1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
//! I2C-compatible Two Wire Interface in slave mode (TWIM) driver.

#![macro_use]

use core::future::{poll_fn, Future};
use core::marker::PhantomData;
use core::sync::atomic::compiler_fence;
use core::sync::atomic::Ordering::SeqCst;
use core::task::Poll;

use embassy_hal_internal::{into_ref, PeripheralRef};
use embassy_sync::waitqueue::AtomicWaker;
#[cfg(feature = "time")]
use embassy_time::{Duration, Instant};

use crate::chip::{EASY_DMA_SIZE, FORCE_COPY_BUFFER_SIZE};
use crate::gpio::Pin as GpioPin;
use crate::interrupt::typelevel::Interrupt;
use crate::util::slice_in_ram_or;
use crate::{gpio, interrupt, pac, Peripheral};

/// TWIS config.
#[non_exhaustive]
pub struct Config {
    /// First address
    pub address0: u8,

    /// Second address, optional.
    pub address1: Option<u8>,

    /// Overread character.
    ///
    /// If the master keeps clocking the bus after all the bytes in the TX buffer have
    /// already been transmitted, this byte will be constantly transmitted.
    pub orc: u8,

    /// Enable high drive for the SDA line.
    pub sda_high_drive: bool,

    /// Enable internal pullup for the SDA line.
    ///
    /// Note that using external pullups is recommended for I2C, and
    /// most boards already have them.
    pub sda_pullup: bool,

    /// Enable high drive for the SCL line.
    pub scl_high_drive: bool,

    /// Enable internal pullup for the SCL line.
    ///
    /// Note that using external pullups is recommended for I2C, and
    /// most boards already have them.
    pub scl_pullup: bool,
}

impl Default for Config {
    fn default() -> Self {
        Self {
            address0: 0x55,
            address1: None,
            orc: 0x00,
            scl_high_drive: false,
            sda_pullup: false,
            sda_high_drive: false,
            scl_pullup: false,
        }
    }
}

#[derive(Debug, Copy, Clone, Eq, PartialEq)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
enum Status {
    Read,
    Write,
}

/// TWIS error.
#[derive(Debug, Copy, Clone, Eq, PartialEq)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
#[non_exhaustive]
pub enum Error {
    /// TX buffer was too long.
    TxBufferTooLong,
    /// RX buffer was too long.
    RxBufferTooLong,
    /// Didn't receive an ACK bit after a data byte.
    DataNack,
    /// Bus error.
    Bus,
    /// The buffer is not in data RAM. It's most likely in flash, and nRF's DMA cannot access flash.
    BufferNotInRAM,
    /// Overflow
    Overflow,
    /// Overread
    OverRead,
    /// Timeout
    Timeout,
}

/// Received command
#[derive(Debug, Copy, Clone, Eq, PartialEq)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
pub enum Command {
    /// Read
    Read,
    /// Write+read
    WriteRead(usize),
    /// Write
    Write(usize),
}

/// Interrupt handler.
pub struct InterruptHandler<T: Instance> {
    _phantom: PhantomData<T>,
}

impl<T: Instance> interrupt::typelevel::Handler<T::Interrupt> for InterruptHandler<T> {
    unsafe fn on_interrupt() {
        let r = T::regs();
        let s = T::state();

        if r.events_read.read().bits() != 0 || r.events_write.read().bits() != 0 {
            s.waker.wake();
            r.intenclr.modify(|_r, w| w.read().clear().write().clear());
        }
        if r.events_stopped.read().bits() != 0 {
            s.waker.wake();
            r.intenclr.modify(|_r, w| w.stopped().clear());
        }
        if r.events_error.read().bits() != 0 {
            s.waker.wake();
            r.intenclr.modify(|_r, w| w.error().clear());
        }
    }
}

/// TWIS driver.
pub struct Twis<'d, T: Instance> {
    _p: PeripheralRef<'d, T>,
}

impl<'d, T: Instance> Twis<'d, T> {
    /// Create a new TWIS driver.
    pub fn new(
        twis: impl Peripheral<P = T> + 'd,
        _irq: impl interrupt::typelevel::Binding<T::Interrupt, InterruptHandler<T>> + 'd,
        sda: impl Peripheral<P = impl GpioPin> + 'd,
        scl: impl Peripheral<P = impl GpioPin> + 'd,
        config: Config,
    ) -> Self {
        into_ref!(twis, sda, scl);

        let r = T::regs();

