1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
/*!
 * Generic matrix type.
 *
 * Matrices are generic over some type `T`. If `T` is [Numeric](super::numeric) then
 * the matrix can be used in a mathematical way.
 */

#[cfg(feature = "serde")]
use serde::Serialize;

mod errors;
pub mod iterators;
pub mod operations;
pub mod slices;
pub mod views;

pub use errors::ScalarConversionError;

use crate::linear_algebra;
use crate::matrices::iterators::*;
use crate::matrices::slices::Slice2D;
use crate::matrices::views::{MatrixPart, MatrixQuadrants, MatrixView};
use crate::numeric::extra::{Real, RealRef};
use crate::numeric::{Numeric, NumericRef};

/**
 * A general purpose matrix of some type. This type may implement
 * no traits, in which case the matrix will be rather useless. If the
 * type implements [`Clone`] most storage and accessor methods are defined and if the type
 * implements [`Numeric`](super::numeric) then the matrix can be used in
 * a mathematical way.
 *
 * When doing numeric operations with Matrices you should be careful to not
 * consume a matrix by accidentally using it by value. All the operations are
 * also defined on references to matrices so you should favor `&x * &y` style
 * notation for matrices you intend to continue using. There are also convenience
 * operations defined for a matrix and a scalar.
 *
 * # Matrix size invariants
 *
 * Matrices must always be at least 1x1. You cannot construct a matrix with no rows or
 * no columns, and any function that resizes matrices will error if you try to use it
 * in a way that would construct a 0x1, 1x0, or 0x0 matrix. The maximum size of a matrix
 * is dependent on the platform's `std::isize::MAX` value. Matrices with dimensions NxM
 * such that N * M < `std::isize::MAX` should not cause any errors in this library, but
 * attempting to expand their size further may cause panics and or errors. At the time of
 * writing it is no longer possible to construct or use matrices where the product of their
 * number of rows and columns exceed `std::isize::MAX`, but some constructor methods may be used
 * to attempt this. Concerned readers should note that on a 64 bit computer this maximum
 * value is 9,223,372,036,854,775,807 so running out of memory is likely to occur first.
 *
 * # Matrix layout and iterator performance
 *
 * [See iterators submodule for Matrix layout and iterator performance](iterators#matrix-layout-and-iterator-performance)
 *
 * # Matrix operations
 *
 * [See operations submodule](operations)
 */
#[derive(Debug)]
#[cfg_attr(feature = "serde", derive(Serialize))]
pub struct Matrix<T> {
    data: Vec<T>,
    rows: Row,
    columns: Column,
}

/// The maximum row and column lengths are usize, due to the internal storage being backed by Vec
pub type Row = usize;
/// The maximum row and column lengths are usize, due to the internal storage being backed by Vec
pub type Column = usize;

/**
 * Methods for matrices of any type, including non numerical types such as bool.
 */
impl<T> Matrix<T> {
    /**
     * Creates a 1x1 matrix from some scalar
     */
    pub fn from_scalar(value: T) -> Matrix<T> {
        Matrix {
            data: vec![value],
            rows: 1,
            columns: 1,
        }
    }

    /**
     * Creates a row vector (1xN) from a list
     *
     * # Panics
     *
     * Panics if no values are provided. Note: this method erroneously did not validate its inputs
     * in Easy ML versions up to and including 1.7.0
     */
    #[track_caller]
    pub fn row(values: Vec<T>) -> Matrix<T> {
        assert!(!values.is_empty(), "No values provided");
        Matrix {
            columns: values.len(),
            data: values,
            rows: 1,
        }
    }

    /**
     * Creates a column vector (Nx1) from a list
     *
     * # Panics
     *
     * Panics if no values are provided. Note: this method erroneously did not validate its inputs
     * in Easy ML versions up to and including 1.7.0
     */
    #[track_caller]
    pub fn column(values: Vec<T>) -> Matrix<T> {
        assert!(!values.is_empty(), "No values provided");
        Matrix {
            rows: values.len(),
            data: values,
            columns: 1,
        }
    }

