1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
/*!
 * Generic N dimensional [named tensors](http://nlp.seas.harvard.edu/NamedTensor).
 *
 * Tensors are generic over some type `T` and some usize `D`. If `T` is [Numeric](super::numeric)
 * then the tensor can be used in a mathematical way. `D` is the number of dimensions in the tensor
 * and a compile time constant. Each tensor also carries `D` dimension name and length pairs.
 */
use crate::linear_algebra;
use crate::numeric::extra::{Real, RealRef};
use crate::numeric::{Numeric, NumericRef};
use crate::tensors::indexing::{
    ShapeIterator, TensorAccess, TensorIterator, TensorOwnedIterator, TensorReferenceIterator,
    TensorReferenceMutIterator, TensorTranspose,
};
use crate::tensors::views::{
    DataLayout, IndexRange, IndexRangeValidationError, TensorExpansion, TensorIndex, TensorMask,
    TensorMut, TensorRange, TensorRef, TensorRename, TensorView,
};

use std::error::Error;
use std::fmt;

#[cfg(feature = "serde")]
use serde::Serialize;

pub mod dimensions;
mod display;
pub mod indexing;
pub mod operations;
pub mod views;

#[cfg(feature = "serde")]
pub use serde_impls::TensorDeserialize;

/**
 * Dimension names are represented as static string references.
 *
 * This allows you to use string literals to refer to named dimensions, for example you might want
 * to construct a tensor with a shape of
 * `[("batch", 1000), ("height", 100), ("width", 100), ("rgba", 4)]`.
 *
 * Alternatively you can define the strings once as constants and refer to your dimension
 * names by the constant identifiers.
 *
 * ```
 * const BATCH: &'static str = "batch";
 * const HEIGHT: &'static str = "height";
 * const WIDTH: &'static str = "width";
 * const RGBA: &'static str = "rgba";
 * ```
 *
 * Although `Dimension` is interchangable with `&'static str` as it is just a type alias, Easy ML
 * uses `Dimension` whenever dimension names are expected to distinguish the types from just
 * strings.
 */
pub type Dimension = &'static str;

/**
 * An error indicating failure to do something with a Tensor because the requested shape
 * is not valid.
 */
#[derive(Clone, Debug, Eq, PartialEq)]
pub struct InvalidShapeError<const D: usize> {
    shape: [(Dimension, usize); D],
}

impl<const D: usize> InvalidShapeError<D> {
    /**
     * Checks if this shape is valid. This is mainly for internal library use but may also be
     * useful for unit testing.
     *
     * Note: in some functions and methods, an InvalidShapeError may be returned which is a valid
     * shape, but not the right size for the quantity of data provided.
     */
    pub fn is_valid(&self) -> bool {
        !crate::tensors::dimensions::has_duplicates(&self.shape)
            && !self.shape.iter().any(|d| d.1 == 0)
    }

    /**
     * Constructs an InvalidShapeError for assistance with unit testing. Note that you can
     * construct an InvalidShapeError that *is* a valid shape in this way.
     */
    pub fn new(shape: [(Dimension, usize); D]) -> InvalidShapeError<D> {
        InvalidShapeError { shape }
    }

    pub fn shape(&self) -> [(Dimension, usize); D] {
        self.shape
    }

    pub fn shape_ref(&self) -> &[(Dimension, usize); D] {
        &self.shape
    }

    // Panics if the shape is invalid for any reason with the appropriate error message.
    #[track_caller]
    #[inline]
    fn validate_dimensions_or_panic(shape: &[(Dimension, usize); D], data_len: usize) {
        let elements = crate::tensors::dimensions::elements(shape);
        if data_len != elements {
            panic!(
                "Product of dimension lengths must match size of data. {} != {}",
                elements, data_len
            );
        }
        if crate::tensors::dimensions::has_duplicates(shape) {
            panic!("Dimension names must all be unique: {:?}", &shape);
        }
        if shape.iter().any(|d| d.1 == 0) {
            panic!("No dimension can have 0 elements: {:?}", &shape);
        }
    }

    // Returns true if the shape is valid and matches the data length
    fn validate_dimensions(shape: &[(Dimension, usize); D], data_len: usize) -> bool {
        let elements = crate::tensors::dimensions::elements(shape);
        data_len == elements
            && !crate::tensors::dimensions::has_duplicates(shape)
            && !shape.iter().any(|d| d.1 == 0)
    }
}

impl<const D: usize> fmt::Display for InvalidShapeError<D> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        write!(
            f,
            "Dimensions must all be at least length 1 with unique names: {:?}",
            self.shape
        )
    }
}

impl<const D: usize> Error for InvalidShapeError<D> {}

/**
 * An error indicating failure to do something with a Tensor because the dimension names that
 * were provided did not match with the dimension names that were valid.
 *
 * Typically this would be due to the same dimension name being provided multiple times, or a
 * dimension name being provided that is not present in the shape of the Tensor in use.
 */
#[derive(Clone, Debug, Eq, PartialEq)]
pub struct InvalidDimensionsError<const D: usize, const P: usize> {
    valid: [Dimension; D],
    provided: [Dimension; P],
}

impl<const D: usize, const P: usize> InvalidDimensionsError<D, P> {
    /**
     * Checks if the provided dimensions have duplicate names. This is mainly for internal library
     * use but may also be useful for unit testing.
     */
    pub fn has_duplicates(&self) -> bool {
        crate::tensors::dimensions::has_duplicates_names(&self.provided)
    }

    // TODO: method to check provided is a subset of valid

    /**
     * Constructs an InvalidDimensions for assistance with unit testing.
     */
    pub fn new(provided: [Dimension; P], valid: [Dimension; D]) -> InvalidDimensionsError<D, P> {
        InvalidDimensionsError { valid, provided }
    }

    pub fn provided_names(&self) -> [Dimension; P] {
        self.provided
    }

    pub fn provided_names_ref(&self) -> &[Dimension; P] {
        &self.provided
    }

    pub fn valid_names(&self) -> [Dimension; D] {
        self.valid
    }

    pub fn valid_names_ref(&self) -> &[Dimension; D] {
        &self.valid
    }
}

impl<const D: usize, const P: usize> fmt::Display for InvalidDimensionsError<D, P> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        if P > 0 {
            write!(
                f,
                "Dimensions names {:?} were incorrect, valid dimensions in this context are: {:?}",
                self.provided, self.valid
            )
        } else {
            write!(f, "Dimensions names {:?} were incorrect", self.provided)
        }
    }
}

impl<const D: usize, const P: usize> Error for InvalidDimensionsError<D, P> {}

#[test]
fn test_sync() {
    fn assert_sync<T: Sync>() {}
    assert_sync::<InvalidShapeError<2>>();
    assert_sync::<InvalidDimensionsError<2, 2>>();
}

#[test]
fn test_send() {
    fn assert_send<T: Send>() {}
    assert_send::<InvalidShapeError<2>>();
    assert_send::<InvalidDimensionsError<2, 2>>();
}

/**
 * A [named tensor](http://nlp.seas.harvard.edu/NamedTensor) of some type `T` and number of
 * dimensions `D`.
 *
 * Tensors are a generalisation of matrices; whereas [Matrix](crate::matrices::Matrix) only
 * supports 2 dimensions, and vectors are represented in Matrix by making either the rows or
 * columns have a length of one, [Tensor] supports an arbitary number of dimensions,
 * with 0 through 6 having full API support. A `Tensor<T, 2>` is very similar to a `Matrix<T>`
 * except that this type associates each dimension with a name, and favor names to refer to
 * dimensions instead of index order.
 *
 * Like Matrix, the type of the data in this Tensor may implement no traits, in which case the
 * tensor will be rather useless. If the type implements Clone most storage and accessor methods
 * are defined and if the type implements Numeric then the tensor can be used in a mathematical
 * way.
 *
 * Like Matrix, a Tensor must always contain at least one element, and it may not not have more
 * elements than `std::isize::MAX`. Concerned readers should note that on a 64 bit computer this
 * maximum value is 9,223,372,036,854,775,807 so running out of memory is likely to occur first.
 *
 * When doing numeric operations with Tensors you should be careful to not consume a tensor by
 * accidentally using it by value. All the operations are also defined on references to tensors
 * so you should favor &x + &y style notation for tensors you intend to continue using.
 *
 * See also:
 * - [indexing]
 */
#[derive(Debug)]
#[cfg_attr(feature = "serde", derive(Serialize))]
pub struct Tensor<T, const D: usize> {
    data: Vec<T>,
    #[cfg_attr(feature = "serde", serde(with = "serde_arrays"))]
    shape: [(Dimension, usize); D],
    #[cfg_attr(feature = "serde", serde(skip))]
    strides: [usize; D],
}

