1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
#[cfg(feature = "pkcs8")]
const OID: ObjectIdentifier = ObjectIdentifier::new_unwrap("1.3.101.112"); // RFC 8410
#[cfg(feature = "pkcs8")]
const ALGORITHM_ID: AlgorithmIdentifierRef = AlgorithmIdentifierRef {
    oid: OID,
    parameters: None,
};

use crate::Error;
use core::convert::TryFrom;
#[cfg(feature = "pem")]
use core::convert::TryInto;
use curve25519_dalek::{constants, digest::Update, scalar::Scalar};
use rand_core::{CryptoRng, RngCore};
use sha2::{Digest, Sha512};
use zeroize::Zeroize;

pub use ed25519::{
    signature::{Signer, Verifier},
    ComponentBytes, Error as Ed25519Error, Signature,
};

#[cfg(feature = "pem")]
pub use ed25519::{KeypairBytes, PublicKeyBytes};

#[cfg(all(feature = "pem", feature = "pkcs8"))]
use der::pem::LineEnding;
#[cfg(feature = "pkcs8")]
use pkcs8::der::SecretDocument;
#[cfg(feature = "pkcs8")]
use pkcs8::{
    spki::AlgorithmIdentifierRef, DecodePrivateKey, DecodePublicKey, Document, EncodePrivateKey,
    EncodePublicKey, ObjectIdentifier, PrivateKeyInfo,
};
#[cfg(all(feature = "pem", feature = "pkcs8"))]
use zeroize::Zeroizing;

#[cfg(all(feature = "pem", feature = "pkcs8"))]
use pkcs8::der::pem::PemLabel;

use crate::{VerificationKey, VerificationKeyBytes};

/// An Ed25519 signing key.
///
/// This is also called a secret key by other implementations.
#[derive(Copy, Clone, Zeroize)]
#[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
#[cfg_attr(feature = "serde", serde(from = "SerdeHelper"))]
#[cfg_attr(feature = "serde", serde(into = "SerdeHelper"))]
pub struct SigningKey {
    seed: [u8; 32],
    s: Scalar,
    prefix: [u8; 32],
    vk: VerificationKey,
}

impl core::fmt::Debug for SigningKey {
    fn fmt(&self, fmt: &mut core::fmt::Formatter) -> core::fmt::Result {
        fmt.debug_struct("SigningKey")
            .field("vk", &self.vk)
            .finish()
    }
}

impl<'a> From<&'a SigningKey> for VerificationKey {
    fn from(sk: &'a SigningKey) -> VerificationKey {
        sk.vk
    }
}

impl<'a> From<&'a SigningKey> for VerificationKeyBytes {
    fn from(sk: &'a SigningKey) -> VerificationKeyBytes {
        sk.vk.into()
    }
}

impl AsRef<[u8]> for SigningKey {
    fn as_ref(&self) -> &[u8] {
        &self.seed[..]
    }
}

impl From<SigningKey> for [u8; 32] {
    fn from(sk: SigningKey) -> [u8; 32] {
        sk.seed
    }
}

impl TryFrom<&[u8]> for SigningKey {
    type Error = Error;
    fn try_from(slice: &[u8]) -> Result<SigningKey, Self::Error> {
        if slice.len() == 32 {
            let mut bytes = [0u8; 32];
            bytes[..].copy_from_slice(slice);
            Ok(bytes.into())
        } else {
            Err(Self::Error::InvalidSliceLength)
        }
    }
}

impl From<[u8; 32]> for SigningKey {
    #[allow(non_snake_case)]
    fn from(seed: [u8; 32]) -> SigningKey {
        // Expand the seed to a 64-byte array with SHA512.
        let h = Sha512::digest(&seed[..]);

        // Convert the low half to a scalar with Ed25519 "clamping"
        let s = {
            let mut scalar_bytes = [0u8; 32];
            scalar_bytes[..].copy_from_slice(&h.as_slice()[0..32]);
            scalar_bytes[0] &= 248;
            scalar_bytes[31] &= 127;
            scalar_bytes[31] |= 64;
            Scalar::from_bytes_mod_order(scalar_bytes)
        };