    /**
     * Creates a matrix from a nested array of values, each inner vector
     * being a row, and hence the outer vector containing all rows in sequence, the
     * same way as when writing matrices in mathematics.
     *
     * Example of a 2 x 3 matrix in both notations:
     * ```ignore
     *   [
     *      1, 2, 4
     *      8, 9, 3
     *   ]
     * ```
     * ```
     * use easy_ml::matrices::Matrix;
     * Matrix::from(vec![
     *     vec![ 1, 2, 4 ],
     *     vec![ 8, 9, 3 ]
     * ]);
     * ```
     *
     * # Panics
     *
     * Panics if the input is jagged or rows or column length is 0.
     */
    #[track_caller]
    pub fn from(mut values: Vec<Vec<T>>) -> Matrix<T> {
        assert!(!values.is_empty(), "No rows defined");
        // check length of first row is > 1
        assert!(!values[0].is_empty(), "No column defined");
        // check length of each row is the same
        assert!(
            values.iter().map(|x| x.len()).all(|x| x == values[0].len()),
            "Inconsistent size"
        );
        // flatten the data into a row major layout
        let rows = values.len();
        let columns = values[0].len();
        let mut data = Vec::with_capacity(rows * columns);
        let mut value_stream = values.drain(..);
        for _ in 0..rows {
            let mut value_row_stream = value_stream.next().unwrap();
            let mut row_of_values = value_row_stream.drain(..);
            for _ in 0..columns {
                data.push(row_of_values.next().unwrap());
            }
        }
        Matrix {
            data,
            rows,
            columns,
        }
    }

    /**
     * Creates a matrix with the specified size from a row major vec of data.
     * The length of the vec must match the size of the matrix or the constructor
     * will panic.
     *
     * Example of a 2 x 3 matrix in both notations:
     * ```ignore
     *   [
     *      1, 2, 4
     *      8, 9, 3
     *   ]
     * ```
     * ```
     * use easy_ml::matrices::Matrix;
     * Matrix::from_flat_row_major((2, 3), vec![
     *     1, 2, 4,
     *     8, 9, 3
     * ]);
     * ```
     *
     * This method is more efficient than [`Matrix::from`](Matrix::from())
     * but requires specifying the size explicitly and manually keeping track of where rows
     * start and stop.
     *
     * # Panics
     *
     * Panics if the length of the vec does not match the size of the matrix, or no values are
     * provided. Note: this method erroneously did not validate its inputs were not empty in
     * Easy ML versions up to and including 1.7.0
     */
    #[track_caller]
    pub fn from_flat_row_major(size: (Row, Column), values: Vec<T>) -> Matrix<T> {
        assert!(size.0 * size.1 == values.len(),
            "Inconsistent size, attempted to construct a {}x{} matrix but provided with {} elements.",
            size.0, size.1, values.len());
        assert!(!values.is_empty(), "No values provided");
        Matrix {
            data: values,
            rows: size.0,
            columns: size.1,
        }
    }

    /**
     * Creates a matrix with the specified size initalised from a function.
     *
     * ```
     * use easy_ml::matrices::Matrix;
     * let matrix = Matrix::from_fn((4, 4), |(r, c)| r * c);
     * assert_eq!(
     *     matrix,
     *     Matrix::from(vec![
     *         vec![ 0, 0, 0, 0 ],
     *         vec![ 0, 1, 2, 3 ],
     *         vec![ 0, 2, 4, 6 ],
     *         vec![ 0, 3, 6, 9 ],
     *     ])
     * );
     * ```
     *
     * # Panics
     *
     * Panics if the size has 0 rows or columns.
     */
    #[track_caller]
    pub fn from_fn<F>(size: (Row, Column), mut producer: F) -> Matrix<T>
    where
        F: FnMut((Row, Column)) -> T,
    {
        use crate::tensors::indexing::ShapeIterator;
        let length = size.0 * size.1;
        let mut data = Vec::with_capacity(length);
        let iterator = ShapeIterator::from([("row", size.0), ("column", size.1)]);
        for [r, c] in iterator {
            data.push(producer((r, c)));
        }
        Matrix::from_flat_row_major(size, data)
    }