impl<T, const D: usize> Tensor<T, D> {
    /**
     * Creates a Tensor with a particular number of dimensions and lengths in each dimension.
     *
     * The product of the dimension lengths corresponds to the number of elements the Tensor
     * will store. Elements are stored in what would be row major order for a Matrix.
     * Each step in memory through the N dimensions corresponds to incrementing the rightmost
     * index, hence a shape of `[("row", 5), ("column", 5)]` would mean the first 6 elements
     * passed in the Vec would be for (0,0), (0,1), (0,2), (0,3), (0,4), (1,0) and so on to (4,4)
     * for the 25th and final element.
     *
     * # Panics
     *
     * - If the number of provided elements does not match the product of the dimension lengths.
     * - If a dimension name is not unique
     * - If any dimension has 0 elements
     *
     * Note that an empty list for dimensions is valid, and constructs a 0 dimensional tensor with
     * a single element (since the product of an empty list is 1).
     */
    #[track_caller]
    pub fn from(shape: [(Dimension, usize); D], data: Vec<T>) -> Self {
        InvalidShapeError::validate_dimensions_or_panic(&shape, data.len());
        let strides = compute_strides(&shape);
        Tensor {
            data,
            shape,
            strides,
        }
    }

    /**
     * Creates a Tensor with a particular shape initialised from a function.
     *
     * The product of the dimension lengths corresponds to the number of elements the Tensor
     * will store. Elements are stored in what would be row major order for a Matrix.
     * Each step in memory through the N dimensions corresponds to incrementing the rightmost
     * index, hence a shape of `[("row", 5), ("column", 5)]` would mean the first 6 elements
     * passed in the Vec would be for (0,0), (0,1), (0,2), (0,3), (0,4), (1,0) and so on to (4,4)
     * for the 25th and final element. These same indexes will be passed to the producer function
     * to initialised the values for the Tensor.
     *
     * ```
     * use easy_ml::tensors::Tensor;
     * let tensor = Tensor::from_fn([("rows", 4), ("columns", 4)], |[r, c]| r * c);
     * assert_eq!(
     *     tensor,
     *     Tensor::from([("rows", 4), ("columns", 4)], vec![
     *         0, 0, 0, 0,
     *         0, 1, 2, 3,
     *         0, 2, 4, 6,
     *         0, 3, 6, 9,
     *     ])
     * );
     * ```
     *
     * # Panics
     *
     * - If a dimension name is not unique
     * - If any dimension has 0 elements
     *
     * Note that an empty list for dimensions is valid, and constructs a 0 dimensional tensor with
     * a single element (since the product of an empty list is 1).
     */
    #[track_caller]
    pub fn from_fn<F>(shape: [(Dimension, usize); D], mut producer: F) -> Self
    where
        F: FnMut([usize; D]) -> T,
    {
        let length = dimensions::elements(&shape);
        let mut data = Vec::with_capacity(length);
        let iterator = ShapeIterator::from(shape);
        for index in iterator {
            data.push(producer(index));
        }
        Tensor::from(shape, data)
    }

    /**
     * The shape of this tensor. Since Tensors are named Tensors, their shape is not just a
     * list of lengths along each dimension, but instead a list of pairs of names and lengths.
     *
     * See also
     * - [dimensions]
     * - [indexing]
     */
    pub fn shape(&self) -> [(Dimension, usize); D] {
        self.shape
    }

    /**
     * A non panicking version of [from](Tensor::from) which returns `Result::Err` if the input
     * is invalid.
     *
     * Creates a Tensor with a particular number of dimensions and lengths in each dimension.
     *
     * The product of the dimension lengths corresponds to the number of elements the Tensor
     * will store. Elements are stored in what would be row major order for a Matrix.
     * Each step in memory through the N dimensions corresponds to incrementing the rightmost
     * index, hence a shape of `[("row", 5), ("column", 5)]` would mean the first 6 elements
     * passed in the Vec would be for (0,0), (0,1), (0,2), (0,3), (0,4), (1,0) and so on to (4,4)
     * for the 25th and final element.
     *
     * Returns the Err variant if
     * - If the number of provided elements does not match the product of the dimension lengths.
     * - If a dimension name is not unique
     * - If any dimension has 0 elements
     *
     * Note that an empty list for dimensions is valid, and constructs a 0 dimensional tensor with
     * a single element (since the product of an empty list is 1).
     */
    pub fn try_from(
        shape: [(Dimension, usize); D],
        data: Vec<T>,
    ) -> Result<Self, InvalidShapeError<D>> {
        let valid = InvalidShapeError::validate_dimensions(&shape, data.len());
        if !valid {
            return Err(InvalidShapeError::new(shape));
        }
        let strides = compute_strides(&shape);
        Ok(Tensor {
            data,
            shape,
            strides,
        })
    }

    /// Unverified constructor for interal use when we know the dimensions/data/strides are
    /// unchanged and don't need reverification
    pub(crate) fn direct_from(
        data: Vec<T>,
        shape: [(Dimension, usize); D],
        strides: [usize; D],
    ) -> Self {
        Tensor {
            data,
            shape,
            strides,
        }
    }

    /// Unverified constructor for interal use when we know the dimensions/data/strides are
    /// the same as the existing instance and don't need reverification
    #[allow(dead_code)] // pretty sure something else will want this in the future
    pub(crate) fn new_with_same_shape(&self, data: Vec<T>) -> Self {
        Tensor {
            data,
            shape: self.shape,
            strides: self.strides,
        }
    }
}

impl<T> Tensor<T, 0> {
    /**
     * Creates a 0 dimensional tensor from some scalar
     */
    pub fn from_scalar(value: T) -> Tensor<T, 0> {
        Tensor {
            data: vec![value],
            shape: [],
            strides: [],
        }
    }

    /**
     * Returns the sole element of the 0 dimensional tensor.
     */
    pub fn into_scalar(self) -> T {
        self.data
            .into_iter()
            .next()
            .expect("Tensors always have at least 1 element")
    }
}

impl<T> Tensor<T, 0>
where
    T: Clone,
{
    /**
     * Returns a copy of the sole element in the 0 dimensional tensor.
     */
    pub fn scalar(&self) -> T {
        self.data
            .first()
            .expect("Tensors always have at least 1 element")
            .clone()
    }
}

impl<T> From<T> for Tensor<T, 0> {
    fn from(scalar: T) -> Tensor<T, 0> {
        Tensor::from_scalar(scalar)
    }
}
// TODO: See if we can find a way to write the reverse Tensor<T, 0> -> T conversion using From or Into (doesn't seem like we can?)

// # Safety
//
// We promise to never implement interior mutability for Tensor.
/**
 * A Tensor implements TensorRef.
 */
unsafe impl<T, const D: usize> TensorRef<T, D> for Tensor<T, D> {
    fn get_reference(&self, indexes: [usize; D]) -> Option<&T> {
        let i = get_index_direct(&indexes, &self.strides, &self.shape)?;
        self.data.get(i)
    }

    fn view_shape(&self) -> [(Dimension, usize); D] {
        Tensor::shape(self)
    }

    unsafe fn get_reference_unchecked(&self, indexes: [usize; D]) -> &T {
        // The point of get_reference_unchecked is no bounds checking, and therefore
        // it does not make any sense to just use `unwrap` here. The trait documents that
        // it's undefind behaviour to call this method with an out of bounds index, so we
        // can assume the None case will never happen.
        let i = get_index_direct(&indexes, &self.strides, &self.shape).unwrap_unchecked();
        self.data.get_unchecked(i)
    }

    fn data_layout(&self) -> DataLayout<D> {
        // We always have our memory in most significant to least
        DataLayout::Linear(std::array::from_fn(|i| self.shape[i].0))
    }
}

