1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
//! Successive Approximation Analog-to-Digital Converter (SAADC) driver.

#![macro_use]

use core::future::poll_fn;
use core::sync::atomic::{compiler_fence, Ordering};
use core::task::Poll;

use embassy_hal_internal::drop::OnDrop;
use embassy_hal_internal::{impl_peripheral, into_ref, PeripheralRef};
use embassy_sync::waitqueue::AtomicWaker;
use pac::{saadc, SAADC};
use saadc::ch::config::{GAIN_A, REFSEL_A, RESP_A, TACQ_A};
// We treat the positive and negative channels with the same enum values to keep our type tidy and given they are the same
pub(crate) use saadc::ch::pselp::PSELP_A as InputChannel;
use saadc::oversample::OVERSAMPLE_A;
use saadc::resolution::VAL_A;

use self::sealed::Input as _;
use crate::interrupt::InterruptExt;
use crate::ppi::{ConfigurableChannel, Event, Ppi, Task};
use crate::timer::{Frequency, Instance as TimerInstance, Timer};
use crate::{interrupt, pac, peripherals, Peripheral};

/// SAADC error
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
#[non_exhaustive]
pub enum Error {}

/// Interrupt handler.
pub struct InterruptHandler {
    _private: (),
}

impl interrupt::typelevel::Handler<interrupt::typelevel::SAADC> for InterruptHandler {
    unsafe fn on_interrupt() {
        let r = unsafe { &*SAADC::ptr() };

        if r.events_calibratedone.read().bits() != 0 {
            r.intenclr.write(|w| w.calibratedone().clear());
            WAKER.wake();
        }

        if r.events_end.read().bits() != 0 {
            r.intenclr.write(|w| w.end().clear());
            WAKER.wake();
        }

        if r.events_started.read().bits() != 0 {
            r.intenclr.write(|w| w.started().clear());
            WAKER.wake();
        }
    }
}

static WAKER: AtomicWaker = AtomicWaker::new();

/// Used to configure the SAADC peripheral.
///
/// See the `Default` impl for suitable default values.
#[non_exhaustive]
pub struct Config {
    /// Output resolution in bits.
    pub resolution: Resolution,
    /// Average 2^`oversample` input samples before transferring the result into memory.
    pub oversample: Oversample,
}

impl Default for Config {
    /// Default configuration for single channel sampling.
    fn default() -> Self {
        Self {
            resolution: Resolution::_12BIT,
            oversample: Oversample::BYPASS,
        }
    }
}

/// Used to configure an individual SAADC peripheral channel.
///
/// See the `Default` impl for suitable default values.
#[non_exhaustive]
pub struct ChannelConfig<'d> {
    /// Reference voltage of the SAADC input.
    pub reference: Reference,
    /// Gain used to control the effective input range of the SAADC.
    pub gain: Gain,
    /// Positive channel resistor control.
    pub resistor: Resistor,
    /// Acquisition time in microseconds.
    pub time: Time,
    /// Positive channel to sample
    p_channel: PeripheralRef<'d, AnyInput>,
    /// An optional negative channel to sample
    n_channel: Option<PeripheralRef<'d, AnyInput>>,
}

impl<'d> ChannelConfig<'d> {
    /// Default configuration for single ended channel sampling.
    pub fn single_ended(input: impl Peripheral<P = impl Input> + 'd) -> Self {
        into_ref!(input);
        Self {
            reference: Reference::INTERNAL,
            gain: Gain::GAIN1_6,
            resistor: Resistor::BYPASS,
            time: Time::_10US,
            p_channel: input.map_into(),
            n_channel: None,
        }
    }
    /// Default configuration for differential channel sampling.
    pub fn differential(
        p_input: impl Peripheral<P = impl Input> + 'd,
        n_input: impl Peripheral<P = impl Input> + 'd,
    ) -> Self {
        into_ref!(p_input, n_input);
        Self {
            reference: Reference::INTERNAL,
            gain: Gain::GAIN1_6,
            resistor: Resistor::BYPASS,
            time: Time::_10US,
            p_channel: p_input.map_into(),
            n_channel: Some(n_input.map_into()),
        }
    }
}

