1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
/** A macro to easily create a [`Language`].

Example use:
```
# use egg::*;
define_language! {
    enum SimpleLanguage {
        Num(i32),
        Add = "+",
        Mul = "*",
        // language items are parsed in order, and we want symbol to
        // be a fallback, so we put it last
        Symbol(String),
    }
}
```

`define_language` derives `Debug`, `PartialEq`, `Eq`, `Hash`, and `Clone`
on the given `enum` so it can implement [`Language`].
The macro also implements [`FromStr`] and [`Display`] for the `enum`
based on either the data of variants or the provided strings.

Enum variants must be of one of two forms:
- `Variant = "name"`

   This form's [`FromStr`] and [`Display`] parse and print the given
   string, in this case ```"name"```.

- `Variant(Data)`

   This form uses the [`FromStr`] and [`Display`] implementations of
   the given type `Data`.
   So `Data` needs to implement those as well as all of the trait
   bounds of [`Language`].

   Since the parser will not consider the name of the variant, your
   language cannot have two variants with the same data type;
   the second will never get parsed.
   Likewise, you must order your variants from most
   specific to most general; the parser will try to parse the variants
   from top to bottom.

Variants not in one of the two above forms will fail to compile:
```compile_fail
# use egg::*;
define_language! {
    enum SimpleLanguage {
        Num,
    }
}
```

Note that you can always implement [`Language`] yourself,
and that [`Language`] does not require [`FromStr`] or [`Display`].
But they are pretty handy.


[`FromStr`]: https://doc.rust-lang.org/std/str/trait.FromStr.html
[`Display`]: https://doc.rust-lang.org/std/fmt/trait.Display.html
[`Language`]: trait.Language.html
**/
#[macro_export]
macro_rules! define_language {
    (
        $(#[$meta:meta])*
        $vis:vis enum $name:ident {
            $($variant:ident $(( $($t:ty),* ))? $(= $str:literal)? ),*
                $(,)?
        }
    ) => {
        $(#[$meta])*
        #[derive(Debug, PartialEq, Eq, Hash, Clone)]
        $vis enum $name {
            $( $variant $(( $($t),* ))? ),*
        }

        impl std::str::FromStr for $name {
            type Err = ();
            fn from_str(s: &str) -> Result<Self, Self::Err> {
                $( define_language!(
                    @parse_arm s,
                    $name $variant
                    $(( $($t),* ))?
                        $(= $str)?
                ); )*
                Err(())
            }
        }

        impl std::fmt::Display for $name {
            fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
                $( define_language!(
                    @print_arm self, f,
                    $name $variant
                        $(( $($t),* ))?
                        $(= $str)?
                ); )*
                unreachable!()
            }
        }

        impl $crate::Language for $name {}

    };
    (@parse_arm $e:expr, $name:ident $variant:ident = $str:literal) => {
        if $e == $str {
            return Ok($name :: $variant);
        }
    };
    (@parse_arm $e:expr, $name:ident $variant:ident) => {
        compile_error!(r#"Variants without data must have a name specified: `Variant = "vrnt"`"#);
    };
    (@parse_arm $e:expr, $name:ident $variant:ident ( $t:ty ) ) => {
        if let Ok(inner) = $e.parse::<$t>() {
            return Ok($name :: $variant (inner));
        }
    };
    (@parse_arm $e:expr, $name:ident $variant:ident ( $($t:ty),* ) ) => {
        compile_error!("We only support variants with a single field");
    };
    (@print_arm $e:expr, $f:expr, $name:ident $variant:ident = $str:literal) => {
        if let $name::$variant = $e {
            return write!($f, $str)
        }
    };
    (@print_arm $e:expr, $f:expr, $name:ident $variant:ident ( $t:ty ) ) => {
        if let $name::$variant(inner) = $e {
            return write!($f, "{}", inner)
        }
    };
    (@print_arm $e:expr, $f:expr, $name:ident $variant:ident ( $($t:ty),* ) ) => {
        compile_error!("We only support variants with a single field");
    };
}

/** Utility macro to create an [`ENode`].

Basically `enode!(op, arg1, arg2, ...)`
desugars to
`ENode::new(op.into(), vec![arg1, arg2, ...])`.
Note the conversion on `op`.

```
# use egg::*;
define_language! {
    enum SimpleLanguage {
        Num(i32),
        Add = "+",
        Mul = "*",
    }
}

use SimpleLanguage::*;

let mut egraph: EGraph<SimpleLanguage, ()> = Default::default();
let one = egraph.add(enode!(Num(1)));
let two = egraph.add(enode!(Num(2)));

let three = egraph.add(enode!(Add, one, two));
let three_manual = egraph.add(ENode::new(Add, vec![one, two]));
assert_eq!(three, three_manual);
```

[`ENode`]: struct.ENode.html
**/
#[macro_export]
macro_rules! enode {
    ($e:expr) => {
        $crate::ENode::leaf($e.into())
    };
    ($e:expr, $($child:expr),*$(,)?) => {
        $crate::ENode::new($e.into(), vec![$($child),*])
    };
}

/** Utility macro to create an [`RecExpr`].

Just a wrapper around [`enode!`].