// # Safety
//
// We promise to never implement interior mutability for Tensor.
unsafe impl<T, const D: usize> TensorMut<T, D> for Tensor<T, D> {
    fn get_reference_mut(&mut self, indexes: [usize; D]) -> Option<&mut T> {
        let i = get_index_direct(&indexes, &self.strides, &self.shape)?;
        self.data.get_mut(i)
    }

    unsafe fn get_reference_unchecked_mut(&mut self, indexes: [usize; D]) -> &mut T {
        // The point of get_reference_unchecked_mut is no bounds checking, and therefore
        // it does not make any sense to just use `unwrap` here. The trait documents that
        // it's undefind behaviour to call this method with an out of bounds index, so we
        // can assume the None case will never happen.
        let i = get_index_direct(&indexes, &self.strides, &self.shape).unwrap_unchecked();
        self.data.get_unchecked_mut(i)
    }
}

/**
 * Any tensor of a Cloneable type implements Clone.
 */
impl<T: Clone, const D: usize> Clone for Tensor<T, D> {
    fn clone(&self) -> Self {
        self.map(|element| element)
    }
}

/**
 * Any tensor of a Displayable type implements Display
 *
 * You can control the precision of the formatting using format arguments, i.e.
 * `format!("{:.3}", tensor)`
 */
impl<T: std::fmt::Display, const D: usize> std::fmt::Display for Tensor<T, D> {
    fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
        crate::tensors::display::format_view(self, f)
    }
}

/**
 * Any 2 dimensional tensor can be converted to a matrix with rows equal to the length of the
 * first dimension in the tensor, and columns equal to the length of the second.
 */
impl<T> From<Tensor<T, 2>> for crate::matrices::Matrix<T> {
    fn from(tensor: Tensor<T, 2>) -> Self {
        crate::matrices::Matrix::from_flat_row_major(
            (tensor.shape[0].1, tensor.shape[1].1),
            tensor.data,
        )
    }
}

pub(crate) fn compute_strides<const D: usize>(shape: &[(Dimension, usize); D]) -> [usize; D] {
    std::array::from_fn(|d| shape.iter().skip(d + 1).map(|d| d.1).product())
}

/// returns the 1 dimensional index to use to get the requested index into some tensor
#[inline]
fn get_index_direct<const D: usize>(
    // indexes to use
    indexes: &[usize; D],
    // strides for indexing into the tensor
    strides: &[usize; D],
    // shape of the tensor to index into
    shape: &[(Dimension, usize); D],
) -> Option<usize> {
    let mut index = 0;
    for d in 0..D {
        let n = indexes[d];
        if n >= shape[d].1 {
            return None;
        }
        index += n * strides[d];
    }
    Some(index)
}

/// returns the 1 dimensional index to use to get the requested index into some tensor, without
/// checking the indexes are within bounds for the shape.
#[inline]
fn get_index_direct_unchecked<const D: usize>(
    // indexes to use
    indexes: &[usize; D],
    // strides for indexing into the tensor
    strides: &[usize; D],
) -> usize {
    let mut index = 0;
    for d in 0..D {
        let n = indexes[d];
        index += n * strides[d];
    }
    index
}

impl<T, const D: usize> Tensor<T, D> {
    pub fn view(&self) -> TensorView<T, &Tensor<T, D>, D> {
        TensorView::from(self)
    }

    pub fn view_mut(&mut self) -> TensorView<T, &mut Tensor<T, D>, D> {
        TensorView::from(self)
    }

    pub fn view_owned(self) -> TensorView<T, Tensor<T, D>, D> {
        TensorView::from(self)
    }

    /**
     * Returns a TensorAccess which can be indexed in the order of the supplied dimensions
     * to read values from this tensor.
     *
     * # Panics
     *
     * If the set of dimensions supplied do not match the set of dimensions in this tensor's shape.
     */
    #[track_caller]
    pub fn index_by(&self, dimensions: [Dimension; D]) -> TensorAccess<T, &Tensor<T, D>, D> {
        TensorAccess::from(self, dimensions)
    }

    /**
     * Returns a TensorAccess which can be indexed in the order of the supplied dimensions
     * to read or write values from this tensor.
     *
     * # Panics
     *
     * If the set of dimensions supplied do not match the set of dimensions in this tensor's shape.
     */
    #[track_caller]
    pub fn index_by_mut(
        &mut self,
        dimensions: [Dimension; D],
    ) -> TensorAccess<T, &mut Tensor<T, D>, D> {
        TensorAccess::from(self, dimensions)
    }

    /**
     * Returns a TensorAccess which can be indexed in the order of the supplied dimensions
     * to read or write values from this tensor.
     *
     * # Panics
     *
     * If the set of dimensions supplied do not match the set of dimensions in this tensor's shape.
     */
    #[track_caller]
    pub fn index_by_owned(self, dimensions: [Dimension; D]) -> TensorAccess<T, Tensor<T, D>, D> {
        TensorAccess::from(self, dimensions)
    }

    /**
     * Creates a TensorAccess which will index into the dimensions this Tensor was created with
     * in the same order as they were provided. See [TensorAccess::from_source_order].
     */
    pub fn index(&self) -> TensorAccess<T, &Tensor<T, D>, D> {
        TensorAccess::from_source_order(self)
    }

    /**
     * Creates a TensorAccess which will index into the dimensions this Tensor was
     * created with in the same order as they were provided. The TensorAccess mutably borrows
     * the Tensor, and can therefore mutate it. See [TensorAccess::from_source_order].
     */
    pub fn index_mut(&mut self) -> TensorAccess<T, &mut Tensor<T, D>, D> {
        TensorAccess::from_source_order(self)
    }

    /**
     * Creates a TensorAccess which will index into the dimensions this Tensor was
     * created with in the same order as they were provided. The TensorAccess takes ownership
     * of the Tensor, and can therefore mutate it. See [TensorAccess::from_source_order].
     */
    pub fn index_owned(self) -> TensorAccess<T, Tensor<T, D>, D> {
        TensorAccess::from_source_order(self)
    }

    /**
     * Returns an iterator over references to the data in this Tensor.
     */
    pub fn iter_reference(&self) -> TensorReferenceIterator<T, Tensor<T, D>, D> {
        TensorReferenceIterator::from(self)
    }

    /**
     * Returns an iterator over mutable references to the data in this Tensor.
     */
    pub fn iter_reference_mut(&mut self) -> TensorReferenceMutIterator<T, Tensor<T, D>, D> {
        TensorReferenceMutIterator::from(self)
    }

    /**
     * Creates an iterator over the values in this Tensor.
     */
    pub fn iter_owned(self) -> TensorOwnedIterator<T, Tensor<T, D>, D>
    where
        T: Default,
    {
        TensorOwnedIterator::from(self)
    }

    // Non public index order reference iterator since we don't want to expose our implementation
    // details to public API since then we could never change them.
    pub(crate) fn direct_iter_reference(&self) -> std::slice::Iter<T> {
        self.data.iter()
    }

    /**
     * Renames the dimension names of the tensor without changing the lengths of the dimensions
     * in the tensor or moving any data around.
     *
     * ```
     * use easy_ml::tensors::Tensor;
     * let mut tensor = Tensor::from([("x", 2), ("y", 3)], vec![1, 2, 3, 4, 5, 6]);
     * tensor.rename(["y", "z"]);
     * assert_eq!([("y", 2), ("z", 3)], tensor.shape());
     * ```
     *
     * # Panics
     *
     * - If a dimension name is not unique
     */
    #[track_caller]
    pub fn rename(&mut self, dimensions: [Dimension; D]) {
        if crate::tensors::dimensions::has_duplicates_names(&dimensions) {
            panic!("Dimension names must all be unique: {:?}", &dimensions);
        }
        #[allow(clippy::needless_range_loop)]
        for d in 0..D {
            self.shape[d].0 = dimensions[d];
        }
    }

    /**
     * Renames the dimension names of the tensor and returns it without changing the lengths
     * of the dimensions in the tensor or moving any data around.
     *
     * ```
     * use easy_ml::tensors::Tensor;
     * let tensor = Tensor::from([("x", 2), ("y", 3)], vec![1, 2, 3, 4, 5, 6])
     *     .rename_owned(["y", "z"]);
     * assert_eq!([("y", 2), ("z", 3)], tensor.shape());
     * ```
     *
     * # Panics
     *
     * - If a dimension name is not unique
     */
    #[track_caller]
    pub fn rename_owned(mut self, dimensions: [Dimension; D]) -> Tensor<T, D> {
        self.rename(dimensions);
        self
    }

