1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
// EndBASIC
// Copyright 2020 Julio Merino
//
// Licensed under the Apache License, Version 2.0 (the "License"); you may not
// use this file except in compliance with the License.  You may obtain a copy
// of the License at:
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
// WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.  See the
// License for the specific language governing permissions and limitations
// under the License.

//! Abstract Syntax Tree (AST) for the EndBASIC language.

use crate::parser::{Error, Result};
use std::fmt;

/// Represents an expression and provides mechanisms to evaluate it.
#[derive(Clone, Debug, PartialEq)]
pub enum Expr {
    /// A literal boolean value.
    Boolean(bool),
    /// A literal double-precision floating point value.
    Double(f64),
    /// A literal integer value.
    Integer(i32),
    /// A reference to a variable.
    Symbol(VarRef),
    /// A literal string value.
    Text(String),

    /// Arithmetic addition of two expressions.
    Add(Box<Expr>, Box<Expr>),
    /// Arithmetic subtraction of two expressions.
    Subtract(Box<Expr>, Box<Expr>),
    /// Arithmetic multiplication of two expressions.
    Multiply(Box<Expr>, Box<Expr>),
    /// Arithmetic division of two expressions.
    Divide(Box<Expr>, Box<Expr>),
    /// Arithmetic modulo operation of two expressions.
    Modulo(Box<Expr>, Box<Expr>),
    /// Arithmetic sign flip of an expression.
    Negate(Box<Expr>),

    /// Relational equality comparison of two expressions.
    Equal(Box<Expr>, Box<Expr>),
    /// Relational inequality comparison of two expressions.
    NotEqual(Box<Expr>, Box<Expr>),
    /// Relational less-than comparison of two expressions.
    Less(Box<Expr>, Box<Expr>),
    /// Relational less-than or equal-to comparison of two expressions.
    LessEqual(Box<Expr>, Box<Expr>),
    /// Relational greater-than comparison of two expressions.
    Greater(Box<Expr>, Box<Expr>),
    /// Relational greater-than or equal-to comparison of two expressions.
    GreaterEqual(Box<Expr>, Box<Expr>),

    /// Logical and of two expressions.
    And(Box<Expr>, Box<Expr>),
    /// Logical not of an expression.
    Not(Box<Expr>),
    /// Logical or of two expressions.
    Or(Box<Expr>, Box<Expr>),
    /// Logical xor of two expressions.
    Xor(Box<Expr>, Box<Expr>),

    /// A function call or an array reference.
    Call(VarRef, Vec<Expr>),
}

/// Collection of types for a variable.
// TODO(jmmv): Consider combining with `Value` and using `Discriminant<Value>` for the variable
// types.
#[derive(Clone, Copy, Debug, Eq, PartialEq)]
pub enum VarType {
    /// Unspecified type identifier.  The type is determined by the value of the variable.
    Auto,

    /// A boolean variable.
    Boolean,

    /// A double-precision floating point variable.
    Double,

    /// An integer variable.
    Integer,

    /// A string variable.  This should really be called `String` but it would get confusing with
    /// the built-in Rust type.
    Text,

    /// The nothingness type.  Used to represent the return value of commands.
    Void,
}

impl VarType {
    /// Returns the type annotation for this type.
    pub fn annotation(&self) -> &'static str {
        match self {
            VarType::Auto => "",
            VarType::Boolean => "?",
            VarType::Double => "#",
            VarType::Integer => "%",
            VarType::Text => "$",
            VarType::Void => "",
        }
    }

    /// Returns the default value to assign to this type.
    pub fn default_value(&self) -> Value {
        match self {
            VarType::Auto => Value::Integer(0),
            VarType::Boolean => Value::Boolean(false),
            VarType::Double => Value::Double(0.0),
            VarType::Integer => Value::Integer(0),
            VarType::Text => Value::Text("".to_owned()),
            VarType::Void => panic!("Cannot represent a default value for void"),
        }
    }
}

/// Represents a reference to a variable (which doesn't have to exist).
#[derive(Clone, Debug, Eq, PartialEq)]
pub struct VarRef {
    /// Name of the variable this points to.
    name: String,

    /// Type of the variable this points to, if explicitly specified.  If `Auto`, the type of the
    /// variable is only known at runtime based on the values assigned to it.
    ref_type: VarType,
}