/// Value returned by the SAADC callback, deciding what happens next.
#[derive(PartialEq)]
pub enum CallbackResult {
    /// The SAADC should keep sampling and calling the callback.
    Continue,
    /// The SAADC should stop sampling, and return.
    Stop,
}

/// One-shot and continuous SAADC.
pub struct Saadc<'d, const N: usize> {
    _p: PeripheralRef<'d, peripherals::SAADC>,
}

impl<'d, const N: usize> Saadc<'d, N> {
    /// Create a new SAADC driver.
    pub fn new(
        saadc: impl Peripheral<P = peripherals::SAADC> + 'd,
        _irq: impl interrupt::typelevel::Binding<interrupt::typelevel::SAADC, InterruptHandler> + 'd,
        config: Config,
        channel_configs: [ChannelConfig; N],
    ) -> Self {
        into_ref!(saadc);

        let r = unsafe { &*SAADC::ptr() };

        let Config { resolution, oversample } = config;

        // Configure channels
        r.enable.write(|w| w.enable().enabled());
        r.resolution.write(|w| w.val().variant(resolution.into()));
        r.oversample.write(|w| w.oversample().variant(oversample.into()));

        for (i, cc) in channel_configs.iter().enumerate() {
            r.ch[i].pselp.write(|w| w.pselp().variant(cc.p_channel.channel()));
            if let Some(n_channel) = &cc.n_channel {
                r.ch[i]
                    .pseln
                    .write(|w| unsafe { w.pseln().bits(n_channel.channel() as u8) });
            }
            r.ch[i].config.write(|w| {
                w.refsel().variant(cc.reference.into());
                w.gain().variant(cc.gain.into());
                w.tacq().variant(cc.time.into());
                if cc.n_channel.is_none() {
                    w.mode().se();
                } else {
                    w.mode().diff();
                }
                w.resp().variant(cc.resistor.into());
                w.resn().bypass();
                if !matches!(oversample, Oversample::BYPASS) {
                    w.burst().enabled();
                } else {
                    w.burst().disabled();
                }
                w
            });
        }

        // Disable all events interrupts
        r.intenclr.write(|w| unsafe { w.bits(0x003F_FFFF) });

        interrupt::SAADC.unpend();
        unsafe { interrupt::SAADC.enable() };

        Self { _p: saadc }
    }

    fn regs() -> &'static saadc::RegisterBlock {
        unsafe { &*SAADC::ptr() }
    }

    /// Perform SAADC calibration. Completes when done.
    pub async fn calibrate(&self) {
        let r = Self::regs();

        // Reset and enable the end event
        r.events_calibratedone.reset();
        r.intenset.write(|w| w.calibratedone().set());

        // Order is important
        compiler_fence(Ordering::SeqCst);

        r.tasks_calibrateoffset.write(|w| unsafe { w.bits(1) });

        // Wait for 'calibratedone' event.
        poll_fn(|cx| {
            let r = Self::regs();

            WAKER.register(cx.waker());

            if r.events_calibratedone.read().bits() != 0 {
                r.events_calibratedone.reset();
                return Poll::Ready(());
            }

            Poll::Pending
        })
        .await;
    }

    /// One shot sampling. The buffer must be the same size as the number of channels configured.
    /// The sampling is stopped prior to returning in order to reduce power consumption (power
    /// consumption remains higher if sampling is not stopped explicitly). Cancellation will
    /// also cause the sampling to be stopped.
    pub async fn sample(&mut self, buf: &mut [i16; N]) {
        // In case the future is dropped, stop the task and wait for it to end.
        let on_drop = OnDrop::new(Self::stop_sampling_immediately);

        let r = Self::regs();

        // Set up the DMA
        r.result.ptr.write(|w| unsafe { w.ptr().bits(buf.as_mut_ptr() as u32) });
        r.result.maxcnt.write(|w| unsafe { w.maxcnt().bits(N as _) });

