1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
//! Serial Peripheral Instance in slave mode (SPIS) driver.

#![macro_use]
use core::future::poll_fn;
use core::marker::PhantomData;
use core::sync::atomic::{compiler_fence, Ordering};
use core::task::Poll;

use embassy_embedded_hal::SetConfig;
use embassy_hal_internal::{into_ref, PeripheralRef};
pub use embedded_hal_02::spi::{Mode, Phase, Polarity, MODE_0, MODE_1, MODE_2, MODE_3};

use crate::chip::FORCE_COPY_BUFFER_SIZE;
use crate::gpio::sealed::Pin as _;
use crate::gpio::{self, AnyPin, Pin as GpioPin};
use crate::interrupt::typelevel::Interrupt;
use crate::util::{slice_in_ram_or, slice_ptr_parts, slice_ptr_parts_mut};
use crate::{interrupt, pac, Peripheral};

/// SPIS error
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
#[non_exhaustive]
pub enum Error {
    /// TX buffer was too long.
    TxBufferTooLong,
    /// RX buffer was too long.
    RxBufferTooLong,
    /// EasyDMA can only read from data memory, read only buffers in flash will fail.
    BufferNotInRAM,
}

/// SPIS configuration.
#[non_exhaustive]
pub struct Config {
    /// SPI mode
    pub mode: Mode,

    /// Overread character.
    ///
    /// If the master keeps clocking the bus after all the bytes in the TX buffer have
    /// already been transmitted, this byte will be constantly transmitted in the MISO line.
    pub orc: u8,

    /// Default byte.
    ///
    /// This is the byte clocked out in the MISO line for ignored transactions (if the master
    /// sets CSN low while the semaphore is owned by the firmware)
    pub def: u8,

    /// Automatically make the firmware side acquire the semaphore on transfer end.
    pub auto_acquire: bool,
}

impl Default for Config {
    fn default() -> Self {
        Self {
            mode: MODE_0,
            orc: 0x00,
            def: 0x00,
            auto_acquire: true,
        }
    }
}

/// Interrupt handler.
pub struct InterruptHandler<T: Instance> {
    _phantom: PhantomData<T>,
}

impl<T: Instance> interrupt::typelevel::Handler<T::Interrupt> for InterruptHandler<T> {
    unsafe fn on_interrupt() {
        let r = T::regs();
        let s = T::state();

        if r.events_end.read().bits() != 0 {
            s.waker.wake();
            r.intenclr.write(|w| w.end().clear());
        }

        if r.events_acquired.read().bits() != 0 {
            s.waker.wake();
            r.intenclr.write(|w| w.acquired().clear());
        }
    }
}

/// SPIS driver.
pub struct Spis<'d, T: Instance> {
    _p: PeripheralRef<'d, T>,
}

impl<'d, T: Instance> Spis<'d, T> {
    /// Create a new SPIS driver.
    pub fn new(
        spis: impl Peripheral<P = T> + 'd,
        _irq: impl interrupt::typelevel::Binding<T::Interrupt, InterruptHandler<T>> + 'd,
        cs: impl Peripheral<P = impl GpioPin> + 'd,
        sck: impl Peripheral<P = impl GpioPin> + 'd,
        miso: impl Peripheral<P = impl GpioPin> + 'd,
        mosi: impl Peripheral<P = impl GpioPin> + 'd,
        config: Config,
    ) -> Self {
        into_ref!(cs, sck, miso, mosi);
        Self::new_inner(
            spis,
            cs.map_into(),
            Some(sck.map_into()),
            Some(miso.map_into()),
            Some(mosi.map_into()),
            config,
        )
    }