// TODO(jmmv): This is the only `impl` in the AST.  Something seems wrong with this.
impl VarRef {
    /// Creates a new reference to the variable with `name` and the optional `vtype` type.
    #[allow(clippy::redundant_field_names)]
    pub fn new<T: Into<String>>(name: T, ref_type: VarType) -> Self {
        Self { name: name.into(), ref_type: ref_type }
    }

    /// Transforms this reference into an unannotated name.
    ///
    /// This is only valid for references that have no annotations in them.
    pub fn into_unannotated_string(self) -> Result<String> {
        if self.ref_type != VarType::Auto {
            return Err(Error::Bad(format!("Type annotation not allowed in {}", self)));
        }
        Ok(self.name)
    }

    /// Returns the name of this reference, without any type annotations.
    pub fn name(&self) -> &str {
        &self.name
    }

    /// Adds the type annotation `ref_type` to this reference.
    ///
    /// Assumes that the current annotation for this reference is `Auto` and that the given
    /// annotation is not.
    pub fn qualify(self, ref_type: VarType) -> Self {
        assert!(ref_type != VarType::Auto, "Cannot qualify with auto");
        assert!(self.ref_type == VarType::Auto, "Reference already qualified");
        Self { name: self.name, ref_type }
    }

    /// Returns the type of this reference.
    pub fn ref_type(&self) -> VarType {
        self.ref_type
    }

    /// Returns true if this reference is compatible with the given type.
    pub fn accepts(&self, other: VarType) -> bool {
        self.ref_type == VarType::Auto || self.ref_type == other
    }
}

impl fmt::Display for VarRef {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        write!(f, "{}{}", self.name, self.ref_type().annotation())
    }
}

/// Represents an evaluated value.
#[derive(Clone, Debug, PartialEq)]
pub enum Value {
    /// A boolean value.
    Boolean(bool),

    /// A double-precision floating point value.
    Double(f64),

    /// An integer value.
    Integer(i32),

    /// A string value.
    Text(String), // Should be `String` but would get confusing with the built-in Rust type.
}

impl From<bool> for Value {
    fn from(b: bool) -> Self {
        Value::Boolean(b)
    }
}

impl From<f64> for Value {
    fn from(d: f64) -> Self {
        Value::Double(d)
    }
}

impl From<i32> for Value {
    fn from(i: i32) -> Self {
        Value::Integer(i)
    }
}

impl From<&str> for Value {
    fn from(s: &str) -> Self {
        Value::Text(s.to_owned())
    }
}

impl Value {
    /// Returns the type of the value as a `VarType`.
    pub fn as_vartype(&self) -> VarType {
        match self {
            Value::Boolean(_) => VarType::Boolean,
            Value::Double(_) => VarType::Double,
            Value::Integer(_) => VarType::Integer,
            Value::Text(_) => VarType::Text,
        }
    }
}

/// Types of separators between arguments to a `BuiltinCall`.
#[derive(Debug, Eq, PartialEq)]
pub enum ArgSep {
    /// Filler for the separator in the last argument.
    End,

    /// Short separator (`;`).
    Short,

    /// Long separator (`,`).
    Long,
}

/// Represents a statement in the program along all data to execute it.
#[derive(Debug, PartialEq)]
pub enum Statement {
    /// Represents an assignment to an element of an array.
    ///
    /// The first parameter is the reference to the array to modify.  The second parameter is the
    /// expressions to compute the subscripts to index the array.  the third parameter is the
    /// expression to compute the value of the modified element.
    ArrayAssignment(VarRef, Vec<Expr>, Expr),

    /// Represents a variable assignment.
    ///
    /// The first parameter is the reference to the variable to set.  The second parameter is the
    /// expression to compute the value for the variable.
    Assignment(VarRef, Expr),

    /// Represents a call to a builtin command such as `PRINT`.
    ///
    /// The first parameter is the name of the builtin.  The second parameter is the sequence of
    /// arguments to pass to the builtin.
    ///
    /// Each argument is represented as an optional expression to evaluate and the separator that
    /// was to separate it from the *next* argument.  Because of this, the last argument always
    /// carries `ArgSep::End` as the separator.  The reason the expression is optional is to support
    /// calls of the form `PRINT a, , b`.
    BuiltinCall(String, Vec<(Option<Expr>, ArgSep)>),

    /// Represents a variable declaration.
    ///
    /// The first parameter is the name of the variable to set; type annotations are not allowed.
    /// The second parameter is the type of the variable to be defined.
    ///
    /// Given that a declaration causes the variable to be initialized to a default value, it is
    /// tempting to model this statement as a simple assignment.  However, we must be able to
    /// detect variable redeclarations at runtime, so we must treat this statement as a separate
    /// type from assignments.
    Dim(String, VarType),