        // Reset and enable the end event
        r.events_end.reset();
        r.intenset.write(|w| w.end().set());

        // Don't reorder the ADC start event before the previous writes. Hopefully self
        // wouldn't happen anyway.
        compiler_fence(Ordering::SeqCst);

        r.tasks_start.write(|w| unsafe { w.bits(1) });
        r.tasks_sample.write(|w| unsafe { w.bits(1) });

        // Wait for 'end' event.
        poll_fn(|cx| {
            let r = Self::regs();

            WAKER.register(cx.waker());

            if r.events_end.read().bits() != 0 {
                r.events_end.reset();
                return Poll::Ready(());
            }

            Poll::Pending
        })
        .await;

        drop(on_drop);
    }

    /// Continuous sampling with double buffers.
    ///
    /// A TIMER and two PPI peripherals are passed in so that precise sampling
    /// can be attained. The sampling interval is expressed by selecting a
    /// timer clock frequency to use along with a counter threshold to be reached.
    /// For example, 1KHz can be achieved using a frequency of 1MHz and a counter
    /// threshold of 1000.
    ///
    /// A sampler closure is provided that receives the buffer of samples, noting
    /// that the size of this buffer can be less than the original buffer's size.
    /// A command is return from the closure that indicates whether the sampling
    /// should continue or stop.
    ///
    /// NOTE: The time spent within the callback supplied should not exceed the time
    /// taken to acquire the samples into a single buffer. You should measure the
    /// time taken by the callback and set the sample buffer size accordingly.
    /// Exceeding this time can lead to samples becoming dropped.
    ///
    /// The sampling is stopped prior to returning in order to reduce power consumption (power
    /// consumption remains higher if sampling is not stopped explicitly), and to
    /// free the buffers from being used by the peripheral. Cancellation will
    /// also cause the sampling to be stopped.

    pub async fn run_task_sampler<F, T: TimerInstance, const N0: usize>(
        &mut self,
        timer: &mut T,
        ppi_ch1: &mut impl ConfigurableChannel,
        ppi_ch2: &mut impl ConfigurableChannel,
        frequency: Frequency,
        sample_counter: u32,
        bufs: &mut [[[i16; N]; N0]; 2],
        callback: F,
    ) where
        F: FnMut(&[[i16; N]]) -> CallbackResult,
    {
        let r = Self::regs();

        // We want the task start to effectively short with the last one ending so
        // we don't miss any samples. It'd be great for the SAADC to offer a SHORTS
        // register instead, but it doesn't, so we must use PPI.
        let mut start_ppi =
            Ppi::new_one_to_one(ppi_ch1, Event::from_reg(&r.events_end), Task::from_reg(&r.tasks_start));
        start_ppi.enable();

        let timer = Timer::new(timer);
        timer.set_frequency(frequency);
        timer.cc(0).write(sample_counter);
        timer.cc(0).short_compare_clear();

        let timer_cc = timer.cc(0);

        let mut sample_ppi = Ppi::new_one_to_one(ppi_ch2, timer_cc.event_compare(), Task::from_reg(&r.tasks_sample));

        timer.start();

        self.run_sampler(
            bufs,
            None,
            || {
                sample_ppi.enable();
            },
            callback,
        )
        .await;
    }

    async fn run_sampler<I, F, const N0: usize>(
        &mut self,
        bufs: &mut [[[i16; N]; N0]; 2],
        sample_rate_divisor: Option<u16>,
        mut init: I,
        mut callback: F,
    ) where
        I: FnMut(),
        F: FnMut(&[[i16; N]]) -> CallbackResult,
    {
        // In case the future is dropped, stop the task and wait for it to end.
        let on_drop = OnDrop::new(Self::stop_sampling_immediately);

        let r = Self::regs();