    #[deprecated(
        since = "1.1.0",
        note = "Incorrect use of terminology, a unit matrix is another term for an identity matrix, please use `from_scalar` instead"
    )]
    pub fn unit(value: T) -> Matrix<T> {
        Matrix::from_scalar(value)
    }

    /**
     * Returns the dimensionality of this matrix in Row, Column format
     */
    pub fn size(&self) -> (Row, Column) {
        (self.rows, self.columns)
    }

    /**
     * Gets the number of rows in this matrix.
     */
    pub fn rows(&self) -> Row {
        self.rows
    }

    /**
     * Gets the number of columns in this matrix.
     */
    pub fn columns(&self) -> Column {
        self.columns
    }

    /**
     * Matrix data is stored as row major, so each row is stored as
     * adjacent items going through the different columns. Therefore,
     * to index this flattened representation we jump down in row sized
     * blocks to reach the correct row, and then jump further equal to
     * the column. The confusing thing is that the number of columns
     * this matrix has is the length of each of the rows in this matrix,
     * and vice versa.
     */
    fn get_index(&self, row: Row, column: Column) -> usize {
        column + (row * self.columns())
    }

    /**
     * The reverse of [get_index], converts from the flattened storage
     * in memory into the row and column to index at this position.
     *
     * Matrix data is stored as row major, so each multiple of the number
     * of columns starts a new row, and each index modulo the columns
     * gives the column.
     */
    #[allow(dead_code)]
    fn get_row_column(&self, index: usize) -> (Row, Column) {
        (index / self.columns(), index % self.columns())
    }

    /**
     * Gets a reference to the value at this row and column. Rows and Columns are 0 indexed.
     *
     * # Panics
     *
     * Panics if the index is out of range.
     */
    #[track_caller]
    pub fn get_reference(&self, row: Row, column: Column) -> &T {
        assert!(row < self.rows(), "Row out of index");
        assert!(column < self.columns(), "Column out of index");
        &self.data[self.get_index(row, column)]
    }

    /**
     * Gets a mutable reference to the value at this row and column.
     * Rows and Columns are 0 indexed.
     *
     * # Panics
     *
     * Panics if the index is out of range.
     */
    #[track_caller]
    pub fn get_reference_mut(&mut self, row: Row, column: Column) -> &mut T {
        assert!(row < self.rows(), "Row out of index");
        assert!(column < self.columns(), "Column out of index");
        let index = self.get_index(row, column);
        // borrow for get_index ends
        &mut self.data[index]
    }

    /**
     * Not public API because don't want to name clash with the method on MatrixRef
     * that calls this.
     */
    pub(crate) fn _try_get_reference(&self, row: Row, column: Column) -> Option<&T> {
        if row < self.rows() && column < self.columns() {
            Some(&self.data[self.get_index(row, column)])
        } else {
            None
        }
    }

    /**
     * Not public API because don't want to name clash with the method on MatrixRef
     * that calls this.
     */
    pub(crate) unsafe fn _get_reference_unchecked(&self, row: Row, column: Column) -> &T {
        self.data.get_unchecked(self.get_index(row, column))
    }

    /**
     * Sets a new value to this row and column. Rows and Columns are 0 indexed.
     *
     * # Panics
     *
     * Panics if the index is out of range.
     */
    #[track_caller]
    pub fn set(&mut self, row: Row, column: Column, value: T) {
        assert!(row < self.rows(), "Row out of index");
        assert!(column < self.columns(), "Column out of index");
        let index = self.get_index(row, column);
        // borrow for get_index ends
        self.data[index] = value;
    }

    /**
     * Not public API because don't want to name clash with the method on MatrixMut
     * that calls this.
     */
    pub(crate) fn _try_get_reference_mut(&mut self, row: Row, column: Column) -> Option<&mut T> {
        if row < self.rows() && column < self.columns() {
            let index = self.get_index(row, column);
            // borrow for get_index ends
            Some(&mut self.data[index])
        } else {
            None
        }
    }