    /**
     * Returns a TensorView with the dimension names of the shape renamed to the provided
     * dimensions. The data of this tensor and the dimension lengths and order remain unchanged.
     *
     * This is a shorthand for constructing the TensorView from this Tensor.
     *
     * ```
     * use easy_ml::tensors::Tensor;
     * use easy_ml::tensors::views::{TensorView, TensorRename};
     * let abc = Tensor::from([("a", 3), ("b", 3), ("c", 3)], (0..27).collect());
     * let xyz = abc.rename_view(["x", "y", "z"]);
     * let also_xyz = TensorView::from(TensorRename::from(&abc, ["x", "y", "z"]));
     * assert_eq!(xyz, also_xyz);
     * assert_eq!(xyz, Tensor::from([("x", 3), ("y", 3), ("z", 3)], (0..27).collect()));
     * ```
     *
     * # Panics
     *
     * If a dimension name is not unique
     */
    #[track_caller]
    pub fn rename_view(
        &self,
        dimensions: [Dimension; D],
    ) -> TensorView<T, TensorRename<T, &Tensor<T, D>, D>, D> {
        TensorView::from(TensorRename::from(self, dimensions))
    }

    /**
     * Changes the shape of the tensor without changing the number of dimensions or moving any
     * data around.
     *
     * # Panics
     *
     * - If the number of provided elements in the new shape does not match the product of the
     * dimension lengths in the existing tensor's shape.
     * - If a dimension name is not unique
     * - If any dimension has 0 elements
     *
     * ```
     * use easy_ml::tensors::Tensor;
     * let mut tensor = Tensor::from([("width", 2), ("height", 2)], vec![
     *     1, 2,
     *     3, 4
     * ]);
     * tensor.reshape_mut([("batch", 1), ("image", 4)]);
     * assert_eq!(tensor, Tensor::from([("batch", 1), ("image", 4)], vec![ 1, 2, 3, 4 ]));
     * ```
     */
    #[track_caller]
    pub fn reshape_mut(&mut self, shape: [(Dimension, usize); D]) {
        InvalidShapeError::validate_dimensions_or_panic(&shape, self.data.len());
        let strides = compute_strides(&shape);
        self.shape = shape;
        self.strides = strides;
    }

    /**
     * Consumes the tensor and changes the shape of the tensor without moving any
     * data around. The new Tensor may also have a different number of dimensions.
     *
     * # Panics
     *
     * - If the number of provided elements in the new shape does not match the product of the
     * dimension lengths in the existing tensor's shape.
     * - If a dimension name is not unique
     * - If any dimension has 0 elements
     *
     * ```
     * use easy_ml::tensors::Tensor;
     * let tensor = Tensor::from([("width", 2), ("height", 2)], vec![
     *     1, 2,
     *     3, 4
     * ]);
     * let flattened = tensor.reshape_owned([("image", 4)]);
     * assert_eq!(flattened, Tensor::from([("image", 4)], vec![ 1, 2, 3, 4 ]));
     * ```
     */
    // TODO: View version
    #[track_caller]
    pub fn reshape_owned<const D2: usize>(self, shape: [(Dimension, usize); D2]) -> Tensor<T, D2> {
        Tensor::from(shape, self.data)
    }

    /**
     * Returns a TensorView with a range taken in P dimensions, hiding the values **outside** the
     * range from view. Error cases are documented on [TensorRange].
     *
     * This is a shorthand for constructing the TensorView from this Tensor.
     *
     * ```
     * use easy_ml::tensors::Tensor;
     * use easy_ml::tensors::views::{TensorView, TensorRange, IndexRange};
     * # use easy_ml::tensors::views::IndexRangeValidationError;
     * # fn main() -> Result<(), IndexRangeValidationError<3, 2>> {
     * let samples = Tensor::from([("batch", 5), ("x", 7), ("y", 7)], (0..(5 * 7 * 7)).collect());
     * let cropped = samples.range([("x", IndexRange::new(1, 5)), ("y", IndexRange::new(1, 5))])?;
     * let also_cropped = TensorView::from(
     *     TensorRange::from(&samples, [("x", 1..6), ("y", 1..6)])?
     * );
     * assert_eq!(cropped, also_cropped);
     * assert_eq!(
     *     cropped.select([("batch", 0)]),
     *     Tensor::from([("x", 5), ("y", 5)], vec![
     *          8,  9, 10, 11, 12,
     *         15, 16, 17, 18, 19,
     *         22, 23, 24, 25, 26,
     *         29, 30, 31, 32, 33,
     *         36, 37, 38, 39, 40
     *     ])
     * );
     * # Ok(())
     * # }
     * ```
     */
    pub fn range<R, const P: usize>(
        &self,
        ranges: [(Dimension, R); P],
    ) -> Result<TensorView<T, TensorRange<T, &Tensor<T, D>, D>, D>, IndexRangeValidationError<D, P>>
    where
        R: Into<IndexRange>,
    {
        TensorRange::from(self, ranges).map(|range| TensorView::from(range))
    }

    /**
     * Returns a TensorView with a range taken in P dimensions, hiding the values **outside** the
     * range from view. Error cases are documented on [TensorRange]. The TensorRange
     * mutably borrows this Tensor, and can therefore mutate it
     *
     * This is a shorthand for constructing the TensorView from this Tensor.
     */
    pub fn range_mut<R, const P: usize>(
        &mut self,
        ranges: [(Dimension, R); P],
    ) -> Result<
        TensorView<T, TensorRange<T, &mut Tensor<T, D>, D>, D>,
        IndexRangeValidationError<D, P>,
    >
    where
        R: Into<IndexRange>,
    {
        TensorRange::from(self, ranges).map(|range| TensorView::from(range))
    }

    /**
     * Returns a TensorView with a range taken in P dimensions, hiding the values **outside** the
     * range from view. Error cases are documented on [TensorRange]. The TensorRange
     * takes ownership of this Tensor, and can therefore mutate it
     *
     * This is a shorthand for constructing the TensorView from this Tensor.
     */
    pub fn range_owned<R, const P: usize>(
        self,
        ranges: [(Dimension, R); P],
    ) -> Result<TensorView<T, TensorRange<T, Tensor<T, D>, D>, D>, IndexRangeValidationError<D, P>>
    where
        R: Into<IndexRange>,
    {
        TensorRange::from(self, ranges).map(|range| TensorView::from(range))
    }

    /**
     * Returns a TensorView with a mask taken in P dimensions, hiding the values **inside** the
     * range from view. Error cases are documented on [TensorMask].
     *
     * This is a shorthand for constructing the TensorView from this Tensor.
     *
     * ```
     * use easy_ml::tensors::Tensor;
     * use easy_ml::tensors::views::{TensorView, TensorMask, IndexRange};
     * # use easy_ml::tensors::views::IndexRangeValidationError;
     * # fn main() -> Result<(), IndexRangeValidationError<3, 2>> {
     * let samples = Tensor::from([("batch", 5), ("x", 7), ("y", 7)], (0..(5 * 7 * 7)).collect());
     * let corners = samples.mask([("x", IndexRange::new(3, 2)), ("y", IndexRange::new(3, 2))])?;
     * let also_corners = TensorView::from(
     *     TensorMask::from(&samples, [("x", 3..5), ("y", 3..5)])?
     * );
     * assert_eq!(corners, also_corners);
     * assert_eq!(
     *     corners.select([("batch", 0)]),
     *     Tensor::from([("x", 5), ("y", 5)], vec![
     *          0,  1,  2,    5, 6,
     *          7,  8,  9,   12, 13,
     *         14, 15, 16,   19, 20,
     *
     *         35, 36, 37,   40, 41,
     *         42, 43, 44,   47, 48
     *     ])
     * );
     * # Ok(())
     * # }
     * ```
     */
    pub fn mask<R, const P: usize>(
        &self,
        masks: [(Dimension, R); P],
    ) -> Result<TensorView<T, TensorMask<T, &Tensor<T, D>, D>, D>, IndexRangeValidationError<D, P>>
    where
        R: Into<IndexRange>,
    {
        TensorMask::from(self, masks).map(|mask| TensorView::from(mask))
    }