        // Configure pins
        sda.conf().write(|w| {
            w.dir().input();
            w.input().connect();
            if config.sda_high_drive {
                w.drive().h0d1();
            } else {
                w.drive().s0d1();
            }
            if config.sda_pullup {
                w.pull().pullup();
            }
            w
        });
        scl.conf().write(|w| {
            w.dir().input();
            w.input().connect();
            if config.scl_high_drive {
                w.drive().h0d1();
            } else {
                w.drive().s0d1();
            }
            if config.scl_pullup {
                w.pull().pullup();
            }
            w
        });

        // Select pins.
        r.psel.sda.write(|w| unsafe { w.bits(sda.psel_bits()) });
        r.psel.scl.write(|w| unsafe { w.bits(scl.psel_bits()) });

        // Enable TWIS instance.
        r.enable.write(|w| w.enable().enabled());

        // Disable all events interrupts
        r.intenclr.write(|w| unsafe { w.bits(0xFFFF_FFFF) });

        // Set address
        r.address[0].write(|w| unsafe { w.address().bits(config.address0) });
        r.config.write(|w| w.address0().enabled());
        if let Some(address1) = config.address1 {
            r.address[1].write(|w| unsafe { w.address().bits(address1) });
            r.config.modify(|_r, w| w.address1().enabled());
        }

        // Set over-read character
        r.orc.write(|w| unsafe { w.orc().bits(config.orc) });

        // Generate suspend on read event
        r.shorts.write(|w| w.read_suspend().enabled());

        T::Interrupt::unpend();
        unsafe { T::Interrupt::enable() };

        Self { _p: twis }
    }

    /// Set TX buffer, checking that it is in RAM and has suitable length.
    unsafe fn set_tx_buffer(&mut self, buffer: &[u8]) -> Result<(), Error> {
        slice_in_ram_or(buffer, Error::BufferNotInRAM)?;

        if buffer.len() > EASY_DMA_SIZE {
            return Err(Error::TxBufferTooLong);
        }

        let r = T::regs();

        r.txd.ptr.write(|w|
            // We're giving the register a pointer to the stack. Since we're
            // waiting for the I2C transaction to end before this stack pointer
            // becomes invalid, there's nothing wrong here.
            //
            // The PTR field is a full 32 bits wide and accepts the full range
            // of values.
            w.ptr().bits(buffer.as_ptr() as u32));
        r.txd.maxcnt.write(|w|
            // We're giving it the length of the buffer, so no danger of
            // accessing invalid memory. We have verified that the length of the
            // buffer fits in an `u8`, so the cast to `u8` is also fine.
            //
            // The MAXCNT field is 8 bits wide and accepts the full range of
            // values.
            w.maxcnt().bits(buffer.len() as _));

        Ok(())
    }

    /// Set RX buffer, checking that it has suitable length.
    unsafe fn set_rx_buffer(&mut self, buffer: &mut [u8]) -> Result<(), Error> {
        // NOTE: RAM slice check is not necessary, as a mutable
        // slice can only be built from data located in RAM.

        if buffer.len() > EASY_DMA_SIZE {
            return Err(Error::RxBufferTooLong);
        }

        let r = T::regs();

        r.rxd.ptr.write(|w|
            // We're giving the register a pointer to the stack. Since we're
            // waiting for the I2C transaction to end before this stack pointer
            // becomes invalid, there's nothing wrong here.
            //
            // The PTR field is a full 32 bits wide and accepts the full range
            // of values.
            w.ptr().bits(buffer.as_mut_ptr() as u32));
        r.rxd.maxcnt.write(|w|
            // We're giving it the length of the buffer, so no danger of
            // accessing invalid memory. We have verified that the length of the
            // buffer fits in an `u8`, so the cast to the type of maxcnt
            // is also fine.
            //
            // Note that that nrf52840 maxcnt is a wider
            // type than a u8, so we use a `_` cast rather than a `u8` cast.
            // The MAXCNT field is thus at least 8 bits wide and accepts the
            // full range of values that fit in a `u8`.
            w.maxcnt().bits(buffer.len() as _));

        Ok(())
    }

    fn clear_errorsrc(&mut self) {
        let r = T::regs();
        r.errorsrc
            .write(|w| w.overflow().bit(true).overread().bit(true).dnack().bit(true));
    }

    /// Returns matched address for latest command.
    pub fn address_match(&self) -> u8 {
        let r = T::regs();
        r.address[r.match_.read().bits() as usize].read().address().bits()
    }