    /**
     * Not public API because don't want to name clash with the method on MatrixMut
     * that calls this.
     */
    pub(crate) unsafe fn _get_reference_unchecked_mut(
        &mut self,
        row: Row,
        column: Column,
    ) -> &mut T {
        let index = self.get_index(row, column);
        // borrow for get_index ends
        self.data.get_unchecked_mut(index)
    }

    /**
     * Removes a row from this Matrix, shifting all other rows to the left.
     * Rows are 0 indexed.
     *
     * # Panics
     *
     * This will panic if the row does not exist or the matrix only has one row.
     */
    #[track_caller]
    pub fn remove_row(&mut self, row: Row) {
        assert!(self.rows() > 1);
        let mut r = 0;
        let mut c = 0;
        // drop the values at the specified row
        let columns = self.columns();
        self.data.retain(|_| {
            let keep = r != row;
            if c < (columns - 1) {
                c += 1;
            } else {
                r += 1;
                c = 0;
            }
            keep
        });
        self.rows -= 1;
    }

    /**
     * Removes a column from this Matrix, shifting all other columns to the left.
     * Columns are 0 indexed.
     *
     * # Panics
     *
     * This will panic if the column does not exist or the matrix only has one column.
     */
    #[track_caller]
    pub fn remove_column(&mut self, column: Column) {
        assert!(self.columns() > 1);
        let mut r = 0;
        let mut c = 0;
        // drop the values at the specified column
        let columns = self.columns();
        self.data.retain(|_| {
            let keep = c != column;
            if c < (columns - 1) {
                c += 1;
            } else {
                r += 1;
                c = 0;
            }
            keep
        });
        self.columns -= 1;
    }

    /**
     * Returns an iterator over references to a column vector in this matrix.
     * Columns are 0 indexed.
     *
     * # Panics
     *
     * Panics if the column does not exist in this matrix.
     */
    #[track_caller]
    pub fn column_reference_iter(&self, column: Column) -> ColumnReferenceIterator<T> {
        ColumnReferenceIterator::new(self, column)
    }

    /**
     * Returns an iterator over references to a row vector in this matrix.
     * Rows are 0 indexed.
     *
     * # Panics
     *
     * Panics if the row does not exist in this matrix.
     */
    #[track_caller]
    pub fn row_reference_iter(&self, row: Row) -> RowReferenceIterator<T> {
        RowReferenceIterator::new(self, row)
    }

    /**
     * Returns an iterator over mutable references to a column vector in this matrix.
     * Columns are 0 indexed.
     *
     * # Panics
     *
     * Panics if the column does not exist in this matrix.
     */
    #[track_caller]
    pub fn column_reference_mut_iter(&mut self, column: Column) -> ColumnReferenceMutIterator<T> {
        ColumnReferenceMutIterator::new(self, column)
    }

    /**
     * Returns an iterator over mutable references to a row vector in this matrix.
     * Rows are 0 indexed.
     *
     * # Panics
     *
     * Panics if the row does not exist in this matrix.
     */
    #[track_caller]
    pub fn row_reference_mut_iter(&mut self, row: Row) -> RowReferenceMutIterator<T> {
        RowReferenceMutIterator::new(self, row)
    }

    /**
     * Returns a column major iterator over references to all values in this matrix,
     * proceeding through each column in order.
     */
    pub fn column_major_reference_iter(&self) -> ColumnMajorReferenceIterator<T> {
        ColumnMajorReferenceIterator::new(self)
    }

    /**
     * Returns a row major iterator over references to all values in this matrix,
     * proceeding through each row in order.
     */
    pub fn row_major_reference_iter(&self) -> RowMajorReferenceIterator<T> {
        RowMajorReferenceIterator::new(self)
    }

    // Non public row major reference iterator since we don't want to expose our implementation
    // details to public API since then we could never change them.
    pub(crate) fn direct_row_major_reference_iter(&self) -> std::slice::Iter<T> {
        self.data.iter()
    }

    /**
     * Returns a column major iterator over mutable references to all values in this matrix,
     * proceeding through each column in order.
     */
    pub fn column_major_reference_mut_iter(&mut self) -> ColumnMajorReferenceMutIterator<T> {
        ColumnMajorReferenceMutIterator::new(self)
    }