        // Establish mode and sample rate
        match sample_rate_divisor {
            Some(sr) => {
                r.samplerate.write(|w| unsafe {
                    w.cc().bits(sr);
                    w.mode().timers();
                    w
                });
                r.tasks_sample.write(|w| unsafe { w.bits(1) }); // Need to kick-start the internal timer
            }
            None => r.samplerate.write(|w| unsafe {
                w.cc().bits(0);
                w.mode().task();
                w
            }),
        }

        // Set up the initial DMA
        r.result
            .ptr
            .write(|w| unsafe { w.ptr().bits(bufs[0].as_mut_ptr() as u32) });
        r.result.maxcnt.write(|w| unsafe { w.maxcnt().bits((N0 * N) as _) });

        // Reset and enable the events
        r.events_end.reset();
        r.events_started.reset();
        r.intenset.write(|w| {
            w.end().set();
            w.started().set();
            w
        });

        // Don't reorder the ADC start event before the previous writes. Hopefully self
        // wouldn't happen anyway.
        compiler_fence(Ordering::SeqCst);

        r.tasks_start.write(|w| unsafe { w.bits(1) });

        let mut inited = false;

        let mut current_buffer = 0;

        // Wait for events and complete when the sampler indicates it has had enough.
        let r = poll_fn(|cx| {
            let r = Self::regs();

            WAKER.register(cx.waker());

            if r.events_end.read().bits() != 0 {
                compiler_fence(Ordering::SeqCst);

                r.events_end.reset();
                r.intenset.write(|w| w.end().set());

                match callback(&bufs[current_buffer]) {
                    CallbackResult::Continue => {
                        let next_buffer = 1 - current_buffer;
                        current_buffer = next_buffer;
                    }
                    CallbackResult::Stop => {
                        return Poll::Ready(());
                    }
                }
            }

            if r.events_started.read().bits() != 0 {
                r.events_started.reset();
                r.intenset.write(|w| w.started().set());

                if !inited {
                    init();
                    inited = true;
                }

                let next_buffer = 1 - current_buffer;
                r.result
                    .ptr
                    .write(|w| unsafe { w.ptr().bits(bufs[next_buffer].as_mut_ptr() as u32) });
            }

            Poll::Pending
        })
        .await;

        drop(on_drop);

        r
    }

    // Stop sampling and wait for it to stop in a blocking fashion
    fn stop_sampling_immediately() {
        let r = Self::regs();

        compiler_fence(Ordering::SeqCst);

        r.events_stopped.reset();
        r.tasks_stop.write(|w| unsafe { w.bits(1) });

        while r.events_stopped.read().bits() == 0 {}
        r.events_stopped.reset();
    }
}

impl<'d> Saadc<'d, 1> {
    /// Continuous sampling on a single channel with double buffers.
    ///
    /// The internal clock is to be used with a sample rate expressed as a divisor of
    /// 16MHz, ranging from 80..2047. For example, 1600 represents a sample rate of 10KHz
    /// given 16_000_000 / 10_000_000 = 1600.
    ///
    /// A sampler closure is provided that receives the buffer of samples, noting
    /// that the size of this buffer can be less than the original buffer's size.
    /// A command is return from the closure that indicates whether the sampling
    /// should continue or stop.
    pub async fn run_timer_sampler<I, S, const N0: usize>(
        &mut self,
        bufs: &mut [[[i16; 1]; N0]; 2],
        sample_rate_divisor: u16,
        sampler: S,
    ) where
        S: FnMut(&[[i16; 1]]) -> CallbackResult,
    {
        self.run_sampler(bufs, Some(sample_rate_divisor), || {}, sampler).await;
    }
}

impl<'d, const N: usize> Drop for Saadc<'d, N> {
    fn drop(&mut self) {
        let r = Self::regs();
        r.enable.write(|w| w.enable().disabled());
    }
}

impl From<Gain> for GAIN_A {
    fn from(gain: Gain) -> Self {
        match gain {
            Gain::GAIN1_6 => GAIN_A::GAIN1_6,
            Gain::GAIN1_5 => GAIN_A::GAIN1_5,
            Gain::GAIN1_4 => GAIN_A::GAIN1_4,
            Gain::GAIN1_3 => GAIN_A::GAIN1_3,
            Gain::GAIN1_2 => GAIN_A::GAIN1_2,
            Gain::GAIN1 => GAIN_A::GAIN1,
            Gain::GAIN2 => GAIN_A::GAIN2,
            Gain::GAIN4 => GAIN_A::GAIN4,
        }
    }
}