    /// Create a new SPIS driver, capable of TX only (MISO only).
    pub fn new_txonly(
        spis: impl Peripheral<P = T> + 'd,
        _irq: impl interrupt::typelevel::Binding<T::Interrupt, InterruptHandler<T>> + 'd,
        cs: impl Peripheral<P = impl GpioPin> + 'd,
        sck: impl Peripheral<P = impl GpioPin> + 'd,
        miso: impl Peripheral<P = impl GpioPin> + 'd,
        config: Config,
    ) -> Self {
        into_ref!(cs, sck, miso);
        Self::new_inner(
            spis,
            cs.map_into(),
            Some(sck.map_into()),
            Some(miso.map_into()),
            None,
            config,
        )
    }

    /// Create a new SPIS driver, capable of RX only (MOSI only).
    pub fn new_rxonly(
        spis: impl Peripheral<P = T> + 'd,
        _irq: impl interrupt::typelevel::Binding<T::Interrupt, InterruptHandler<T>> + 'd,
        cs: impl Peripheral<P = impl GpioPin> + 'd,
        sck: impl Peripheral<P = impl GpioPin> + 'd,
        mosi: impl Peripheral<P = impl GpioPin> + 'd,
        config: Config,
    ) -> Self {
        into_ref!(cs, sck, mosi);
        Self::new_inner(
            spis,
            cs.map_into(),
            Some(sck.map_into()),
            None,
            Some(mosi.map_into()),
            config,
        )
    }

    /// Create a new SPIS driver, capable of TX only (MISO only) without SCK pin.
    pub fn new_txonly_nosck(
        spis: impl Peripheral<P = T> + 'd,
        _irq: impl interrupt::typelevel::Binding<T::Interrupt, InterruptHandler<T>> + 'd,
        cs: impl Peripheral<P = impl GpioPin> + 'd,
        miso: impl Peripheral<P = impl GpioPin> + 'd,
        config: Config,
    ) -> Self {
        into_ref!(cs, miso);
        Self::new_inner(spis, cs.map_into(), None, Some(miso.map_into()), None, config)
    }

    fn new_inner(
        spis: impl Peripheral<P = T> + 'd,
        cs: PeripheralRef<'d, AnyPin>,
        sck: Option<PeripheralRef<'d, AnyPin>>,
        miso: Option<PeripheralRef<'d, AnyPin>>,
        mosi: Option<PeripheralRef<'d, AnyPin>>,
        config: Config,
    ) -> Self {
        compiler_fence(Ordering::SeqCst);

        into_ref!(spis, cs);

        let r = T::regs();

        // Configure pins.
        cs.conf().write(|w| w.input().connect().drive().h0h1());
        r.psel.csn.write(|w| unsafe { w.bits(cs.psel_bits()) });
        if let Some(sck) = &sck {
            sck.conf().write(|w| w.input().connect().drive().h0h1());
            r.psel.sck.write(|w| unsafe { w.bits(sck.psel_bits()) });
        }
        if let Some(mosi) = &mosi {
            mosi.conf().write(|w| w.input().connect().drive().h0h1());
            r.psel.mosi.write(|w| unsafe { w.bits(mosi.psel_bits()) });
        }
        if let Some(miso) = &miso {
            miso.conf().write(|w| w.dir().output().drive().h0h1());
            r.psel.miso.write(|w| unsafe { w.bits(miso.psel_bits()) });
        }

        // Enable SPIS instance.
        r.enable.write(|w| w.enable().enabled());

        let mut spis = Self { _p: spis };

        // Apply runtime peripheral configuration
        Self::set_config(&mut spis, &config).unwrap();

        // Disable all events interrupts.
        r.intenclr.write(|w| unsafe { w.bits(0xFFFF_FFFF) });

        T::Interrupt::unpend();
        unsafe { T::Interrupt::enable() };

        spis
    }

    fn prepare(&mut self, rx: *mut [u8], tx: *const [u8]) -> Result<(), Error> {
        slice_in_ram_or(tx, Error::BufferNotInRAM)?;
        // NOTE: RAM slice check for rx is not necessary, as a mutable
        // slice can only be built from data located in RAM.

        compiler_fence(Ordering::SeqCst);

        let r = T::regs();