`recexpr!(op, arg1, arg2, ...)`
desugars to
`RecExpr::from(enode!(op, arg1, arg2, ...))`.

```
use egg::{*, recexpr as r};

define_language! {
    enum SimpleLanguage {
        Num(i32),
        Add = "+",
        Mul = "*",
    }
}

use SimpleLanguage::*;

let mut egraph: EGraph<SimpleLanguage, ()> = Default::default();

let one = egraph.add(enode!(Num(1)));
let two = egraph.add(enode!(Num(2)));
let three = egraph.add(enode!(Add, one, two));

let three_recexpr = r!(Add, r!(Num(1)), r!(Num(2)));
assert_eq!(three, egraph.add_expr(&three_recexpr));
```

[`enode!`]: macro.enode.html
[`RecExpr`]: struct.RecExpr.html
**/
#[macro_export]
macro_rules! recexpr {
    ($e:expr) => {
        $crate::RecExpr::from($crate::enode!($e))
    };
    ($e:expr, $($child:expr),*$(,)?) => {
        $crate::RecExpr::from($crate::enode!($e, $($child),*))
    };
}

/** A macro to easily make [`Rewrite`]s.

The `rewrite!` macro greatly simplifies creating simple, purely
syntactic rewrites while also allowing more complex ones.

The simplest form `rewrite!(a; b => c)` creates a [`Rewrite`]
with name `a`, [`Searcher`] `b`, and [`Applier`] `c`.
Note that in the `b` and `c` position, the macro only accepts a single
token tree (see the [macros reference][macros] for more info).
In short, that means you should pass in an identifier, literal, or
something surrounded by parentheses or braces.

If you pass in a literal to the `b` or `c` position, the macro will
try to parse it as a [`Pattern`] which implements both [`Searcher`]
and [`Applier`].

The macro also accepts any number of `if <expr>` forms at the end,
where the given expression should implement [`Condition`].
For each of these, the macro will wrap the given applier in a
[`ConditionalApplier`] with the given condiiton.

```
# use egg::*;
define_language! {
    enum SimpleLanguage {
        Num(i32),
        Add = "+",
        Sub = "-",
        Mul = "*",
        Div = "/",
    }
}

type EGraph = egg::EGraph<SimpleLanguage, ()>;

let rules: &[Rewrite<SimpleLanguage, ()>] = &[
    rewrite!("commute-add"; "(+ ?a ?b)" => "(+ ?b ?a)"),
    rewrite!("commute-mul"; "(* ?a ?b)" => "(* ?b ?a)"),

    rewrite!("add-0"; "(+ ?a 0)" => "?a"),
    rewrite!("mul-0"; "(* ?a 0)" => "0"),
    rewrite!("mul-1"; "(* ?a 1)" => "?a"),

    rewrite!("silly"; "(* ?a 1)" => { MySillyApplier("foo") }),

    rewrite!("something_conditional";
             "(/ ?a ?b)" => "(* ?a (/ 1 ?b))"
             if is_not_zero("?b")),
];

#[derive(Debug)]
struct MySillyApplier(&'static str);
impl Applier<SimpleLanguage, ()> for MySillyApplier {
    fn apply_one(&self, _: &mut EGraph, _: Id, _: &WildMap) -> Vec<Id> {
        panic!()
    }
}

// This returns a function that implements Condition
fn is_not_zero(var: &'static str) -> impl Fn(&mut EGraph, Id, &WildMap) -> bool {
    let var = var.parse().unwrap();
    let zero = enode!(SimpleLanguage::Num(0));
    move |egraph, _, mapping| !egraph[mapping[&var][0]].nodes.contains(&zero)
}
```

[`Searcher`]: trait.Searcher.html
[`Applier`]: trait.Applier.html
[`Condition`]: trait.Condition.html
[`ConditionalApplier`]: struct.ConditionalApplier.html
[`Rewrite`]: struct.Rewrite.html
[`Pattern`]: enum.Pattern.html
[macro]: https://doc.rust-lang.org/stable/reference/macros-by-example.html#metavariables
**/
#[macro_export]
macro_rules! rewrite {
    (
        $name:expr;
        $lhs:tt => $rhs:tt
        $(if $cond:expr)*
    )  => {{
        let long_name = format!("{} => {}", stringify!($lhs), stringify!($rhs));
        let searcher = $crate::rewrite!(@parse $lhs);
        let applier = $crate::rewrite!(@parse $rhs);
        $( let applier = $crate::ConditionalApplier {applier, condition: $cond}; )*
        $crate::Rewrite::new($name, long_name, searcher, applier)
    }};
    (@parse $rhs:literal) => {
        $rhs.parse::<$crate::Pattern<_>>().unwrap()
    };
    (@parse $rhs:expr) => { $rhs };
}

#[cfg(test)]
mod tests {
    define_language! { enum Term {
        Nil = "nil",
        Cons = "cons",
        Foo = "f",
        Num(i32),
    }}

    #[test]
    fn some_rewrites() {
        use crate::{Pattern, Rewrite};

        let pat = Pattern::ENode(Box::new(enode!(Term::Num(3))));
        let _: Vec<Rewrite<Term, ()>> = vec![
            // here it should parse the rhs
            rewrite!("rule"; "cons" => "f"),
            // here it should just accept the rhs without trying to parse
            rewrite!("rule"; "f" => { pat }),
        ];
    }
}