    /**
     * Returns a row major iterator over mutable references to all values in this matrix,
     * proceeding through each row in order.
     */
    pub fn row_major_reference_mut_iter(&mut self) -> RowMajorReferenceMutIterator<T> {
        RowMajorReferenceMutIterator::new(self)
    }

    /**
     * Creates a column major iterator over all values in this matrix,
     * proceeding through each column in order.
     */
    pub fn column_major_owned_iter(self) -> ColumnMajorOwnedIterator<T>
    where
        T: Default,
    {
        ColumnMajorOwnedIterator::new(self)
    }

    /**
     * Creates a row major iterator over all values in this matrix,
     * proceeding through each row in order.
     */
    pub fn row_major_owned_iter(self) -> RowMajorOwnedIterator<T>
    where
        T: Default,
    {
        RowMajorOwnedIterator::new(self)
    }

    /**
     * Returns an iterator over references to the main diagonal in this matrix.
     */
    pub fn diagonal_reference_iter(&self) -> DiagonalReferenceIterator<T> {
        DiagonalReferenceIterator::new(self)
    }

    /**
     * Returns an iterator over mutable references to the main diagonal in this matrix.
     */
    pub fn diagonal_reference_mut_iter(&mut self) -> DiagonalReferenceMutIterator<T> {
        DiagonalReferenceMutIterator::new(self)
    }

    /**
     * Shrinks this matrix down from its current MxN size down to
     * some new size OxP where O and P are determined by the kind of
     * slice given and 1 <= O <= M and 1 <= P <= N.
     *
     * Only rows and columns specified by the slice will be retained, so for
     * instance if the Slice is constructed by
     * `Slice2D::new().rows(Slice::Range(0..2)).columns(Slice::Range(0..3))` then the
     * modified matrix will be no bigger than 2x3 and contain up to the first two
     * rows and first three columns that it previously had.
     *
     * See [Slice](slices::Slice) for constructing slices.
     *
     * # Panics
     *
     * This function will panic if the slice would delete all rows or all columns
     * from this matrix, ie the resulting matrix must be at least 1x1.
     */
    #[track_caller]
    pub fn retain_mut(&mut self, slice: Slice2D) {
        let mut r = 0;
        let mut c = 0;
        // drop the values rejected by the slice
        let columns = self.columns();
        self.data.retain(|_| {
            let keep = slice.accepts(r, c);
            if c < (columns - 1) {
                c += 1;
            } else {
                r += 1;
                c = 0;
            }
            keep
        });
        // work out the resulting size of this matrix by using the non
        // public fields of the Slice2D to handle each row and column
        // seperately.
        let remaining_rows = {
            let mut accepted = 0;
            for i in 0..self.rows() {
                if slice.rows.accepts(i) {
                    accepted += 1;
                }
            }
            accepted
        };
        let remaining_columns = {
            let mut accepted = 0;
            for i in 0..self.columns() {
                if slice.columns.accepts(i) {
                    accepted += 1;
                }
            }
            accepted
        };
        assert!(
            remaining_rows > 0,
            "Provided slice must leave at least 1 row in the retained matrix"
        );
        assert!(
            remaining_columns > 0,
            "Provided slice must leave at least 1 column in the retained matrix"
        );
        assert!(
            !self.data.is_empty(),
            "Provided slice must leave at least 1 row and 1 column in the retained matrix"
        );
        self.rows = remaining_rows;
        self.columns = remaining_columns
        // By construction jagged slices should be impossible, if this
        // invariant later changes by accident it would be possible to break the
        // rectangle shape invariant on a matrix object
        // As Slice2D should prevent the construction of jagged slices no
        // check is here to detect if all rows are still the same length
    }

    /**
     * Consumes a 1x1 matrix and converts it into a scalar without copying the data.
     *
     * # Example
     *
     * ```
     * use easy_ml::matrices::Matrix;
     * # fn main() -> Result<(), Box<dyn std::error::Error>> {
     * let x = Matrix::column(vec![ 1.0, 2.0, 3.0 ]);
     * let sum_of_squares: f64 = (x.transpose() * x).try_into_scalar()?;
     * # Ok(())
     * # }
     * ```
     */
    pub fn try_into_scalar(self) -> Result<T, ScalarConversionError> {
        if self.size() == (1, 1) {
            Ok(self.data.into_iter().next().unwrap())
        } else {
            Err(ScalarConversionError {})
        }
    }