        // Set up the DMA write.
        let (ptr, len) = slice_ptr_parts(tx);
        r.txd.ptr.write(|w| unsafe { w.ptr().bits(ptr as _) });
        r.txd.maxcnt.write(|w| unsafe { w.maxcnt().bits(len as _) });

        // Set up the DMA read.
        let (ptr, len) = slice_ptr_parts_mut(rx);
        r.rxd.ptr.write(|w| unsafe { w.ptr().bits(ptr as _) });
        r.rxd.maxcnt.write(|w| unsafe { w.maxcnt().bits(len as _) });

        // Reset end event.
        r.events_end.reset();

        // Release the semaphore.
        r.tasks_release.write(|w| unsafe { w.bits(1) });

        Ok(())
    }

    fn blocking_inner_from_ram(&mut self, rx: *mut [u8], tx: *const [u8]) -> Result<(usize, usize), Error> {
        compiler_fence(Ordering::SeqCst);
        let r = T::regs();

        // Acquire semaphore.
        if r.semstat.read().bits() != 1 {
            r.events_acquired.reset();
            r.tasks_acquire.write(|w| unsafe { w.bits(1) });
            // Wait until CPU has acquired the semaphore.
            while r.semstat.read().bits() != 1 {}
        }

        self.prepare(rx, tx)?;

        // Wait for 'end' event.
        while r.events_end.read().bits() == 0 {}

        let n_rx = r.rxd.amount.read().bits() as usize;
        let n_tx = r.txd.amount.read().bits() as usize;

        compiler_fence(Ordering::SeqCst);

        Ok((n_rx, n_tx))
    }

    fn blocking_inner(&mut self, rx: &mut [u8], tx: &[u8]) -> Result<(usize, usize), Error> {
        match self.blocking_inner_from_ram(rx, tx) {
            Ok(n) => Ok(n),
            Err(Error::BufferNotInRAM) => {
                trace!("Copying SPIS tx buffer into RAM for DMA");
                let tx_ram_buf = &mut [0; FORCE_COPY_BUFFER_SIZE][..tx.len()];
                tx_ram_buf.copy_from_slice(tx);
                self.blocking_inner_from_ram(rx, tx_ram_buf)
            }
            Err(error) => Err(error),
        }
    }

    async fn async_inner_from_ram(&mut self, rx: *mut [u8], tx: *const [u8]) -> Result<(usize, usize), Error> {
        let r = T::regs();
        let s = T::state();

        // Clear status register.
        r.status.write(|w| w.overflow().clear().overread().clear());

        // Acquire semaphore.
        if r.semstat.read().bits() != 1 {
            // Reset and enable the acquire event.
            r.events_acquired.reset();
            r.intenset.write(|w| w.acquired().set());

            // Request acquiring the SPIS semaphore.
            r.tasks_acquire.write(|w| unsafe { w.bits(1) });

            // Wait until CPU has acquired the semaphore.
            poll_fn(|cx| {
                s.waker.register(cx.waker());
                if r.events_acquired.read().bits() == 1 {
                    r.events_acquired.reset();
                    return Poll::Ready(());
                }
                Poll::Pending
            })
            .await;
        }

        self.prepare(rx, tx)?;

        // Wait for 'end' event.
        r.intenset.write(|w| w.end().set());
        poll_fn(|cx| {
            s.waker.register(cx.waker());
            if r.events_end.read().bits() != 0 {
                r.events_end.reset();
                return Poll::Ready(());
            }
            Poll::Pending
        })
        .await;

        let n_rx = r.rxd.amount.read().bits() as usize;
        let n_tx = r.txd.amount.read().bits() as usize;

        compiler_fence(Ordering::SeqCst);

        Ok((n_rx, n_tx))
    }

    async fn async_inner(&mut self, rx: &mut [u8], tx: &[u8]) -> Result<(usize, usize), Error> {
        match self.async_inner_from_ram(rx, tx).await {
            Ok(n) => Ok(n),
            Err(Error::BufferNotInRAM) => {
                trace!("Copying SPIS tx buffer into RAM for DMA");
                let tx_ram_buf = &mut [0; FORCE_COPY_BUFFER_SIZE][..tx.len()];
                tx_ram_buf.copy_from_slice(tx);
                self.async_inner_from_ram(rx, tx_ram_buf).await
            }
            Err(error) => Err(error),
        }
    }