    /// Returns the index of the address matched in the latest command.
    pub fn address_match_index(&self) -> usize {
        T::regs().match_.read().bits() as _
    }

    /// Wait for read, write, stop or error
    fn blocking_listen_wait(&mut self) -> Result<Status, Error> {
        let r = T::regs();
        loop {
            if r.events_error.read().bits() != 0 {
                r.events_error.reset();
                r.tasks_stop.write(|w| unsafe { w.bits(1) });
                while r.events_stopped.read().bits() == 0 {}
                return Err(Error::Overflow);
            }
            if r.events_stopped.read().bits() != 0 {
                r.events_stopped.reset();
                return Err(Error::Bus);
            }
            if r.events_read.read().bits() != 0 {
                r.events_read.reset();
                return Ok(Status::Read);
            }
            if r.events_write.read().bits() != 0 {
                r.events_write.reset();
                return Ok(Status::Write);
            }
        }
    }

    /// Wait for stop, repeated start or error
    fn blocking_listen_wait_end(&mut self, status: Status) -> Result<Command, Error> {
        let r = T::regs();
        loop {
            // stop if an error occurred
            if r.events_error.read().bits() != 0 {
                r.events_error.reset();
                r.tasks_stop.write(|w| unsafe { w.bits(1) });
                return Err(Error::Overflow);
            } else if r.events_stopped.read().bits() != 0 {
                r.events_stopped.reset();
                return match status {
                    Status::Read => Ok(Command::Read),
                    Status::Write => {
                        let n = r.rxd.amount.read().bits() as usize;
                        Ok(Command::Write(n))
                    }
                };
            } else if r.events_read.read().bits() != 0 {
                r.events_read.reset();
                let n = r.rxd.amount.read().bits() as usize;
                return Ok(Command::WriteRead(n));
            }
        }
    }

    /// Wait for stop or error
    fn blocking_wait(&mut self) -> Result<usize, Error> {
        let r = T::regs();
        loop {
            // stop if an error occurred
            if r.events_error.read().bits() != 0 {
                r.events_error.reset();
                r.tasks_stop.write(|w| unsafe { w.bits(1) });
                let errorsrc = r.errorsrc.read();
                if errorsrc.overread().is_detected() {
                    return Err(Error::OverRead);
                } else if errorsrc.dnack().is_received() {
                    return Err(Error::DataNack);
                } else {
                    return Err(Error::Bus);
                }
            } else if r.events_stopped.read().bits() != 0 {
                r.events_stopped.reset();
                let n = r.txd.amount.read().bits() as usize;
                return Ok(n);
            }
        }
    }

    /// Wait for stop or error with timeout
    #[cfg(feature = "time")]
    fn blocking_wait_timeout(&mut self, timeout: Duration) -> Result<usize, Error> {
        let r = T::regs();
        let deadline = Instant::now() + timeout;
        loop {
            // stop if an error occurred
            if r.events_error.read().bits() != 0 {
                r.events_error.reset();
                r.tasks_stop.write(|w| unsafe { w.bits(1) });
                let errorsrc = r.errorsrc.read();
                if errorsrc.overread().is_detected() {
                    return Err(Error::OverRead);
                } else if errorsrc.dnack().is_received() {
                    return Err(Error::DataNack);
                } else {
                    return Err(Error::Bus);
                }
            } else if r.events_stopped.read().bits() != 0 {
                r.events_stopped.reset();
                let n = r.txd.amount.read().bits() as usize;
                return Ok(n);
            } else if Instant::now() > deadline {
                r.tasks_stop.write(|w| unsafe { w.bits(1) });
                return Err(Error::Timeout);
            }
        }
    }

    /// Wait for read, write, stop or error with timeout
    #[cfg(feature = "time")]
    fn blocking_listen_wait_timeout(&mut self, timeout: Duration) -> Result<Status, Error> {
        let r = T::regs();
        let deadline = Instant::now() + timeout;
        loop {
            if r.events_error.read().bits() != 0 {
                r.events_error.reset();
                r.tasks_stop.write(|w| unsafe { w.bits(1) });
                while r.events_stopped.read().bits() == 0 {}
                return Err(Error::Overflow);
            }
            if r.events_stopped.read().bits() != 0 {
                r.events_stopped.reset();
                return Err(Error::Bus);
            }
            if r.events_read.read().bits() != 0 {
                r.events_read.reset();
                return Ok(Status::Read);
            }
            if r.events_write.read().bits() != 0 {
                r.events_write.reset();
                return Ok(Status::Write);
            }
            if Instant::now() > deadline {
                r.tasks_stop.write(|w| unsafe { w.bits(1) });
                return Err(Error::Timeout);
            }
        }
    }