    /**
     * Returns a TensorView with a mask taken in P dimensions, hiding the values **inside** the
     * range from view. Error cases are documented on [TensorMask]. The TensorMask
     * mutably borrows this Tensor, and can therefore mutate it
     *
     * This is a shorthand for constructing the TensorView from this Tensor.
     */
    pub fn mask_mut<R, const P: usize>(
        &mut self,
        masks: [(Dimension, R); P],
    ) -> Result<
        TensorView<T, TensorMask<T, &mut Tensor<T, D>, D>, D>,
        IndexRangeValidationError<D, P>,
    >
    where
        R: Into<IndexRange>,
    {
        TensorMask::from(self, masks).map(|mask| TensorView::from(mask))
    }

    /**
     * Returns a TensorView with a mask taken in P dimensions, hiding the values **inside** the
     * range from view. Error cases are documented on [TensorMask]. The TensorMask
     * takes ownership of this Tensor, and can therefore mutate it
     *
     * This is a shorthand for constructing the TensorView from this Tensor.
     */
    pub fn mask_owned<R, const P: usize>(
        self,
        masks: [(Dimension, R); P],
    ) -> Result<TensorView<T, TensorMask<T, Tensor<T, D>, D>, D>, IndexRangeValidationError<D, P>>
    where
        R: Into<IndexRange>,
    {
        TensorMask::from(self, masks).map(|mask| TensorView::from(mask))
    }

    /**
     * Creates and returns a new tensor with all value pairs of two tensors with the same shape
     * mapped by a function. The value pairs are not copied for you, if you're using `Copy` types
     * or need to clone the values anyway, you can use
     * [`Tensor::elementwise`](Tensor::elementwise) instead.
     *
     * # Generics
     *
     * This method can be called with any right hand side that can be converted to a TensorView,
     * which includes `Tensor`, `&Tensor`, `&mut Tensor` as well as references to a `TensorView`.
     *
     * # Panics
     *
     * If the two tensors have different shapes.
     */
    #[track_caller]
    pub fn elementwise_reference<S, I, M>(&self, rhs: I, mapping_function: M) -> Tensor<T, D>
    where
        I: Into<TensorView<T, S, D>>,
        S: TensorRef<T, D>,
        M: Fn(&T, &T) -> T,
    {
        self.elementwise_reference_less_generic(rhs.into(), mapping_function)
    }

    /**
     * Creates and returns a new tensor with all value pairs of two tensors with the same shape
     * mapped by a function. The mapping function also receives each index corresponding to the
     * value pairs. The value pairs are not copied for you, if you're using `Copy` types
     * or need to clone the values anyway, you can use
     * [`Tensor::elementwise_with_index`](Tensor::elementwise_with_index) instead.
     *
     * # Generics
     *
     * This method can be called with any right hand side that can be converted to a TensorView,
     * which includes `Tensor`, `&Tensor`, `&mut Tensor` as well as references to a `TensorView`.
     *
     * # Panics
     *
     * If the two tensors have different shapes.
     */
    #[track_caller]
    pub fn elementwise_reference_with_index<S, I, M>(
        &self,
        rhs: I,
        mapping_function: M,
    ) -> Tensor<T, D>
    where
        I: Into<TensorView<T, S, D>>,
        S: TensorRef<T, D>,
        M: Fn([usize; D], &T, &T) -> T,
    {
        self.elementwise_reference_less_generic_with_index(rhs.into(), mapping_function)
    }

    #[track_caller]
    fn elementwise_reference_less_generic<S, M>(
        &self,
        rhs: TensorView<T, S, D>,
        mapping_function: M,
    ) -> Tensor<T, D>
    where
        S: TensorRef<T, D>,
        M: Fn(&T, &T) -> T,
    {
        let left_shape = self.shape();
        let right_shape = rhs.shape();
        if left_shape != right_shape {
            panic!(
                "Dimensions of left and right tensors are not the same: (left: {:?}, right: {:?})",
                left_shape, right_shape
            );
        }
        let mapped = self
            .direct_iter_reference()
            .zip(rhs.iter_reference())
            .map(|(x, y)| mapping_function(x, y))
            .collect();
        // We're not changing the shape of the Tensor, so don't need to revalidate
        Tensor::direct_from(mapped, self.shape, self.strides)
    }

    #[track_caller]
    fn elementwise_reference_less_generic_with_index<S, M>(
        &self,
        rhs: TensorView<T, S, D>,
        mapping_function: M,
    ) -> Tensor<T, D>
    where
        S: TensorRef<T, D>,
        M: Fn([usize; D], &T, &T) -> T,
    {
        let left_shape = self.shape();
        let right_shape = rhs.shape();
        if left_shape != right_shape {
            panic!(
                "Dimensions of left and right tensors are not the same: (left: {:?}, right: {:?})",
                left_shape, right_shape
            );
        }
        // we just checked both shapes were the same, so we don't need to propagate indexes
        // for both tensors because they'll be identical
        let mapped = self
            .direct_iter_reference()
            .zip(rhs.iter_reference().with_index())
            .map(|(x, (i, y))| mapping_function(i, x, y))
            .collect();
        // We're not changing the shape of the Tensor, so don't need to revalidate
        Tensor::direct_from(mapped, self.shape, self.strides)
    }

    /**
     * Returns a TensorView which makes the order of the data in this tensor appear to be in
     * a different order. The order of the dimension names is unchanged, although their lengths
     * may swap.
     *
     * This is a shorthand for constructing the TensorView from this Tensor.
     *
     * See also: [transpose](Tensor::transpose), [TensorTranspose]
     *
     * # Panics
     *
     * If the set of dimensions in the tensor does not match the set of dimensions provided. The
     * order need not match.
     */
    pub fn transpose_view(
        &self,
        dimensions: [Dimension; D],
    ) -> TensorView<T, TensorTranspose<T, &Tensor<T, D>, D>, D> {
        TensorView::from(TensorTranspose::from(self, dimensions))
    }
}

impl<T, const D: usize> Tensor<T, D>
where
    T: Clone,
{
    /**
     * Creates a tensor with a particular number of dimensions and length in each dimension
     * with all elements initialised to the provided value.
     *
     * # Panics
     *
     * - If a dimension name is not unique
     * - If any dimension has 0 elements
     */
    #[track_caller]
    pub fn empty(shape: [(Dimension, usize); D], value: T) -> Self {
        let elements = crate::tensors::dimensions::elements(&shape);
        Tensor::from(shape, vec![value; elements])
    }

    /**
     * Gets a copy of the first value in this tensor.
     * For 0 dimensional tensors this is the only index `[]`, for 1 dimensional tensors this
     * is `[0]`, for 2 dimensional tensors `[0,0]`, etcetera.
     */
    pub fn first(&self) -> T {
        self.data
            .first()
            .expect("Tensors always have at least 1 element")
            .clone()
    }

    /**
     * Returns a new Tensor which has the same data as this tensor, but with the order of data
     * changed. The order of the dimension names is unchanged, although their lengths may swap.
     *
     * For example, with a `[("x", x), ("y", y)]` tensor you could call
     * `transpose(["y", "x"])` which would return a new tensor with a shape of
     * `[("x", y), ("y", x)]` where every (x,y) of its data corresponds to (y,x) in the original.
     *
     * This method need not shift *all* the dimensions though, you could also swap the width
     * and height of images in a tensor with a shape of
     * `[("batch", b), ("h", h), ("w", w), ("c", c)]` via `transpose(["batch", "w", "h", "c"])`
     * which would return a new tensor where all the images have been swapped over the diagonal.
     *
     * See also: [TensorAccess], [reorder](Tensor::reorder)
     *
     * # Panics
     *
     * If the set of dimensions in the tensor does not match the set of dimensions provided. The
     * order need not match (and if the order does match, this function is just an expensive
     * clone).
     */
    #[track_caller]
    pub fn transpose(&self, dimensions: [Dimension; D]) -> Tensor<T, D> {
        let shape = self.shape;
        let mut reordered = self.reorder(dimensions);
        // Transposition is essentially reordering, but we retain the dimension name ordering
        // of the original order, this means we may swap dimension lengths, but the dimensions
        // will not change order.
        #[allow(clippy::needless_range_loop)]
        for d in 0..D {
            reordered.shape[d].0 = shape[d].0;
        }
        reordered
    }