    /// Represents an array declaration.
    ///
    /// The first parameter is the name of the array to set; type annotations are not allowed.
    /// The second parameter is the expressions to compute the dimensions of the array.  The third
    /// parameter is the type of the elements in the array.
    DimArray(String, Vec<Expr>, VarType),

    /// Represents an `IF` statement.
    ///
    /// The first and only parameter is a sequence containing all the branches of the statement.
    /// Each element is a pair of the conditional guard for the branch and the collection of
    /// statements in that branch.  The final `ELSE` branch, if present, is also included here
    /// and its guard clause is always a true expression.
    If(Vec<(Expr, Vec<Statement>)>),

    /// Represents a `FOR` statement.
    ///
    /// The first parameter is the loop's iterator name, which is expressed a variable reference
    /// that must be either automatic or an integer.  The second parameter is the expression to
    /// compute the iterator's initial value, which must evaluate to an integer.  The third
    /// parameter is the condition to test after each body execution, which if false terminates the
    /// loop.  The fourth parameter is the expression to compute the iterator's next value.  The
    /// fifth parameter is the collection of statements within the loop.
    ///
    /// Note that we do not store the original end and step values, and instead use expressions to
    /// represent the loop condition and the computation of the next iterator value.  We do this
    /// for run-time efficiency.  The reason this is possible is because we force the step to be an
    /// integer literal at parse time and do not allow it to be an expression.
    For(VarRef, Expr, Expr, Expr, Vec<Statement>),

    /// Represents a `WHILE` statement.
    ///
    /// The first parameter is the loop's condition.  The second parameter is the collection of
    /// statements within the loop.
    While(Expr, Vec<Statement>),
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn test_varref_display() {
        assert_eq!("name", format!("{}", VarRef::new("name", VarType::Auto)));
        assert_eq!("abc?", format!("{}", VarRef::new("abc", VarType::Boolean)));
        assert_eq!("cba#", format!("{}", VarRef::new("cba", VarType::Double)));
        assert_eq!("def%", format!("{}", VarRef::new("def", VarType::Integer)));
        assert_eq!("ghi$", format!("{}", VarRef::new("ghi", VarType::Text)));
    }

    #[test]
    fn test_varref_into_unannotated_string() {
        assert_eq!(
            "print",
            &VarRef::new("print", VarType::Auto).into_unannotated_string().unwrap()
        );

        assert_eq!(
            "Type annotation not allowed in print$",
            format!(
                "{}",
                &VarRef::new("print", VarType::Text).into_unannotated_string().unwrap_err()
            )
        );
    }

    #[test]
    fn test_varref_accepts() {
        assert!(VarRef::new("a", VarType::Auto).accepts(VarType::Boolean));
        assert!(VarRef::new("a", VarType::Auto).accepts(VarType::Double));
        assert!(VarRef::new("a", VarType::Auto).accepts(VarType::Integer));
        assert!(VarRef::new("a", VarType::Auto).accepts(VarType::Text));

        assert!(VarRef::new("a", VarType::Boolean).accepts(VarType::Boolean));
        assert!(!VarRef::new("a", VarType::Boolean).accepts(VarType::Double));
        assert!(!VarRef::new("a", VarType::Boolean).accepts(VarType::Integer));
        assert!(!VarRef::new("a", VarType::Boolean).accepts(VarType::Text));

        assert!(!VarRef::new("a", VarType::Double).accepts(VarType::Boolean));
        assert!(VarRef::new("a", VarType::Double).accepts(VarType::Double));
        assert!(!VarRef::new("a", VarType::Double).accepts(VarType::Integer));
        assert!(!VarRef::new("a", VarType::Double).accepts(VarType::Text));

        assert!(!VarRef::new("a", VarType::Integer).accepts(VarType::Boolean));
        assert!(!VarRef::new("a", VarType::Integer).accepts(VarType::Double));
        assert!(VarRef::new("a", VarType::Integer).accepts(VarType::Integer));
        assert!(!VarRef::new("a", VarType::Integer).accepts(VarType::Text));

        assert!(!VarRef::new("a", VarType::Text).accepts(VarType::Boolean));
        assert!(!VarRef::new("a", VarType::Text).accepts(VarType::Double));
        assert!(!VarRef::new("a", VarType::Text).accepts(VarType::Integer));
        assert!(VarRef::new("a", VarType::Text).accepts(VarType::Text));
    }
}