/// Gain control
#[non_exhaustive]
#[derive(Clone, Copy)]
pub enum Gain {
    /// 1/6
    GAIN1_6 = 0,
    /// 1/5
    GAIN1_5 = 1,
    /// 1/4
    GAIN1_4 = 2,
    /// 1/3
    GAIN1_3 = 3,
    /// 1/2
    GAIN1_2 = 4,
    /// 1
    GAIN1 = 5,
    /// 2
    GAIN2 = 6,
    /// 4
    GAIN4 = 7,
}

impl From<Reference> for REFSEL_A {
    fn from(reference: Reference) -> Self {
        match reference {
            Reference::INTERNAL => REFSEL_A::INTERNAL,
            Reference::VDD1_4 => REFSEL_A::VDD1_4,
        }
    }
}

/// Reference control
#[non_exhaustive]
#[derive(Clone, Copy)]
pub enum Reference {
    /// Internal reference (0.6 V)
    INTERNAL = 0,
    /// VDD/4 as reference
    VDD1_4 = 1,
}

impl From<Resistor> for RESP_A {
    fn from(resistor: Resistor) -> Self {
        match resistor {
            Resistor::BYPASS => RESP_A::BYPASS,
            Resistor::PULLDOWN => RESP_A::PULLDOWN,
            Resistor::PULLUP => RESP_A::PULLUP,
            Resistor::VDD1_2 => RESP_A::VDD1_2,
        }
    }
}

/// Positive channel resistor control
#[non_exhaustive]
#[derive(Clone, Copy)]
pub enum Resistor {
    /// Bypass resistor ladder
    BYPASS = 0,
    /// Pull-down to GND
    PULLDOWN = 1,
    /// Pull-up to VDD
    PULLUP = 2,
    /// Set input at VDD/2
    VDD1_2 = 3,
}

impl From<Time> for TACQ_A {
    fn from(time: Time) -> Self {
        match time {
            Time::_3US => TACQ_A::_3US,
            Time::_5US => TACQ_A::_5US,
            Time::_10US => TACQ_A::_10US,
            Time::_15US => TACQ_A::_15US,
            Time::_20US => TACQ_A::_20US,
            Time::_40US => TACQ_A::_40US,
        }
    }
}

/// Acquisition time, the time the SAADC uses to sample the input voltage
#[non_exhaustive]
#[derive(Clone, Copy)]
pub enum Time {
    /// 3 us
    _3US = 0,
    ///  5 us
    _5US = 1,
    /// 10 us
    _10US = 2,
    /// 15 us
    _15US = 3,
    /// 20 us
    _20US = 4,
    /// 40 us
    _40US = 5,
}

impl From<Oversample> for OVERSAMPLE_A {
    fn from(oversample: Oversample) -> Self {
        match oversample {
            Oversample::BYPASS => OVERSAMPLE_A::BYPASS,
            Oversample::OVER2X => OVERSAMPLE_A::OVER2X,
            Oversample::OVER4X => OVERSAMPLE_A::OVER4X,
            Oversample::OVER8X => OVERSAMPLE_A::OVER8X,
            Oversample::OVER16X => OVERSAMPLE_A::OVER16X,
            Oversample::OVER32X => OVERSAMPLE_A::OVER32X,
            Oversample::OVER64X => OVERSAMPLE_A::OVER64X,
            Oversample::OVER128X => OVERSAMPLE_A::OVER128X,
            Oversample::OVER256X => OVERSAMPLE_A::OVER256X,
        }
    }
}