        // Extract and cache the high half.
        let prefix = {
            let mut prefix = [0u8; 32];
            prefix[..].copy_from_slice(&h.as_slice()[32..64]);
            prefix
        };

        // Compute the public key as A = [s]B.
        let A = &s * constants::ED25519_BASEPOINT_TABLE;

        SigningKey {
            seed,
            s,
            prefix,
            vk: VerificationKey {
                minus_A: -A,
                A_bytes: VerificationKeyBytes(A.compress().to_bytes()),
            },
        }
    }
}

#[cfg(feature = "pkcs8")]
impl<'a> TryFrom<PrivateKeyInfo<'a>> for SigningKey {
    type Error = Error;
    fn try_from(pki: PrivateKeyInfo) -> Result<Self, Self::Error> {
        if pki.algorithm == ALGORITHM_ID {
            SigningKey::try_from(pki.private_key)
        } else {
            Err(Self::Error::MalformedSecretKey)
        }
    }
}

#[cfg(feature = "pkcs8")]
impl EncodePublicKey for SigningKey {
    /// Serialize the public key for a [`SigningKey`] to an ASN.1 DER-encoded document.
    fn to_public_key_der(&self) -> pkcs8::spki::Result<Document> {
        self.vk.to_public_key_der()
    }
}

impl Signer<Signature> for SigningKey {
    /// Generate a [`Signature`] using a given [`SigningKey`].
    fn try_sign(&self, message: &[u8]) -> Result<Signature, ed25519::signature::Error> {
        Ok(self.sign(message))
    }
}

#[cfg(feature = "pkcs8")]
impl TryFrom<KeypairBytes> for SigningKey {
    type Error = pkcs8::Error;

    fn try_from(pkcs8_key: KeypairBytes) -> pkcs8::Result<Self> {
        SigningKey::try_from(&pkcs8_key)
    }
}

#[cfg(feature = "pkcs8")]
impl TryFrom<&KeypairBytes> for SigningKey {
    type Error = pkcs8::Error;

    fn try_from(pkcs8_key: &KeypairBytes) -> pkcs8::Result<Self> {
        let signing_key = SigningKey::from_der(&pkcs8_key.secret_key);

        // Validate the public key in the PKCS#8 document if present
        if let Some(public_bytes) = &pkcs8_key.public_key {
            let expected_verifying_key =
                VerificationKey::from_public_key_der(public_bytes.as_ref())
                    .map_err(|_| pkcs8::Error::KeyMalformed)?;

            if VerificationKey::try_from(&signing_key.unwrap())
                .unwrap()
                .A_bytes
                != expected_verifying_key.into()
            {
                return Err(pkcs8::Error::KeyMalformed);
            }
        }

        signing_key
    }
}

#[cfg(feature = "pem")]
impl From<SigningKey> for KeypairBytes {
    fn from(signing_key: SigningKey) -> KeypairBytes {
        KeypairBytes::from(&signing_key)
    }
}

#[cfg(feature = "pem")]
impl From<&SigningKey> for KeypairBytes {
    fn from(signing_key: &SigningKey) -> KeypairBytes {
        KeypairBytes {
            secret_key: signing_key.s.to_bytes(),
            public_key: Some(PublicKeyBytes(signing_key.vk.try_into().unwrap())),
        }
    }
}

#[cfg(feature = "pkcs8")]
impl EncodePrivateKey for SigningKey {
    /// Serialize [`SigningKey`] to an ASN.1 DER-encoded secret document. Note that this
    /// will generate a v2 (RFC 5958) DER encoding with a public key.
    fn to_pkcs8_der(&self) -> pkcs8::Result<SecretDocument> {
        // In RFC 8410, the octet string containing the private key is encapsulated by
        // another octet string. Just add octet string bytes to the key when building
        // the document.
        let mut final_key = [0u8; 34];
        final_key[..2].copy_from_slice(&[0x04, 0x20]);
        final_key[2..].copy_from_slice(&self.seed);
        SecretDocument::try_from(PrivateKeyInfo {
            algorithm: ALGORITHM_ID,
            private_key: &final_key,
            public_key: Some(self.vk.A_bytes.0.as_slice()),
        })
    }
}

