1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
//! This is a platform agnostic Rust driver for the 24x series serial EEPROM,
//! based on the [`embedded-hal`] traits.
//!
//! [`embedded-hal`]: https://github.com/rust-embedded/embedded-hal
//!
//! This driver allows you to:
//! - Read a single byte from a memory address. See [`read_byte()`].
//! - Read a byte array starting on a memory address. See: [`read_data()`].
//! - Read the current memory address (please read notes). See: [`read_current_address()`].
//! - Write a byte to a memory address. See: [`write_byte()`].
//! - Write a byte array (up to a memory page) to a memory address. See: [`write_page()`].
//! - Read `CSx`-variant devices' factory-programmed unique serial. See: [`read_unique_serial()`].
//! - Use the device in generic code via the [`Eeprom24xTrait`].
//!
//! [`read_byte()`]: Eeprom24x::read_byte
//! [`read_data()`]: Eeprom24x::read_data
//! [`read_current_address()`]: Eeprom24x::read_current_address
//! [`write_byte()`]: Eeprom24x::write_byte
//! [`write_page()`]: Eeprom24x::write_page
//! [`read_unique_serial()`]: Eeprom24x::read_unique_serial
//! [`Eeprom24xTrait`]: Eeprom24xTrait
//!
//! If an `embedded_hal::timer::CountDown` is available, the [`embedded-storage`] traits can
//! additionally be used which allow to read the device capacity and write over page boundaries. To
//! achieve the latter, the [`Eeprom24x`] has to be wrapped with [`Storage::new`].
//!
//! [`embedded-storage`]: https://github.com/rust-embedded-community/embedded-storage
//!
//! Can be used at least with the devices listed below.
//!
//! ## The devices
//!
//! These devices provides a number of bits of serial electrically erasable and
//! programmable read only memory (EEPROM) organized as a number of words of 8 bits
//! each. The devices' cascadable feature allows up to 8 devices to share a common
//! 2-wire bus. The devices are optimized for use in many industrial and commercial
//! applications where low power and low voltage operation are essential.
//!
//! | Device | Memory bits | 8-bit words | Page size | Datasheet  |
//! |-------:|------------:|------------:|----------:|:-----------|
//! |  24x00 |    128 bits |          16 |       N/A | [24C00]    |
//! |  24x01 |      1 Kbit |         128 |   8 bytes | [AT24C01]  |
//! | M24x01 |      1 Kbit |         128 |  16 bytes | [M24C01]   |
//! |  24x02 |      2 Kbit |         256 |   8 bytes | [AT24C02]  |
//! | M24x02 |      2 Kbit |         256 |  16 bytes | [M24C02]   |
//! |  24x04 |      4 Kbit |         512 |  16 bytes | [AT24C04]  |
//! |  24x08 |      8 Kbit |       1,024 |  16 bytes | [AT24C08]  |
//! |  24x16 |     16 Kbit |       2,048 |  16 bytes | [AT24C16]  |
//! |  24x32 |     32 Kbit |       4,096 |  32 bytes | [AT24C32]  |
//! |  24x64 |     64 Kbit |       8,192 |  32 bytes | [AT24C64]  |
//! | 24x128 |    128 Kbit |      16,384 |  64 bytes | [AT24C128] |
//! | 24x256 |    256 Kbit |      32,768 |  64 bytes | [AT24C256] |
//! | 24x512 |    512 Kbit |      65,536 | 128 bytes | [AT24C512] |
//! | 24xM01 |      1 Mbit |     131,072 | 256 bytes | [AT24CM01] |
//! | 24xM02 |      2 Mbit |     262,144 | 256 bytes | [AT24CM02] |
//!
//! [24C00]: https://ww1.microchip.com/downloads/en/DeviceDoc/24AA00-24LC00-24C00-Data-Sheet-20001178J.pdf
//! [AT24C01]: https://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-8871F-SEEPROM-AT24C01D-02D-Datasheet.pdf
//! [M24C01]: https://www.st.com/resource/en/datasheet/m24c01-r.pdf
//! [AT24C02]: https://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-8871F-SEEPROM-AT24C01D-02D-Datasheet.pdf
//! [M24C02]: https://www.st.com/resource/en/datasheet/m24c02-r.pdf
//! [AT24C04]: https://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-8896E-SEEPROM-AT24C04D-Datasheet.pdf