    /**
     * Modifies this tensor to have the same data as before, but with the order of data changed.
     * The order of the dimension names is unchanged, although their lengths may swap.
     *
     * For example, with a `[("x", x), ("y", y)]` tensor you could call
     * `transpose_mut(["y", "x"])` which would edit the tensor, updating its shape to
     * `[("x", y), ("y", x)]`, so every (x,y) of its data corresponds to (y,x) before the
     * transposition.
     *
     * The order swapping will try to be in place, but this is currently only supported for
     * square tensors with 2 dimensions. Other types of tensors will not be transposed in place.
     *
     * # Panics
     *
     * If the set of dimensions in the tensor does not match the set of dimensions provided. The
     * order need not match (and if the order does match, this function is just an expensive
     * clone).
     */
    #[track_caller]
    pub fn transpose_mut(&mut self, dimensions: [Dimension; D]) {
        let shape = self.shape;
        self.reorder_mut(dimensions);
        // Transposition is essentially reordering, but we retain the dimension name ordering
        // we had before, this means we may swap dimension lengths, but the dimensions
        // will not change order.
        #[allow(clippy::needless_range_loop)]
        for d in 0..D {
            self.shape[d].0 = shape[d].0;
        }
    }

    /**
     * Returns a new Tensor which has the same data as this tensor, but with the order of the
     * dimensions and corresponding order of data changed.
     *
     * For example, with a `[("x", x), ("y", y)]` tensor you could call
     * `reorder(["y", "x"])` which would return a new tensor with a shape of
     * `[("y", y), ("x", x)]` where every (y,x) of its data corresponds to (x,y) in the original.
     *
     * This method need not shift *all* the dimensions though, you could also swap the width
     * and height of images in a tensor with a shape of
     * `[("batch", b), ("h", h), ("w", w), ("c", c)]` via `reorder(["batch", "w", "h", "c"])`
     * which would return a new tensor where every (b,w,h,c) of its data corresponds to (b,h,w,c)
     * in the original.
     *
     * See also: [TensorAccess], [transpose](Tensor::transpose)
     *
     * # Panics
     *
     * If the set of dimensions in the tensor does not match the set of dimensions provided. The
     * order need not match (and if the order does match, this function is just an expensive
     * clone).
     */
    #[track_caller]
    pub fn reorder(&self, dimensions: [Dimension; D]) -> Tensor<T, D> {
        let reorderd = match TensorAccess::try_from(&self, dimensions) {
            Ok(reordered) => reordered,
            Err(_error) => panic!(
                "Dimension names provided {:?} must be the same set of dimension names in the tensor: {:?}",
                dimensions,
                &self.shape,
            ),
        };
        let reorderd_shape = reorderd.shape();
        Tensor::from(reorderd_shape, reorderd.iter().collect())
    }

    /**
     * Modifies this tensor to have the same data as before, but with the order of the
     * dimensions and corresponding order of data changed.
     *
     * For example, with a `[("x", x), ("y", y)]` tensor you could call
     * `reorder_mut(["y", "x"])` which would edit the tensor, updating its shape to
     * `[("y", y), ("x", x)]`, so every (y,x) of its data corresponds to (x,y) before the
     * transposition.
     *
     * The order swapping will try to be in place, but this is currently only supported for
     * square tensors with 2 dimensions. Other types of tensors will not be reordered in place.
     *
     * # Panics
     *
     * If the set of dimensions in the tensor does not match the set of dimensions provided. The
     * order need not match (and if the order does match, this function is just an expensive
     * clone).
     */
    #[track_caller]
    pub fn reorder_mut(&mut self, dimensions: [Dimension; D]) {
        use crate::tensors::dimensions::DimensionMappings;
        if D == 2 && crate::tensors::dimensions::is_square(&self.shape) {
            let dimension_mapping = match DimensionMappings::new(&self.shape, &dimensions) {
                Some(dimension_mapping) => dimension_mapping,
                None => panic!(
                    "Dimension names provided {:?} must be the same set of dimension names in the tensor: {:?}",
                    dimensions,
                    &self.shape,
                ),
            };

            let shape = dimension_mapping.map_shape_to_requested(&self.shape);
            let shape_iterator = ShapeIterator::from(shape);

            for index in shape_iterator {
                let i = index[0];
                let j = index[1];
                if j >= i {
                    let mapped_index = dimension_mapping.map_dimensions_to_source(&index);
                    // Swap elements from the upper triangle (using index order of the actual tensor's
                    // shape)
                    let temp = self.get_reference(index).unwrap().clone();
                    // tensor[i,j] becomes tensor[mapping(i,j)]
                    *self.get_reference_mut(index).unwrap() =
                        self.get_reference(mapped_index).unwrap().clone();
                    // tensor[mapping(i,j)] becomes tensor[i,j]
                    *self.get_reference_mut(mapped_index).unwrap() = temp;
                    // If the mapping is a noop we've assigned i,j to i,j
                    // If the mapping is i,j -> j,i we've assigned i,j to j,i and j,i to i,j
                }
            }

            // now update our shape and strides to match
            self.shape = shape;
            self.strides = compute_strides(&shape);
        } else {
            // fallback to allocating a new reordered tensor
            let reordered = self.reorder(dimensions);
            self.data = reordered.data;
            self.shape = reordered.shape;
            self.strides = reordered.strides;
        }
    }

    /**
     * Returns an iterator over copies of the data in this Tensor.
     */
    pub fn iter(&self) -> TensorIterator<T, Tensor<T, D>, D> {
        TensorIterator::from(self)
    }

    /**
     * Creates and returns a new tensor with all values from the original with the
     * function applied to each. This can be used to change the type of the tensor
     * such as creating a mask:
     * ```
     * use easy_ml::tensors::Tensor;
     * let x = Tensor::from([("a", 2), ("b", 2)], vec![
     *    0.0, 1.2,
     *    5.8, 6.9
     * ]);
     * let y = x.map(|element| element > 2.0);
     * let result = Tensor::from([("a", 2), ("b", 2)], vec![
     *    false, false,
     *    true, true
     * ]);
     * assert_eq!(&y, &result);
     * ```
     */
    pub fn map<U>(&self, mapping_function: impl Fn(T) -> U) -> Tensor<U, D> {
        let mapped = self
            .data
            .iter()
            .map(|x| mapping_function(x.clone()))
            .collect();
        // We're not changing the shape of the Tensor, so don't need to revalidate
        Tensor::direct_from(mapped, self.shape, self.strides)
    }

    /**
     * Creates and returns a new tensor with all values from the original and
     * the index of each value mapped by a function.
     */
    pub fn map_with_index<U>(&self, mapping_function: impl Fn([usize; D], T) -> U) -> Tensor<U, D> {
        let mapped = self
            .iter()
            .with_index()
            .map(|(i, x)| mapping_function(i, x))
            .collect();
        // We're not changing the shape of the Tensor, so don't need to revalidate
        Tensor::direct_from(mapped, self.shape, self.strides)
    }

    /**
     * Applies a function to all values in the tensor, modifying
     * the tensor in place.
     */
    pub fn map_mut(&mut self, mapping_function: impl Fn(T) -> T) {
        for value in self.data.iter_mut() {
            *value = mapping_function(value.clone());
        }
    }

    /**
     * Applies a function to all values and each value's index in the tensor, modifying
     * the tensor in place.
     */
    pub fn map_mut_with_index(&mut self, mapping_function: impl Fn([usize; D], T) -> T) {
        self.iter_reference_mut()
            .with_index()
            .for_each(|(i, x)| *x = mapping_function(i, x.clone()));
    }

    /**
     * Creates and returns a new tensor with all value pairs of two tensors with the same shape
     * mapped by a function.
     *
     * ```
     * use easy_ml::tensors::Tensor;
     * let lhs = Tensor::from([("a", 4)], vec![1, 2, 3, 4]);
     * let rhs = Tensor::from([("a", 4)], vec![0, 1, 2, 3]);
     * let multiplied = lhs.elementwise(&rhs, |l, r| l * r);
     * assert_eq!(
     *     multiplied,
     *     Tensor::from([("a", 4)], vec![0, 2, 6, 12])
     * );
     * ```
     *
     * # Generics
     *
     * This method can be called with any right hand side that can be converted to a TensorView,
     * which includes `Tensor`, `&Tensor`, `&mut Tensor` as well as references to a `TensorView`.
     *
     * # Panics
     *
     * If the two tensors have different shapes.
     */
    #[track_caller]
    pub fn elementwise<S, I, M>(&self, rhs: I, mapping_function: M) -> Tensor<T, D>
    where
        I: Into<TensorView<T, S, D>>,
        S: TensorRef<T, D>,
        M: Fn(T, T) -> T,
    {
        self.elementwise_reference_less_generic(rhs.into(), |lhs, rhs| {
            mapping_function(lhs.clone(), rhs.clone())
        })
    }

