==================

/// An identifier for a sub-state of the lexer to transition to.
#[derive(Copy,Clone,Debug,Default,PartialEq)]
pub struct SubStateId(usize);

impl SubStateId {
    /// Create a new `SubStateId` with the specified value.
    pub fn new(val:usize) -> SubStateId {
        SubStateId(val)
    }
}


// === Trait Impls ===

impl From<usize> for SubStateId {
    fn from(val:usize) -> Self {
        SubStateId::new(val)
    }
}

impl From<&usize> for SubStateId {
    fn from(val:&usize) -> Self {
        SubStateId::new(*val)
    }
}

impl From<SubStateId> for usize {
    fn from(value:SubStateId) -> Self {
        value.0
    }
}



// ===================
// === StageStatus ===
// ===================

/// The result of executing a single step of the DFA.
#[derive(Clone,Copy,Debug,PartialEq)]
pub enum StageStatus {
    /// The initial state of a lexer stage.
    Initial,
    /// The stage exits successfully, having consumed a complete token.
    ExitSuccess,
    /// The stage exits unsuccessfully.
    ExitFail,
    /// A single step of the DFA has executed successfully.
    ExitFinished,
    /// The lexer should continue, transitioning to the included state.
    ContinueWith(SubStateId)
}

impl StageStatus {
    /// Check if the lexer stage should continue.
    pub fn should_continue(&self) -> bool {
        self.continue_as().is_some()
    }

    /// Obtain the state to which the lexer should transition, iff the lexer should continue.
    pub fn continue_as(&self) -> Option<SubStateId> {
        match self {
            StageStatus::Initial           => Some(SubStateId::new(0)),
            StageStatus::ContinueWith(val) => Some(*val),
            _                              => None
        }
    }
}


// === Trait Impls ===

impl Default for StageStatus {
    fn default() -> Self {
        StageStatus::Initial
    }
}



// ==============
// === Result ===
// ==============

/// The result of executing the lexer on a given input.
#[derive(Clone,Debug)]
pub struct LexingResult<T> {
    /// The kind of the result, representing _how_ the lexer completed.
    pub kind:ResultKind,
    /// The tokens that the lexer was able to process.
    pub tokens:T
}

impl<T> LexingResult<T> {
    /// Create a new lexer result using the provided `kind` and `tokens`.
    pub fn new(kind:ResultKind,tokens:T) -> LexingResult<T> {
        LexingResult {kind,tokens}
    }

    /// Create a new success result, with the provided `tokens`.
    pub fn success(tokens:T) -> LexingResult<T> {
        LexingResult::new(ResultKind::Success, tokens)
    }

    /// Create a new partial lex result, with the provided `tokens`.
    pub fn partial(tokens:T) -> LexingResult<T> {
        LexingResult::new(ResultKind::Partial, tokens)
    }

    /// Create a failure result, with the `tokens` it _did_ manage to consume.
    pub fn failure(tokens:T) -> LexingResult<T> {
        LexingResult::new(ResultKind::Failure, tokens)
    }
}

/// The kind of lexer result.
#[derive(Copy,Clone,Debug)]
pub enum ResultKind {
    /// The lexer succeeded, returning the contained token stream.
    Success,
    /// The lexer succeeded on part of the input, returning the contained token stream.
    Partial,
    /// The lexer failed on the input, returning any tokens it _did_ manage to consume.
    Failure
}



// =============
// === State ===
// =============

/// Contains the state needed by the flexer from a lexer implementation.
///
/// The types for which this trait is implemented will normally also contain the user-defined state
/// for that lexer.
pub trait State {
    /// Create a new instance of the lexer's state.
    ///
    /// This function is guaranteed to be called at most once per run of the lexer.
    fn new(parent_logger:&impl AnyLogger) -> Self;
    /// Return the _initial_ lexing state.
    fn initial_state(&self) -> group::Identifier;
    /// Return a reference to the group registry for a given lexer.
    fn groups(&self) -> &group::Registry;
    /// Return a mutable reference to the group registry for a given lexer.
    fn groups_mut(&mut self) -> &mut group::Registry;
    /// Get an immutable reference to the bookmark manager for this state.
    fn bookmarks(&self) -> &BookmarkManager;
    /// Get a mutable reference to the bookmark manager for this state.
    fn bookmarks_mut(&mut self) -> &mut BookmarkManager;
    /// Generate code to specialize the flexer for the user's particular lexer definition.
    ///
    /// This function should be implemented as a call to [`generate::specialize`], passing
    /// the name of your lexer, and the name of your lexer's output type as a string.
    fn specialize(&self) -> Result<String,GenError>;
}



// ==================
// === Definition ===
// ==================

/// Allows for the definition of flexer-based lexers.
pub trait Definition {
    /// Define the custom lexer.
    fn define() -> Self;
    /// Obtain the registry of groups for the lexer.
    fn groups(&self) -> &group::Registry;
    /// Run before any lexing takes place.
    fn set_up(&mut self);
    /// Run after lexing has completed.
    fn tear_down(&mut self);
}