    /// Wait for stop, repeated start or error with timeout
    #[cfg(feature = "time")]
    fn blocking_listen_wait_end_timeout(&mut self, status: Status, timeout: Duration) -> Result<Command, Error> {
        let r = T::regs();
        let deadline = Instant::now() + timeout;
        loop {
            // stop if an error occurred
            if r.events_error.read().bits() != 0 {
                r.events_error.reset();
                r.tasks_stop.write(|w| unsafe { w.bits(1) });
                return Err(Error::Overflow);
            } else if r.events_stopped.read().bits() != 0 {
                r.events_stopped.reset();
                return match status {
                    Status::Read => Ok(Command::Read),
                    Status::Write => {
                        let n = r.rxd.amount.read().bits() as usize;
                        Ok(Command::Write(n))
                    }
                };
            } else if r.events_read.read().bits() != 0 {
                r.events_read.reset();
                let n = r.rxd.amount.read().bits() as usize;
                return Ok(Command::WriteRead(n));
            } else if Instant::now() > deadline {
                r.tasks_stop.write(|w| unsafe { w.bits(1) });
                return Err(Error::Timeout);
            }
        }
    }

    /// Wait for stop or error
    fn async_wait(&mut self) -> impl Future<Output = Result<usize, Error>> {
        poll_fn(move |cx| {
            let r = T::regs();
            let s = T::state();

            s.waker.register(cx.waker());

            // stop if an error occurred
            if r.events_error.read().bits() != 0 {
                r.events_error.reset();
                r.tasks_stop.write(|w| unsafe { w.bits(1) });
                let errorsrc = r.errorsrc.read();
                if errorsrc.overread().is_detected() {
                    return Poll::Ready(Err(Error::OverRead));
                } else if errorsrc.dnack().is_received() {
                    return Poll::Ready(Err(Error::DataNack));
                } else {
                    return Poll::Ready(Err(Error::Bus));
                }
            } else if r.events_stopped.read().bits() != 0 {
                r.events_stopped.reset();
                let n = r.txd.amount.read().bits() as usize;
                return Poll::Ready(Ok(n));
            }

            Poll::Pending
        })
    }

    /// Wait for read or write
    fn async_listen_wait(&mut self) -> impl Future<Output = Result<Status, Error>> {
        poll_fn(move |cx| {
            let r = T::regs();
            let s = T::state();

            s.waker.register(cx.waker());

            // stop if an error occurred
            if r.events_error.read().bits() != 0 {
                r.events_error.reset();
                r.tasks_stop.write(|w| unsafe { w.bits(1) });
                return Poll::Ready(Err(Error::Overflow));
            } else if r.events_read.read().bits() != 0 {
                r.events_read.reset();
                return Poll::Ready(Ok(Status::Read));
            } else if r.events_write.read().bits() != 0 {
                r.events_write.reset();
                return Poll::Ready(Ok(Status::Write));
            } else if r.events_stopped.read().bits() != 0 {
                r.events_stopped.reset();
                return Poll::Ready(Err(Error::Bus));
            }
            Poll::Pending
        })
    }

    /// Wait for stop, repeated start or error
    fn async_listen_wait_end(&mut self, status: Status) -> impl Future<Output = Result<Command, Error>> {
        poll_fn(move |cx| {
            let r = T::regs();
            let s = T::state();

            s.waker.register(cx.waker());

            // stop if an error occurred
            if r.events_error.read().bits() != 0 {
                r.events_error.reset();
                r.tasks_stop.write(|w| unsafe { w.bits(1) });
                return Poll::Ready(Err(Error::Overflow));
            } else if r.events_stopped.read().bits() != 0 {
                r.events_stopped.reset();
                return match status {
                    Status::Read => Poll::Ready(Ok(Command::Read)),
                    Status::Write => {
                        let n = r.rxd.amount.read().bits() as usize;
                        Poll::Ready(Ok(Command::Write(n)))
                    }
                };
            } else if r.events_read.read().bits() != 0 {
                r.events_read.reset();
                let n = r.rxd.amount.read().bits() as usize;
                return Poll::Ready(Ok(Command::WriteRead(n)));
            }
            Poll::Pending
        })
    }

    fn setup_respond_from_ram(&mut self, buffer: &[u8], inten: bool) -> Result<(), Error> {
        let r = T::regs();

        compiler_fence(SeqCst);