    /**
     * Creates and returns a new tensor with all value pairs of two tensors with the same shape
     * mapped by a function. The mapping function also receives each index corresponding to the
     * value pairs.
     *
     * # Generics
     *
     * This method can be called with any right hand side that can be converted to a TensorView,
     * which includes `Tensor`, `&Tensor`, `&mut Tensor` as well as references to a `TensorView`.
     *
     * # Panics
     *
     * If the two tensors have different shapes.
     */
    #[track_caller]
    pub fn elementwise_with_index<S, I, M>(&self, rhs: I, mapping_function: M) -> Tensor<T, D>
    where
        I: Into<TensorView<T, S, D>>,
        S: TensorRef<T, D>,
        M: Fn([usize; D], T, T) -> T,
    {
        self.elementwise_reference_less_generic_with_index(rhs.into(), |i, lhs, rhs| {
            mapping_function(i, lhs.clone(), rhs.clone())
        })
    }
}

impl<T> Tensor<T, 1>
where
    T: Numeric,
    for<'a> &'a T: NumericRef<T>,
{
    /**
     * Computes the scalar product of two equal length vectors. For two vectors `[a,b,c]` and
     * `[d,e,f]`, returns `a*d + b*e + c*f`. This is also known as the dot product.
     *
     * ```
     * use easy_ml::tensors::Tensor;
     * let tensor = Tensor::from([("sequence", 5)], vec![3, 4, 5, 6, 7]);
     * assert_eq!(tensor.scalar_product(&tensor), 3*3 + 4*4 + 5*5 + 6*6 + 7*7);
     * ```
     *
     * # Generics
     *
     * This method can be called with any right hand side that can be converted to a TensorView,
     * which includes `Tensor`, `&Tensor`, `&mut Tensor` as well as references to a `TensorView`.
     *
     * # Panics
     *
     * If the two vectors are not of equal length or their dimension names do not match.
     */
    // Would like this impl block to be in operations.rs too but then it would show first in the
    // Tensor docs which isn't ideal
    pub fn scalar_product<S, I>(&self, rhs: I) -> T
    where
        I: Into<TensorView<T, S, 1>>,
        S: TensorRef<T, 1>,
    {
        self.scalar_product_less_generic(rhs.into())
    }
}

impl<T> Tensor<T, 2>
where
    T: Numeric,
    for<'a> &'a T: NumericRef<T>,
{
    /**
     * Returns the determinant of this square matrix, or None if the matrix
     * does not have a determinant. See [`linear_algebra`](super::linear_algebra::determinant_tensor())
     */
    pub fn determinant(&self) -> Option<T> {
        linear_algebra::determinant_tensor::<T, _, _>(self)
    }

    /**
     * Computes the inverse of a matrix provided that it exists. To have an inverse a
     * matrix must be square (same number of rows and columns) and it must also have a
     * non zero determinant. See [`linear_algebra`](super::linear_algebra::inverse_tensor())
     */
    pub fn inverse(&self) -> Option<Tensor<T, 2>> {
        linear_algebra::inverse_tensor::<T, _, _>(self)
    }

    /**
     * Computes the covariance matrix for this feature matrix along the specified feature
     * dimension in this matrix. See [`linear_algebra`](crate::linear_algebra::covariance()).
     */
    pub fn covariance(&self, feature_dimension: Dimension) -> Tensor<T, 2> {
        linear_algebra::covariance::<T, _, _>(self, feature_dimension)
    }
}

// FIXME: want this to be callable in the main numeric impl block
impl<T> Tensor<T, 2>
where
    T: Numeric,
{
    /**
     * Creates a diagonal matrix of the provided size with the diagonal elements
     * set to the provided value and all other elements in the tensor set to 0.
     * A diagonal matrix is always square.
     *
     * The size is still taken as a shape to facilitate creating a diagonal matrix
     * from the dimensionality of an existing one. If the provided value is 1 then
     * this will create an identity matrix.
     *
     * A 3 x 3 identity matrix:
     * ```ignore
     * [
     *   1, 0, 0
     *   0, 1, 0
     *   0, 0, 1
     * ]
     * ```
     *
     * # Panics
     *
     * - If the shape is not square.
     * - If a dimension name is not unique
     * - If any dimension has 0 elements
     */
    #[track_caller]
    pub fn diagonal(shape: [(Dimension, usize); 2], value: T) -> Tensor<T, 2> {
        if !crate::tensors::dimensions::is_square(&shape) {
            panic!("Shape must be square: {:?}", shape);
        }
        let mut tensor = Tensor::empty(shape, T::zero());
        for ([r, c], x) in tensor.iter_reference_mut().with_index() {
            if r == c {
                *x = value.clone();
            }
        }
        tensor
    }
}

impl<T> Tensor<T, 2> {
    /**
     * Converts this 2 dimensional Tensor into a Matrix.
     *
     * This is a wrapper around the `From<Tensor<T, 2>>` implementation.
     *
     * The Matrix will have the data in the same order, with rows equal to the length of
     * the first dimension in the tensor, and columns equal to the length of the second.
     */
    pub fn into_matrix(self) -> crate::matrices::Matrix<T> {
        self.into()
    }
}

/**
 * Methods for tensors with numerical real valued types, such as f32 or f64.
 *
 * This excludes signed and unsigned integers as they do not support decimal
 * precision and hence can't be used for operations like square roots.
 *
 * Third party fixed precision and infinite precision decimal types should
 * be able to implement all of the methods for [Real] and then utilise these functions.
 */
impl<T: Numeric + Real> Tensor<T, 1>
where
    for<'a> &'a T: NumericRef<T> + RealRef<T>,
{
    /**
     * Computes the [L2 norm](https://en.wikipedia.org/wiki/Euclidean_vector#Length)
     * of this vector, also referred to as the length or magnitude,
     * and written as ||x||, or sometimes |x|.
     *
     * ||**a**|| = sqrt(a<sub>1</sub><sup>2</sup> + a<sub>2</sub><sup>2</sup> + a<sub>3</sub><sup>2</sup>...) = sqrt(**a**<sup>T</sup> * **a**)
     *
     * This is a shorthand for `(x.iter().map(|x| x * x).sum().sqrt()`, ie
     * the square root of the dot product of a vector with itself.
     *
     * The euclidean length can be used to compute a
     * [unit vector](https://en.wikipedia.org/wiki/Unit_vector), that is, a
     * vector with length of 1. This should not be confused with a unit matrix,
     * which is another name for an identity matrix.
     *
     * ```
     * use easy_ml::tensors::Tensor;
     * let a = Tensor::from([("data", 3)], vec![ 1.0, 2.0, 3.0 ]);
     * let length = a.euclidean_length(); // (1^2 + 2^2 + 3^2)^0.5
     * let unit = a.map(|x| x / length);
     * assert_eq!(unit.euclidean_length(), 1.0);
     * ```
     */
    // TODO: Scalar ops for tensors
    pub fn euclidean_length(&self) -> T {
        self.direct_iter_reference()
            .map(|x| x * x)
            .sum::<T>()
            .sqrt()
    }
}

#[cfg(feature = "serde")]
mod serde_impls {
    use crate::tensors::{Dimension, InvalidShapeError, Tensor};
    use serde::Deserialize;
    use std::convert::TryFrom;

    /**
     * Deserialised data for a Tensor. Can be converted into a Tensor by providing `&'static str`
     * dimension names.
     */
    #[derive(Deserialize)]
    #[serde(rename = "Tensor")]
    pub struct TensorDeserialize<'a, T, const D: usize> {
        data: Vec<T>,
        #[serde(with = "serde_arrays")]
        #[serde(borrow)]
        shape: [(&'a str, usize); D],
    }

    impl<'a, T, const D: usize> TensorDeserialize<'a, T, D> {
        /**
         * Converts this deserialised Tensor data to a Tensor, using the provided `&'static str`
         * dimension names in place of what was serialised (which wouldn't necessarily live
         * long enough).
         */
        pub fn into_tensor(
            self,
            dimensions: [Dimension; D],
        ) -> Result<Tensor<T, D>, InvalidShapeError<D>> {
            let shape = std::array::from_fn(|d| (dimensions[d], self.shape[d].1));
            // Safety: Use the normal constructor that performs validation to prevent invalid
            // serialized data being created as a Tensor, which would then break all the
            // code that's relying on these invariants.
            // By never serialising the strides in the first place, we reduce the possibility
            // of creating invalid serialised represenations at the slight increase in
            // serialisation work.
            Tensor::try_from(shape, self.data)
        }
    }