    /// Reads data from the SPI bus without sending anything. Blocks until `cs` is deasserted.
    /// Returns number of bytes read.
    pub fn blocking_read(&mut self, data: &mut [u8]) -> Result<usize, Error> {
        self.blocking_inner(data, &[]).map(|n| n.0)
    }

    /// Simultaneously sends and receives data. Blocks until the transmission is completed.
    /// If necessary, the write buffer will be copied into RAM (see struct description for detail).
    /// Returns number of bytes transferred `(n_rx, n_tx)`.
    pub fn blocking_transfer(&mut self, read: &mut [u8], write: &[u8]) -> Result<(usize, usize), Error> {
        self.blocking_inner(read, write)
    }

    /// Same as [`blocking_transfer`](Spis::blocking_transfer) but will fail instead of copying data into RAM. Consult the module level documentation to learn more.
    /// Returns number of bytes transferred `(n_rx, n_tx)`.
    pub fn blocking_transfer_from_ram(&mut self, read: &mut [u8], write: &[u8]) -> Result<(usize, usize), Error> {
        self.blocking_inner_from_ram(read, write)
    }

    /// Simultaneously sends and receives data.
    /// Places the received data into the same buffer and blocks until the transmission is completed.
    /// Returns number of bytes transferred.
    pub fn blocking_transfer_in_place(&mut self, data: &mut [u8]) -> Result<usize, Error> {
        self.blocking_inner_from_ram(data, data).map(|n| n.0)
    }

    /// Sends data, discarding any received data. Blocks  until the transmission is completed.
    /// If necessary, the write buffer will be copied into RAM (see struct description for detail).
    /// Returns number of bytes written.
    pub fn blocking_write(&mut self, data: &[u8]) -> Result<usize, Error> {
        self.blocking_inner(&mut [], data).map(|n| n.1)
    }

    /// Same as [`blocking_write`](Spis::blocking_write) but will fail instead of copying data into RAM. Consult the module level documentation to learn more.
    /// Returns number of bytes written.
    pub fn blocking_write_from_ram(&mut self, data: &[u8]) -> Result<usize, Error> {
        self.blocking_inner_from_ram(&mut [], data).map(|n| n.1)
    }

    /// Reads data from the SPI bus without sending anything.
    /// Returns number of bytes read.
    pub async fn read(&mut self, data: &mut [u8]) -> Result<usize, Error> {
        self.async_inner(data, &[]).await.map(|n| n.0)
    }

    /// Simultaneously sends and receives data.
    /// If necessary, the write buffer will be copied into RAM (see struct description for detail).
    /// Returns number of bytes transferred `(n_rx, n_tx)`.
    pub async fn transfer(&mut self, read: &mut [u8], write: &[u8]) -> Result<(usize, usize), Error> {
        self.async_inner(read, write).await
    }

    /// Same as [`transfer`](Spis::transfer) but will fail instead of copying data into RAM. Consult the module level documentation to learn more.
    /// Returns number of bytes transferred `(n_rx, n_tx)`.
    pub async fn transfer_from_ram(&mut self, read: &mut [u8], write: &[u8]) -> Result<(usize, usize), Error> {
        self.async_inner_from_ram(read, write).await
    }

    /// Simultaneously sends and receives data. Places the received data into the same buffer.
    /// Returns number of bytes transferred.
    pub async fn transfer_in_place(&mut self, data: &mut [u8]) -> Result<usize, Error> {
        self.async_inner_from_ram(data, data).await.map(|n| n.0)
    }