        // Set up the DMA write.
        unsafe { self.set_tx_buffer(buffer)? };

        // Clear events
        r.events_stopped.reset();
        r.events_error.reset();
        self.clear_errorsrc();

        if inten {
            r.intenset.write(|w| w.stopped().set().error().set());
        } else {
            r.intenclr.write(|w| w.stopped().clear().error().clear());
        }

        // Start write operation.
        r.tasks_preparetx.write(|w| unsafe { w.bits(1) });
        r.tasks_resume.write(|w| unsafe { w.bits(1) });
        Ok(())
    }

    fn setup_respond(&mut self, wr_buffer: &[u8], inten: bool) -> Result<(), Error> {
        match self.setup_respond_from_ram(wr_buffer, inten) {
            Ok(_) => Ok(()),
            Err(Error::BufferNotInRAM) => {
                trace!("Copying TWIS tx buffer into RAM for DMA");
                let tx_ram_buf = &mut [0; FORCE_COPY_BUFFER_SIZE][..wr_buffer.len()];
                tx_ram_buf.copy_from_slice(wr_buffer);
                self.setup_respond_from_ram(&tx_ram_buf, inten)
            }
            Err(error) => Err(error),
        }
    }

    fn setup_listen(&mut self, buffer: &mut [u8], inten: bool) -> Result<(), Error> {
        let r = T::regs();
        compiler_fence(SeqCst);

        // Set up the DMA read.
        unsafe { self.set_rx_buffer(buffer)? };

        // Clear events
        r.events_read.reset();
        r.events_write.reset();
        r.events_stopped.reset();
        r.events_error.reset();
        self.clear_errorsrc();

        if inten {
            r.intenset
                .write(|w| w.stopped().set().error().set().read().set().write().set());
        } else {
            r.intenclr
                .write(|w| w.stopped().clear().error().clear().read().clear().write().clear());
        }

        // Start read operation.
        r.tasks_preparerx.write(|w| unsafe { w.bits(1) });

        Ok(())
    }

    fn setup_listen_end(&mut self, inten: bool) -> Result<(), Error> {
        let r = T::regs();
        compiler_fence(SeqCst);

        // Clear events
        r.events_read.reset();
        r.events_write.reset();
        r.events_stopped.reset();
        r.events_error.reset();
        self.clear_errorsrc();

        if inten {
            r.intenset.write(|w| w.stopped().set().error().set().read().set());
        } else {
            r.intenclr.write(|w| w.stopped().clear().error().clear().read().clear());
        }

        Ok(())
    }

    /// Wait for commands from an I2C master.
    /// `buffer` is provided in case master does a 'write' and is unused for 'read'.
    /// The buffer must have a length of at most 255 bytes on the nRF52832
    /// and at most 65535 bytes on the nRF52840.
    /// To know which one of the addresses were matched, call `address_match` or `address_match_index`
    pub fn blocking_listen(&mut self, buffer: &mut [u8]) -> Result<Command, Error> {
        self.setup_listen(buffer, false)?;
        let status = self.blocking_listen_wait()?;
        if status == Status::Write {
            self.setup_listen_end(false)?;
            let command = self.blocking_listen_wait_end(status)?;
            return Ok(command);
        }
        Ok(Command::Read)
    }

    /// Respond to an I2C master READ command.
    /// Returns the number of bytes written.
    /// The buffer must have a length of at most 255 bytes on the nRF52832
    /// and at most 65535 bytes on the nRF52840.
    pub fn blocking_respond_to_read(&mut self, buffer: &[u8]) -> Result<usize, Error> {
        self.setup_respond(buffer, false)?;
        self.blocking_wait()
    }

    /// Same as [`blocking_respond_to_read`](Twis::blocking_respond_to_read) but will fail instead of copying data into RAM.
    /// Consult the module level documentation to learn more.
    pub fn blocking_respond_to_read_from_ram(&mut self, buffer: &[u8]) -> Result<usize, Error> {
        self.setup_respond_from_ram(buffer, false)?;
        self.blocking_wait()
    }

    // ===========================================

    /// Wait for commands from an I2C master, with timeout.
    /// `buffer` is provided in case master does a 'write' and is unused for 'read'.
    /// The buffer must have a length of at most 255 bytes on the nRF52832
    /// and at most 65535 bytes on the nRF52840.
    /// To know which one of the addresses were matched, call `address_match` or `address_match_index`
    #[cfg(feature = "time")]
    pub fn blocking_listen_timeout(&mut self, buffer: &mut [u8], timeout: Duration) -> Result<Command, Error> {
        self.setup_listen(buffer, false)?;
        let status = self.blocking_listen_wait_timeout(timeout)?;
        if status == Status::Write {
            self.setup_listen_end(false)?;
            let command = self.blocking_listen_wait_end_timeout(status, timeout)?;
            return Ok(command);
        }
        Ok(Command::Read)
    }