    /**
     * Partition a matrix into an arbitary number of non overlapping parts.
     *
     * **This function is much like a hammer you should be careful to not overuse. If you don't need
     * to mutate the parts of the matrix data individually it will be much easier and less error
     * prone to create immutable views into the matrix using [MatrixRange](views::MatrixRange)
     * instead.**
     *
     * Parts are returned in row major order, forming a grid of slices into the Matrix data that
     * can be mutated independently.
     *
     * # Panics
     *
     * Panics if any row or column index is greater than the number of rows or columns in the
     * matrix. Each list of row partitions and column partitions must also be in ascending order.
     *
     * # Further Info
     *
     * The partitions form the boundries between each slice of matrix data. Hence, for each
     * dimension, each partition may range between 0 and the length of the dimension inclusive.
     *
     * For one dimension of length 5, you can supply 0 up to 6 partitions,
     * `[0,1,2,3,4,5]` would split that dimension into 7, 0 to 0, 0 to 1, 1 to 2,
     * 2 to 3, 3 to 4, 4 to 5 and 5 to 5. 0 to 0 and 5 to 5 would of course be empty and the
     * 5 parts in between would each be of length 1 along that dimension.
     * `[2,4]` would instead split that dimension into three parts of 0 to 2, 2 to 4, and 4 to 5.
     * `[]` would not split that dimension at all, and give a single part of 0 to 5.
     *
     * `partition` does this along both dimensions, and returns the parts in row major order, so
     * you will receive a list of R+1 * C+1 length where R is the length of the row partitions
     * provided and C is the length of the column partitions provided. If you just want to split
     * a matrix into a 2x2 grid see [`partition_quadrants`](Matrix::partition_quadrants) which
     * provides a dedicated API with more ergonomics for extracting the parts.
     */
    #[track_caller]
    pub fn partition(
        &mut self,
        row_partitions: &[Row],
        column_partitions: &[Column],
    ) -> Vec<MatrixView<T, MatrixPart<T>>> {
        let rows = self.rows();
        let columns = self.columns();
        fn check_axis(partitions: &[usize], length: usize) {
            let mut previous: Option<usize> = None;
            for &index in partitions {
                assert!(index <= length);
                previous = match previous {
                    None => Some(index),
                    Some(i) => {
                        assert!(index > i, "{:?} must be ascending", partitions);
                        Some(i)
                    }
                }
            }
        }
        check_axis(row_partitions, rows);
        check_axis(column_partitions, columns);

        // There will be one more slice than partitions, since partitions are the boundries
        // between slices.
        let row_slices = row_partitions.len() + 1;
        let column_slices = column_partitions.len() + 1;
        let total_slices = row_slices * column_slices;
        let mut slices: Vec<Vec<&mut [T]>> = Vec::with_capacity(total_slices);
        let (_, mut data) = self.data.split_at_mut(0);

        let mut index = 0;
        for r in 0..row_slices {
            let row_index = row_partitions.get(r).cloned().unwrap_or(rows);
            // Determine how many rows of our matrix we need for the next set of row slices
            let rows_included = row_index - index;
            for _ in 0..column_slices {
                slices.push(Vec::with_capacity(rows_included));
            }
            index = row_index;

            for _ in 0..rows_included {
                // Partition the next row of our matrix along the columns
                let mut index = 0;
                for c in 0..column_slices {
                    let column_index = column_partitions.get(c).cloned().unwrap_or(columns);
                    let columns_included = column_index - index;
                    index = column_index;
                    // Split off as many elements as included in this column slice
                    let (slice, rest) = data.split_at_mut(columns_included);
                    // Insert the slice into the slices, we'll push `rows_included` times into
                    // each slice Vec.
                    slices[(r * column_slices) + c].push(slice);
                    data = rest;
                }
            }
        }
        // rest is now empty, so we can ignore it.