    /// Sends data, discarding any received data.
    /// If necessary, the write buffer will be copied into RAM (see struct description for detail).
    /// Returns number of bytes written.
    pub async fn write(&mut self, data: &[u8]) -> Result<usize, Error> {
        self.async_inner(&mut [], data).await.map(|n| n.1)
    }

    /// Same as [`write`](Spis::write) but will fail instead of copying data into RAM. Consult the module level documentation to learn more.
    /// Returns number of bytes written.
    pub async fn write_from_ram(&mut self, data: &[u8]) -> Result<usize, Error> {
        self.async_inner_from_ram(&mut [], data).await.map(|n| n.1)
    }

    /// Checks if last transaction overread.
    pub fn is_overread(&mut self) -> bool {
        T::regs().status.read().overread().is_present()
    }

    /// Checks if last transaction overflowed.
    pub fn is_overflow(&mut self) -> bool {
        T::regs().status.read().overflow().is_present()
    }
}

impl<'d, T: Instance> Drop for Spis<'d, T> {
    fn drop(&mut self) {
        trace!("spis drop");

        // Disable
        let r = T::regs();
        r.enable.write(|w| w.enable().disabled());

        gpio::deconfigure_pin(r.psel.sck.read().bits());
        gpio::deconfigure_pin(r.psel.csn.read().bits());
        gpio::deconfigure_pin(r.psel.miso.read().bits());
        gpio::deconfigure_pin(r.psel.mosi.read().bits());

        trace!("spis drop: done");
    }
}

pub(crate) mod sealed {
    use embassy_sync::waitqueue::AtomicWaker;

    use super::*;

    pub struct State {
        pub waker: AtomicWaker,
    }

    impl State {
        pub const fn new() -> Self {
            Self {
                waker: AtomicWaker::new(),
            }
        }
    }

    pub trait Instance {
        fn regs() -> &'static pac::spis0::RegisterBlock;
        fn state() -> &'static State;
    }
}

/// SPIS peripheral instance
pub trait Instance: Peripheral<P = Self> + sealed::Instance + 'static {
    /// Interrupt for this peripheral.
    type Interrupt: interrupt::typelevel::Interrupt;
}

macro_rules! impl_spis {
    ($type:ident, $pac_type:ident, $irq:ident) => {
        impl crate::spis::sealed::Instance for peripherals::$type {
            fn regs() -> &'static pac::spis0::RegisterBlock {
                unsafe { &*pac::$pac_type::ptr() }
            }
            fn state() -> &'static crate::spis::sealed::State {
                static STATE: crate::spis::sealed::State = crate::spis::sealed::State::new();
                &STATE
            }
        }
        impl crate::spis::Instance for peripherals::$type {
            type Interrupt = crate::interrupt::typelevel::$irq;
        }
    };
}

// ====================

impl<'d, T: Instance> SetConfig for Spis<'d, T> {
    type Config = Config;
    type ConfigError = ();
    fn set_config(&mut self, config: &Self::Config) -> Result<(), Self::ConfigError> {
        let r = T::regs();
        // Configure mode.
        let mode = config.mode;
        r.config.write(|w| {
            match mode {
                MODE_0 => {
                    w.order().msb_first();
                    w.cpol().active_high();
                    w.cpha().leading();
                }
                MODE_1 => {
                    w.order().msb_first();
                    w.cpol().active_high();
                    w.cpha().trailing();
                }
                MODE_2 => {
                    w.order().msb_first();
                    w.cpol().active_low();
                    w.cpha().leading();
                }
                MODE_3 => {
                    w.order().msb_first();
                    w.cpol().active_low();
                    w.cpha().trailing();
                }
            }

            w
        });

        // Set over-read character.
        let orc = config.orc;
        r.orc.write(|w| unsafe { w.orc().bits(orc) });

        // Set default character.
        let def = config.def;
        r.def.write(|w| unsafe { w.def().bits(def) });

        // Configure auto-acquire on 'transfer end' event.
        let auto_acquire = config.auto_acquire;
        r.shorts.write(|w| w.end_acquire().bit(auto_acquire));

        Ok(())
    }
}