    /// Respond to an I2C master READ command with timeout.
    /// Returns the number of bytes written.
    /// See [`blocking_respond_to_read`].
    #[cfg(feature = "time")]
    pub fn blocking_respond_to_read_timeout(&mut self, buffer: &[u8], timeout: Duration) -> Result<usize, Error> {
        self.setup_respond(buffer, false)?;
        self.blocking_wait_timeout(timeout)
    }

    /// Same as [`blocking_respond_to_read_timeout`](Twis::blocking_respond_to_read_timeout) but will fail instead of copying data into RAM.
    /// Consult the module level documentation to learn more.
    #[cfg(feature = "time")]
    pub fn blocking_respond_to_read_from_ram_timeout(
        &mut self,
        buffer: &[u8],
        timeout: Duration,
    ) -> Result<usize, Error> {
        self.setup_respond_from_ram(buffer, false)?;
        self.blocking_wait_timeout(timeout)
    }

    // ===========================================

    /// Wait asynchronously for commands from an I2C master.
    /// `buffer` is provided in case master does a 'write' and is unused for 'read'.
    /// The buffer must have a length of at most 255 bytes on the nRF52832
    /// and at most 65535 bytes on the nRF52840.
    /// To know which one of the addresses were matched, call `address_match` or `address_match_index`
    pub async fn listen(&mut self, buffer: &mut [u8]) -> Result<Command, Error> {
        self.setup_listen(buffer, true)?;
        let status = self.async_listen_wait().await?;
        if status == Status::Write {
            self.setup_listen_end(true)?;
            let command = self.async_listen_wait_end(status).await?;
            return Ok(command);
        }
        Ok(Command::Read)
    }

    /// Respond to an I2C master READ command, asynchronously.
    /// Returns the number of bytes written.
    /// The buffer must have a length of at most 255 bytes on the nRF52832
    /// and at most 65535 bytes on the nRF52840.
    pub async fn respond_to_read(&mut self, buffer: &[u8]) -> Result<usize, Error> {
        self.setup_respond(buffer, true)?;
        self.async_wait().await
    }

    /// Same as [`respond_to_read`](Twis::respond_to_read) but will fail instead of copying data into RAM. Consult the module level documentation to learn more.
    pub async fn respond_to_read_from_ram(&mut self, buffer: &[u8]) -> Result<usize, Error> {
        self.setup_respond_from_ram(buffer, true)?;
        self.async_wait().await
    }
}

impl<'a, T: Instance> Drop for Twis<'a, T> {
    fn drop(&mut self) {
        trace!("twis drop");

        // TODO: check for abort

        // disable!
        let r = T::regs();
        r.enable.write(|w| w.enable().disabled());

        gpio::deconfigure_pin(r.psel.sda.read().bits());
        gpio::deconfigure_pin(r.psel.scl.read().bits());

        trace!("twis drop: done");
    }
}

pub(crate) mod sealed {
    use super::*;

    pub struct State {
        pub waker: AtomicWaker,
    }

    impl State {
        pub const fn new() -> Self {
            Self {
                waker: AtomicWaker::new(),
            }
        }
    }

    pub trait Instance {
        fn regs() -> &'static pac::twis0::RegisterBlock;
        fn state() -> &'static State;
    }
}

/// TWIS peripheral instance.
pub trait Instance: Peripheral<P = Self> + sealed::Instance + 'static {
    /// Interrupt for this peripheral.
    type Interrupt: interrupt::typelevel::Interrupt;
}

macro_rules! impl_twis {
    ($type:ident, $pac_type:ident, $irq:ident) => {
        impl crate::twis::sealed::Instance for peripherals::$type {
            fn regs() -> &'static pac::twis0::RegisterBlock {
                unsafe { &*pac::$pac_type::ptr() }
            }
            fn state() -> &'static crate::twis::sealed::State {
                static STATE: crate::twis::sealed::State = crate::twis::sealed::State::new();
                &STATE
            }
        }
        impl crate::twis::Instance for peripherals::$type {
            type Interrupt = crate::interrupt::typelevel::$irq;
        }
    };
}