//! [AT24C08]: https://ww1.microchip.com/downloads/en/DeviceDoc/AT24C08D-I2C-Compatible-2-Wire-Serial-EEPROM-20006022A.pdf
//! [AT24C16]: https://ww1.microchip.com/downloads/en/DeviceDoc/20005858A.pdf
//! [AT24C32]: https://ww1.microchip.com/downloads/en/devicedoc/doc0336.pdf
//! [AT24C64]: https://ww1.microchip.com/downloads/en/devicedoc/doc0336.pdf
//! [AT24C128]: https://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-8734-SEEPROM-AT24C128C-Datasheet.pdf
//! [AT24C256]: https://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-8568-SEEPROM-AT24C256C-Datasheet.pdf
//! [AT24C512]: https://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-8720-SEEPROM-AT24C512C-Datasheet.pdf
//! [AT24CM01]: https://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-8812-SEEPROM-AT24CM01-Datasheet.pdf
//! [AT24CM02]: https://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-8828-SEEPROM-AT24CM02-Datasheet.pdf
//!
//! ## Usage examples (see also examples folder)
//!
//! To create a new instance you can use the `new_<device>` methods.
//! There are many compatible vendors so the method has a somewhat generic name.
//! For example, if you are using an AT24C32, you can create a device by calling
//! `Eeprom24x::new_24x32(...)`.
//! Please refer to the [device table](#the-devices) above for further examples
//! of device names.
//!
//! Please find additional examples using hardware in this repository: [driver-examples]
//!
//! [driver-examples]: https://github.com/eldruin/driver-examples
//!
//! ### Instantiating with the default address
//!
//! Import this crate and an `embedded_hal` implementation, then instantiate
//! the device:
//!
//! ```no_run
//! use linux_embedded_hal::I2cdev;
//! use eeprom24x::{ Eeprom24x, SlaveAddr };
//!
//! let dev = I2cdev::new("/dev/i2c-1").unwrap();
//! let address = SlaveAddr::default();
//! // using the AT24C256
//! let mut eeprom = Eeprom24x::new_24x256(dev, address);
//! ```
//!
//! ### Providing an alternative address
//!
//! ```no_run
//! use linux_embedded_hal::I2cdev;
//! use eeprom24x::{ Eeprom24x, SlaveAddr };
//!
//! # fn main() {
//! let dev = I2cdev::new("/dev/i2c-1").unwrap();
//! let (a2, a1, a0) = (false, false, true);
//! let address = SlaveAddr::Alternative(a2, a1, a0);
//! let mut eeprom = Eeprom24x::new_24x256(dev, address);
//! # }
//! ```
//!
//! ### Writing and reading a byte
//!
//! ```no_run
//! use linux_embedded_hal::I2cdev;
//! use eeprom24x::{ Eeprom24x, SlaveAddr };
//!
//! let dev = I2cdev::new("/dev/i2c-1").unwrap();
//! let mut eeprom = Eeprom24x::new_24x256(dev, SlaveAddr::default());
//! let address = 0x1234;
//! let data = 0xAB;
//! eeprom.write_byte(address, data);
//! // EEPROM enters internally-timed write cycle. Will not respond for some time.
//! let retrieved_data = eeprom.read_byte(address);
//! ```
//!
//! ### Writing a page
//!
//! ```no_run
//! use linux_embedded_hal::I2cdev;
//! use eeprom24x::{ Eeprom24x, SlaveAddr };
//!
//! let dev = I2cdev::new("/dev/i2c-1").unwrap();
//! let mut eeprom = Eeprom24x::new_24x256(dev, SlaveAddr::default());
//! let address = 0x1234;
//! let data = [0xAB; 64];
//! eeprom.write_page(address, &data);
//! // EEPROM enters internally-timed write cycle. Will not respond for some time.
//! ```
//!
//! ### Using embedded-storage traits
//!
//! ```no_run
//! use linux_embedded_hal::{I2cdev, Delay};
//! use eeprom24x::{ Eeprom24x, SlaveAddr, Storage };
//! use embedded_storage::{ReadStorage, Storage as _};
//!
//! let dev = I2cdev::new("/dev/i2c-1").unwrap();
//! let eeprom = Eeprom24x::new_24x256(dev, SlaveAddr::default());
//! let mut storage = Storage::new(eeprom, Delay {});
//! let _capacity = storage.capacity();
//! let address = 0x1234;
//! let data = [0xAB; 256];
//! storage.write(address, &data);
//! // EEPROM writes four pages. This introduces a delay of at least 20 ms, 5 ms per page.
//! ```