/// Oversample control
#[non_exhaustive]
#[derive(Clone, Copy)]
pub enum Oversample {
    /// Bypass oversampling
    BYPASS = 0,
    /// Oversample 2x
    OVER2X = 1,
    /// Oversample 4x
    OVER4X = 2,
    /// Oversample 8x
    OVER8X = 3,
    /// Oversample 16x
    OVER16X = 4,
    /// Oversample 32x
    OVER32X = 5,
    /// Oversample 64x
    OVER64X = 6,
    /// Oversample 128x
    OVER128X = 7,
    /// Oversample 256x
    OVER256X = 8,
}

impl From<Resolution> for VAL_A {
    fn from(resolution: Resolution) -> Self {
        match resolution {
            Resolution::_8BIT => VAL_A::_8BIT,
            Resolution::_10BIT => VAL_A::_10BIT,
            Resolution::_12BIT => VAL_A::_12BIT,
            Resolution::_14BIT => VAL_A::_14BIT,
        }
    }
}

/// Set the resolution
#[non_exhaustive]
#[derive(Clone, Copy)]
pub enum Resolution {
    /// 8 bits
    _8BIT = 0,
    /// 10 bits
    _10BIT = 1,
    /// 12 bits
    _12BIT = 2,
    /// 14 bits
    _14BIT = 3,
}

pub(crate) mod sealed {
    use super::*;

    pub trait Input {
        fn channel(&self) -> InputChannel;
    }
}

/// An input that can be used as either or negative end of a ADC differential in the SAADC periperhal.
pub trait Input: sealed::Input + Into<AnyInput> + Peripheral<P = Self> + Sized + 'static {
    /// Convert this SAADC input to a type-erased `AnyInput`.
    ///
    /// This allows using several inputs  in situations that might require
    /// them to be the same type, like putting them in an array.
    fn degrade_saadc(self) -> AnyInput {
        AnyInput {
            channel: self.channel(),
        }
    }
}

/// A type-erased SAADC input.
///
/// This allows using several inputs  in situations that might require
/// them to be the same type, like putting them in an array.
pub struct AnyInput {
    channel: InputChannel,
}

impl_peripheral!(AnyInput);

impl sealed::Input for AnyInput {
    fn channel(&self) -> InputChannel {
        self.channel
    }
}

impl Input for AnyInput {}

macro_rules! impl_saadc_input {
    ($pin:ident, $ch:ident) => {
        impl_saadc_input!(@local, crate::peripherals::$pin, $ch);
    };
    (@local, $pin:ty, $ch:ident) => {
        impl crate::saadc::sealed::Input for $pin {
            fn channel(&self) -> crate::saadc::InputChannel {
                crate::saadc::InputChannel::$ch
            }
        }
        impl crate::saadc::Input for $pin {}

        impl From<$pin> for crate::saadc::AnyInput {
            fn from(val: $pin) -> Self {
                crate::saadc::Input::degrade_saadc(val)
            }
        }
    };
}

/// A dummy `Input` pin implementation for SAADC peripheral sampling from the
/// internal voltage.
pub struct VddInput;

impl_peripheral!(VddInput);
#[cfg(not(feature = "_nrf9160"))]
impl_saadc_input!(@local, VddInput, VDD);
#[cfg(feature = "_nrf9160")]
impl_saadc_input!(@local, VddInput, VDDGPIO);

/// A dummy `Input` pin implementation for SAADC peripheral sampling from the
/// VDDH / 5 voltage.
#[cfg(any(feature = "_nrf5340-app", feature = "nrf52833", feature = "nrf52840"))]
pub struct VddhDiv5Input;

#[cfg(any(feature = "_nrf5340-app", feature = "nrf52833", feature = "nrf52840"))]
impl_peripheral!(VddhDiv5Input);

#[cfg(any(feature = "_nrf5340-app", feature = "nrf52833", feature = "nrf52840"))]
impl_saadc_input!(@local, VddhDiv5Input, VDDHDIV5);