    /**
     * Converts this deserialised Tensor data which has a static lifetime for the dimension
     * names to a Tensor, using the serialised data.
     */
    impl<T, const D: usize> TryFrom<TensorDeserialize<'static, T, D>> for Tensor<T, D> {
        type Error = InvalidShapeError<D>;

        fn try_from(value: TensorDeserialize<'static, T, D>) -> Result<Self, Self::Error> {
            Tensor::try_from(value.shape, value.data)
        }
    }
}

#[cfg(feature = "serde")]
#[test]
fn test_serialize() {
    fn assert_serialize<T: Serialize>() {}
    assert_serialize::<Tensor<f64, 3>>();
    assert_serialize::<Tensor<f64, 2>>();
    assert_serialize::<Tensor<f64, 1>>();
    assert_serialize::<Tensor<f64, 0>>();
}

#[cfg(feature = "serde")]
#[test]
fn test_deserialize() {
    use serde::Deserialize;
    fn assert_deserialize<'de, T: Deserialize<'de>>() {}
    assert_deserialize::<TensorDeserialize<f64, 3>>();
    assert_deserialize::<TensorDeserialize<f64, 2>>();
    assert_deserialize::<TensorDeserialize<f64, 1>>();
    assert_deserialize::<TensorDeserialize<f64, 0>>();
}

#[cfg(feature = "serde")]
#[test]
fn test_serialization_deserialization_loop() {
    #[rustfmt::skip]
    let tensor = Tensor::from(
        [("rows", 3), ("columns", 4)],
        vec![
            1,  2,  3,  4,
            5,  6,  7,  8,
            9, 10, 11, 12
        ],
    );
    let encoded = toml::to_string(&tensor).unwrap();
    assert_eq!(
        encoded,
        r#"data = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]
shape = [["rows", 3], ["columns", 4]]
"#,
    );
    let parsed: Result<TensorDeserialize<i32, 2>, _> = toml::from_str(&encoded);
    assert!(parsed.is_ok());
    let result = parsed.unwrap().into_tensor(["rows", "columns"]);
    assert!(result.is_ok());
    assert_eq!(result.unwrap(), tensor);
}

#[cfg(feature = "serde")]
#[test]
fn test_deserialization_validation() {
    let parsed: Result<TensorDeserialize<i32, 2>, _> = toml::from_str(
        r#"data = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]
shape = [["rows", 4], ["columns", 4]]
"#,
    );
    assert!(parsed.is_ok());
    let result = parsed.unwrap().into_tensor(["rows", "columns"]);
    assert!(result.is_err());
}

macro_rules! tensor_select_impl {
    (impl Tensor $d:literal 1) => {
        impl<T> Tensor<T, $d> {
            /**
             * Selects the provided dimension name and index pairs in this Tensor, returning a
             * TensorView which has fewer dimensions than this Tensor, with the removed dimensions
             * always indexed as the provided values.
             *
             * This is a shorthand for manually constructing the TensorView and
             * [TensorIndex]
             *
             * Note: due to limitations in Rust's const generics support, this method is only
             * implemented for `provided_indexes` of length 1 and `D` from 1 to 6. You can fall
             * back to manual construction to create `TensorIndex`es with multiple provided
             * indexes if you need to reduce dimensionality by more than 1 dimension at a time.
             */
            #[track_caller]
            pub fn select(
                &self,
                provided_indexes: [(Dimension, usize); 1],
            ) -> TensorView<T, TensorIndex<T, &Tensor<T, $d>, $d, 1>, { $d - 1 }> {
                TensorView::from(TensorIndex::from(self, provided_indexes))
            }

            /**
             * Selects the provided dimension name and index pairs in this Tensor, returning a
             * TensorView which has fewer dimensions than this Tensor, with the removed dimensions
             * always indexed as the provided values. The TensorIndex mutably borrows this
             * Tensor, and can therefore mutate it
             *
             * See [select](Tensor::select)
             */
            #[track_caller]
            pub fn select_mut(
                &mut self,
                provided_indexes: [(Dimension, usize); 1],
            ) -> TensorView<T, TensorIndex<T, &mut Tensor<T, $d>, $d, 1>, { $d - 1 }> {
                TensorView::from(TensorIndex::from(self, provided_indexes))
            }

            /**
             * Selects the provided dimension name and index pairs in this Tensor, returning a
             * TensorView which has fewer dimensions than this Tensor, with the removed dimensions
             * always indexed as the provided values. The TensorIndex takes ownership of this
             * Tensor, and can therefore mutate it
             *
             * See [select](Tensor::select)
             */
            #[track_caller]
            pub fn select_owned(
                self,
                provided_indexes: [(Dimension, usize); 1],
            ) -> TensorView<T, TensorIndex<T, Tensor<T, $d>, $d, 1>, { $d - 1 }> {
                TensorView::from(TensorIndex::from(self, provided_indexes))
            }
        }
    };
}

tensor_select_impl!(impl Tensor 6 1);
tensor_select_impl!(impl Tensor 5 1);
tensor_select_impl!(impl Tensor 4 1);
tensor_select_impl!(impl Tensor 3 1);
tensor_select_impl!(impl Tensor 2 1);
tensor_select_impl!(impl Tensor 1 1);

macro_rules! tensor_expand_impl {
    (impl Tensor $d:literal 1) => {
        impl<T> Tensor<T, $d> {
            /**
             * Expands the dimensionality of this tensor by adding dimensions of length 1 at
             * a particular position within the shape, returning a TensorView which has more
             * dimensions than this Tensor.
             *
             * This is a shorthand for manually constructing the TensorView and
             * [TensorExpansion]
             *
             * Note: due to limitations in Rust's const generics support, this method is only
             * implemented for `extra_dimension_names` of length 1 and `D` from 0 to 5. You can
             * fall back to manual construction to create `TensorExpansion`s with multiple provided
             * indexes if you need to increase dimensionality by more than 1 dimension at a time.
             */
            #[track_caller]
            pub fn expand(
                &self,
                extra_dimension_names: [(usize, Dimension); 1],
            ) -> TensorView<T, TensorExpansion<T, &Tensor<T, $d>, $d, 1>, { $d + 1 }> {
                TensorView::from(TensorExpansion::from(self, extra_dimension_names))
            }

            /**
             * Expands the dimensionality of this tensor by adding dimensions of length 1 at
             * a particular position within the shape, returning a TensorView which has more
             * dimensions than this Tensor. The TensorIndex mutably borrows this
             * Tensor, and can therefore mutate it
             *
             * See [expand](Tensor::expand)
             */
            #[track_caller]
            pub fn expand_mut(
                &mut self,
                extra_dimension_names: [(usize, Dimension); 1],
            ) -> TensorView<T, TensorExpansion<T, &mut Tensor<T, $d>, $d, 1>, { $d + 1 }> {
                TensorView::from(TensorExpansion::from(self, extra_dimension_names))
            }

            /**
             * Expands the dimensionality of this tensor by adding dimensions of length 1 at
             * a particular position within the shape, returning a TensorView which has more
             * dimensions than this Tensor. The TensorIndex takes ownership of this
             * Tensor, and can therefore mutate it
             *
             * See [expand](Tensor::expand)
             */
            #[track_caller]
            pub fn expand_owned(
                self,
                extra_dimension_names: [(usize, Dimension); 1],
            ) -> TensorView<T, TensorExpansion<T, Tensor<T, $d>, $d, 1>, { $d + 1 }> {
                TensorView::from(TensorExpansion::from(self, extra_dimension_names))
            }
        }
    };
}

tensor_expand_impl!(impl Tensor 0 1);
tensor_expand_impl!(impl Tensor 1 1);
tensor_expand_impl!(impl Tensor 2 1);
tensor_expand_impl!(impl Tensor 3 1);
tensor_expand_impl!(impl Tensor 4 1);
tensor_expand_impl!(impl Tensor 5 1);