#![deny(missing_docs, unsafe_code)]
#![no_std]

use core::marker::PhantomData;

/// All possible errors in this crate
#[derive(Debug)]
pub enum Error<E> {
    /// I²C bus error
    I2C(E),
    /// Too much data passed for a write
    TooMuchData,
    /// Memory address is out of range
    InvalidAddr,
}

/// Possible slave addresses
///
/// Note that in some devices some of the address bits are used for memory addressing and
/// will therefore be ignored.
#[derive(Debug, Clone, Copy, PartialEq)]
pub enum SlaveAddr {
    /// Default slave address
    Default,
    /// Alternative slave address providing bit values for A2, A1 and A0
    ///
    /// Depending on the device, some of the device address bits may be used for memory addresses.
    /// In this case, the value provided here for these bits will be ignored. Consult the
    /// device addressing in your device datasheet.
    ///
    /// e.g. For the 24xM01 devices use the A0 bit of the device address as the highest memory
    /// address bit. The value provided here will be ignored.
    Alternative(bool, bool, bool),
}

/// Memory address size markers
pub mod addr_size {
    /// 1-byte memory address.
    /// e.g. for AT24x00, AT24x01, AT24x02, AT24x04, AT24x08, AT24x16
    #[derive(Debug)]
    pub struct OneByte(());
    /// 2-byte memory address.
    /// e.g. for AT24x32, AT24x64, AT24x128, AT24x256, AT24x512, AT24xM01, AT24xM02
    #[derive(Debug)]
    pub struct TwoBytes(());
}

/// Page size markers
pub mod page_size {
    /// No page write supported. e.g. for AT24x00
    #[derive(Debug)]
    pub struct No(());
    /// 8-byte pages. e.g. for AT24x01, AT24x02
    #[derive(Debug)]
    pub struct B8(());
    /// 16-byte pages. e.g. for AT24x04, AT24x08, AT24x16
    #[derive(Debug)]
    pub struct B16(());
    /// 32-byte pages. e.g. for AT24x32, AT24x64
    #[derive(Debug)]
    pub struct B32(());
    /// 64-byte pages. e.g. for AT24x128, AT24x256
    #[derive(Debug)]
    pub struct B64(());
    /// 128-byte pages. e.g. for AT24x512
    #[derive(Debug)]
    pub struct B128(());
    /// 256-byte pages. e.g. for AT24xM01, AT24xM02
    #[derive(Debug)]
    pub struct B256(());
}

/// Factory-supplied unique serial number markers
pub mod unique_serial {
    /// Contains a factory-supplied unique serial number. e.g. for AT24CSx
    #[derive(Debug)]
    pub struct Yes(());
    /// No factory-supplied unique serial number
    #[derive(Debug)]
    pub struct No(());
}

/// EEPROM24X driver
#[derive(Debug)]
pub struct Eeprom24x<I2C, PS, AS, SN> {
    /// The concrete I²C device implementation.
    i2c: I2C,
    /// The I²C device address.
    address: SlaveAddr,
    /// Number or bits used for memory addressing.
    address_bits: u8,
    /// Page size marker type.
    _ps: PhantomData<PS>,
    /// Address size marker type.
    _as: PhantomData<AS>,
    /// Unique serial number marker type.
    _sn: PhantomData<SN>,
}

/// `Eeprom24x` type trait for use in generic code
pub trait Eeprom24xTrait: private::Sealed {
    /// Inner implementation error.
    type Error;

    /// Write a single byte in an address.
    ///
    /// After writing a byte, the EEPROM enters an internally-timed write cycle
    /// to the nonvolatile memory.
    /// During this time all inputs are disabled and the EEPROM will not
    /// respond until the write is complete.
    fn write_byte(&mut self, address: u32, data: u8) -> Result<(), Error<Self::Error>>;

    /// Read a single byte from an address.
    fn read_byte(&mut self, address: u32) -> Result<u8, Error<Self::Error>>;

    /// Read starting in an address as many bytes as necessary to fill the data array provided.
    fn read_data(&mut self, address: u32, data: &mut [u8]) -> Result<(), Error<Self::Error>>;

    /// Read the contents of the last address accessed during the last read
    /// or write operation, _incremented by one_.
    ///
    /// Note: This may not be available on your platform.
    fn read_current_address(&mut self) -> Result<u8, Error<Self::Error>>;

    /// Write up to a page starting in an address.
    ///
    /// The maximum amount of data that can be written depends on the page
    /// size of the device and its overall capacity. If too much data is passed,
    /// the error `Error::TooMuchData` will be returned.
    ///
    /// After writing a byte, the EEPROM enters an internally-timed write cycle
    /// to the nonvolatile memory.
    /// During this time all inputs are disabled and the EEPROM will not
    /// respond until the write is complete.
    fn write_page(&mut self, address: u32, data: &[u8]) -> Result<(), Error<Self::Error>>;

    /// Return device page size
    fn page_size(&self) -> usize;
}

/// EEPROM24X extension which supports the `embedded-storage` traits but requires an
/// `embedded_hal::delay::DelayNs` to handle the timeouts when writing over page boundaries
#[derive(Debug)]
pub struct Storage<I2C, PS, AS, SN, D> {
    /// Eeprom driver over which we implement the Storage traits
    pub eeprom: Eeprom24x<I2C, PS, AS, SN>,
    /// Delay provider
    delay: D,
}

mod private {
    use crate::{addr_size, Eeprom24x};

    pub trait Sealed {}

    impl Sealed for addr_size::OneByte {}
    impl Sealed for addr_size::TwoBytes {}
    impl<I2C, PS, AS, SN> Sealed for Eeprom24x<I2C, PS, AS, SN> {}
}

mod eeprom24x;
mod serial_number;
mod slave_addr;
mod storage;