1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
use std::ops::{Add, AddAssign, Div, Mul, MulAssign, Neg, RangeInclusive, Sub, SubAssign};

use crate::*;

/// A vector has a direction and length.
/// A [`Vec2`] is often used to represent a size.
///
/// emath represents positions using [`Pos2`].
///
/// Normally the units are points (logical pixels).
#[derive(Clone, Copy, Default)]
#[cfg_attr(feature = "serde", derive(serde::Deserialize, serde::Serialize))]
pub struct Vec2 {
    pub x: f32,
    pub y: f32,
}

/// `vec2(x,y) == Vec2::new(x, y)`
#[inline(always)]
pub const fn vec2(x: f32, y: f32) -> Vec2 {
    Vec2 { x, y }
}

// ----------------------------------------------------------------------------
// Compatibility and convenience conversions to and from [f32; 2]:

impl From<[f32; 2]> for Vec2 {
    fn from(v: [f32; 2]) -> Self {
        Self { x: v[0], y: v[1] }
    }
}

impl From<&[f32; 2]> for Vec2 {
    fn from(v: &[f32; 2]) -> Self {
        Self { x: v[0], y: v[1] }
    }
}

impl From<Vec2> for [f32; 2] {
    fn from(v: Vec2) -> Self {
        [v.x, v.y]
    }
}

impl From<&Vec2> for [f32; 2] {
    fn from(v: &Vec2) -> Self {
        [v.x, v.y]
    }
}

// ----------------------------------------------------------------------------
// Compatibility and convenience conversions to and from (f32, f32):

impl From<(f32, f32)> for Vec2 {
    fn from(v: (f32, f32)) -> Self {
        Self { x: v.0, y: v.1 }
    }
}

impl From<&(f32, f32)> for Vec2 {
    fn from(v: &(f32, f32)) -> Self {
        Self { x: v.0, y: v.1 }
    }
}

impl From<Vec2> for (f32, f32) {
    fn from(v: Vec2) -> Self {
        (v.x, v.y)
    }
}

impl From<&Vec2> for (f32, f32) {
    fn from(v: &Vec2) -> Self {
        (v.x, v.y)
    }
}

// ----------------------------------------------------------------------------

impl Vec2 {
    pub const X: Vec2 = Vec2 { x: 1.0, y: 0.0 };
    pub const Y: Vec2 = Vec2 { x: 0.0, y: 1.0 };

    pub const ZERO: Self = Self { x: 0.0, y: 0.0 };
    pub const INFINITY: Self = Self::splat(f32::INFINITY);

    #[deprecated = "Use Vec2::ZERO instead"]
    pub fn zero() -> Self {
        Self::ZERO
    }

    #[deprecated = "Use Vec2::INFINITY instead"]
    pub fn infinity() -> Self {
        Self::INFINITY
    }

    pub const fn new(x: f32, y: f32) -> Self {
        Self { x, y }
    }

    /// Set both `x` and `y` to the same value.
    pub const fn splat(v: f32) -> Self {
        Self { x: v, y: v }
    }

    #[must_use]
    pub fn normalized(self) -> Self {
        let len = self.length();
        if len <= 0.0 {
            self
        } else {
            self / len
        }
    }

    /// Rotates the vector by 90°, i.e positive X to positive Y
    /// (clockwise in egui coordinates).
    #[inline(always)]
    pub fn rot90(self) -> Self {
        vec2(self.y, -self.x)
    }

    pub fn length(self) -> f32 {
        self.x.hypot(self.y)
    }

    pub fn length_sq(self) -> f32 {
        self.x * self.x + self.y * self.y
    }

    /// Create a unit vector with the given angle (in radians).
    /// * An angle of zero gives the unit X axis.
    /// * An angle of 𝞃/4 = 90° gives the unit Y axis.
    pub fn angled(angle: f32) -> Self {
        vec2(angle.cos(), angle.sin())
    }

    #[must_use]
    pub fn floor(self) -> Self {
        vec2(self.x.floor(), self.y.floor())
    }

    #[must_use]
    pub fn round(self) -> Self {
        vec2(self.x.round(), self.y.round())
    }

    #[must_use]
    pub fn ceil(self) -> Self {
        vec2(self.x.ceil(), self.y.ceil())
    }

    /// True if all members are also finite.
    pub fn is_finite(self) -> bool {
        self.x.is_finite() && self.y.is_finite()
    }

    #[must_use]
    pub fn min(self, other: Self) -> Self {
        vec2(self.x.min(other.x), self.y.min(other.y))
    }

    #[must_use]
    pub fn max(self, other: Self) -> Self {
        vec2(self.x.max(other.x), self.y.max(other.y))
    }

    /// Returns the minimum of `self.x` and `self.y`.
    #[must_use]
    pub fn min_elem(self) -> f32 {
        self.x.min(self.y)
    }

    /// Returns the maximum of `self.x` and `self.y`.
    #[must_use]
    pub fn max_elem(self) -> f32 {
        self.x.max(self.y)
    }

    #[must_use]
    pub fn clamp(self, range: RangeInclusive<Self>) -> Self {
        Self {
            x: clamp(self.x, range.start().x..=range.end().x),
            y: clamp(self.y, range.start().y..=range.end().y),
        }
    }
}

impl PartialEq for Vec2 {
    fn eq(&self, other: &Self) -> bool {
        self.x == other.x && self.y == other.y
    }
}
impl Eq for Vec2 {}

impl Neg for Vec2 {
    type Output = Vec2;

    fn neg(self) -> Vec2 {
        vec2(-self.x, -self.y)
    }
}

impl AddAssign for Vec2 {
    fn add_assign(&mut self, rhs: Vec2) {
        *self = Vec2 {
            x: self.x + rhs.x,
            y: self.y + rhs.y,
        };
    }
}

impl SubAssign for Vec2 {
    fn sub_assign(&mut self, rhs: Vec2) {
        *self = Vec2 {
            x: self.x - rhs.x,
            y: self.y - rhs.y,
        };
    }
}

impl Add for Vec2 {
    type Output = Vec2;
    fn add(self, rhs: Vec2) -> Vec2 {
        Vec2 {
            x: self.x + rhs.x,
            y: self.y + rhs.y,
        }
    }
}

impl Sub for Vec2 {
    type Output = Vec2;
    fn sub(self, rhs: Vec2) -> Vec2 {
        Vec2 {
            x: self.x - rhs.x,
            y: self.y - rhs.y,
        }
    }
}

impl MulAssign<f32> for Vec2 {
    fn mul_assign(&mut self, rhs: f32) {
        self.x *= rhs;
        self.y *= rhs;
    }
}

impl Mul<f32> for Vec2 {
    type Output = Vec2;
    fn mul(self, factor: f32) -> Vec2 {
        Vec2 {
            x: self.x * factor,
            y: self.y * factor,
        }
    }
}

impl Mul<Vec2> for f32 {
    type Output = Vec2;
    fn mul(self, vec: Vec2) -> Vec2 {
        Vec2 {
            x: self * vec.x,
            y: self * vec.y,
        }
    }
}

impl Div<f32> for Vec2 {
    type Output = Vec2;
    fn div(self, factor: f32) -> Vec2 {
        Vec2 {
            x: self.x / factor,
            y: self.y / factor,
        }
    }
}

impl std::fmt::Debug for Vec2 {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        write!(f, "[{:.1} {:.1}]", self.x, self.y)
    }
}