#[cfg(feature = "pkcs8")]
impl DecodePrivateKey for SigningKey {
    /// Create a [`SigningKey`] from an ASN.1 DER-encoded bytes. The bytes may include an
    /// accompanying public key, as defined in RFC 5958 (v1 and v2), but the call will
    /// fail if the public key doesn't match the private key's true accompanying public
    /// key.
    fn from_pkcs8_der(bytes: &[u8]) -> pkcs8::Result<Self> {
        let keypair = KeypairBytes::from_pkcs8_der(bytes).unwrap();
        let sk = SigningKey::try_from(keypair.secret_key).unwrap();
        match keypair.public_key {
            Some(vk2) => {
                if sk.vk.A_bytes.0 == vk2.to_bytes() {
                    Ok(sk)
                } else {
                    Err(pkcs8::Error::KeyMalformed)
                }
            }
            None => Ok(sk),
        }
    }
}

#[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
struct SerdeHelper([u8; 32]);

impl From<SerdeHelper> for SigningKey {
    fn from(helper: SerdeHelper) -> SigningKey {
        helper.0.into()
    }
}

impl From<SigningKey> for SerdeHelper {
    fn from(sk: SigningKey) -> Self {
        Self(sk.into())
    }
}

impl SigningKey {
    /// Generate a new signing key.
    pub fn new<R: RngCore + CryptoRng>(mut rng: R) -> SigningKey {
        let mut bytes = [0u8; 32];
        rng.fill_bytes(&mut bytes[..]);
        bytes.into()
    }

    /// Create a signature on `msg` using this key.
    #[allow(non_snake_case)]
    pub fn sign(&self, msg: &[u8]) -> Signature {
        let r = Scalar::from_hash(Sha512::default().chain(&self.prefix[..]).chain(msg));

        let R_bytes = (&r * constants::ED25519_BASEPOINT_TABLE)
            .compress()
            .to_bytes();

        let k = Scalar::from_hash(
            Sha512::default()
                .chain(&R_bytes[..])
                .chain(&self.vk.A_bytes.0[..])
                .chain(msg),
        );

        let s_bytes = (r + k * self.s).to_bytes();

        Signature::from_components(R_bytes, s_bytes)
    }

    /// Parse [`SigningKey`] from ASN.1 DER bytes.
    #[cfg(feature = "pkcs8")]
    pub fn from_der(bytes: &[u8]) -> pkcs8::Result<Self> {
        bytes
            .try_into()
            .map_err(|_| pkcs8::Error::ParametersMalformed)
    }

    /// Serialize [`SigningKey`] to an ASN.1 DER-encoded secret document. Note that this
    /// will generate a v1 (RFC 5958) DER encoding without a public key.
    #[cfg(feature = "pkcs8")]
    pub fn to_pkcs8_der_v1(&self) -> pkcs8::Result<SecretDocument> {
        // In RFC 8410, the octet string containing the private key is encapsulated by
        // another octet string. Just add octet string bytes to the key when building
        // the document.
        let mut final_key = [0u8; 34];
        final_key[..2].copy_from_slice(&[0x04, 0x20]);
        final_key[2..].copy_from_slice(&self.seed);
        SecretDocument::try_from(PrivateKeyInfo::new(ALGORITHM_ID, &final_key))
    }

    /// Serialize [`SigningKey`] as a PEM-encoded PKCS#8 string. Note that this
    /// will generate a v1 (RFC 5958) PEM encoding without a public key.
    #[cfg(all(feature = "pem", feature = "pkcs8"))]
    pub fn to_pkcs8_pem_v1(
        &self,
        line_ending: LineEnding,
    ) -> Result<Zeroizing<String>, pkcs8::Error> {
        let doc = self.to_pkcs8_der_v1()?;
        Ok(doc.to_pem(PrivateKeyInfo::PEM_LABEL, line_ending)?)
    }
}