        slices
            .into_iter()
            .map(|slices| {
                let rows = slices.len();
                let columns = slices.first().map(|columns| columns.len()).unwrap_or(0);
                if columns == 0 {
                    // We may have allocated N rows but if each column in that row has no size
                    // our actual size is 0x0
                    MatrixView::from(MatrixPart::new(slices, 0, 0))
                } else {
                    MatrixView::from(MatrixPart::new(slices, rows, columns))
                }
            })
            .collect()
    }

    /**
     * Partition a matrix into 4 non overlapping quadrants. Top left starts at 0,0 until
     * exclusive of row and column, bottom right starts at row and column to the end of the matrix.
     *
     * # Panics
     *
     * Panics if the row or column are greater than the number of rows or columns in the matrix.
     *
     * # Examples
     *
     * ```
     * use easy_ml::matrices::Matrix;
     * let mut matrix = Matrix::from(vec![
     *     vec![ 0, 1, 2 ],
     *     vec![ 3, 4, 5 ],
     *     vec![ 6, 7, 8 ]
     * ]);
     * // Split the matrix at the second row and first column giving 2x1, 2x2, 1x1 and 2x1
     * // quadrants.
     * // 0 | 1 2
     * // 3 | 4 5
     * // -------
     * // 6 | 7 8
     * let mut parts = matrix.partition_quadrants(2, 1);
     * assert_eq!(parts.top_left, Matrix::column(vec![ 0, 3 ]));
     * assert_eq!(parts.top_right, Matrix::from(vec![vec![ 1, 2 ], vec![ 4, 5 ]]));
     * assert_eq!(parts.bottom_left, Matrix::column(vec![ 6 ]));
     * assert_eq!(parts.bottom_right, Matrix::row(vec![ 7, 8 ]));
     * // Modify the matrix data independently without worrying about the borrow checker
     * parts.top_right.map_mut(|x| x + 10);
     * parts.bottom_left.map_mut(|x| x - 10);
     * // Drop MatrixQuadrants so we can use the matrix directly again
     * std::mem::drop(parts);
     * assert_eq!(matrix, Matrix::from(vec![
     *     vec![ 0, 11, 12 ],
     *     vec![ 3, 14, 15 ],
     *     vec![ -4, 7, 8 ]
     * ]));
     * ```
     */
    #[track_caller]
    #[allow(clippy::needless_lifetimes)] // false positive?
    pub fn partition_quadrants<'a>(
        &'a mut self,
        row: Row,
        column: Column,
    ) -> MatrixQuadrants<'a, T> {
        let mut parts = self.partition(&[row], &[column]).into_iter();
        // We know there will be exactly 4 parts returned by the partition since we provided
        // 1 row and 1 column to partition ourself into 4 with.
        MatrixQuadrants {
            top_left: parts.next().unwrap(),
            top_right: parts.next().unwrap(),
            bottom_left: parts.next().unwrap(),
            bottom_right: parts.next().unwrap(),
        }
    }

    /**
     * Converts this Matrix into a 2 dimensional Tensor with the provided dimension names.
     *
     * This is a wrapper around the `TryFrom<(Matrix<T>, [Dimension; 2])>` implementation.
     *
     * The Tensor will have the data in the same order, a shape with lengths of `self.rows()` then
     * `self.columns()` and the provided dimension names respectively.
     *
     * Result::Err is returned if the `rows` and `columns` dimension names are the same.
     */
    pub fn into_tensor(
        self,
        rows: crate::tensors::Dimension,
        columns: crate::tensors::Dimension,
    ) -> Result<crate::tensors::Tensor<T, 2>, crate::tensors::InvalidShapeError<2>> {
        (self, [rows, columns]).try_into()
    }
}

/**
 * Methods for matrices with types that can be copied, but still not neccessarily numerical.
 */
impl<T: Clone> Matrix<T> {
    /**
     * Computes and returns the transpose of this matrix
     *
     * ```
     * use easy_ml::matrices::Matrix;
     * let x = Matrix::from(vec![
     *    vec![ 1, 2 ],
     *    vec![ 3, 4 ]]);
     * let y = Matrix::from(vec![
     *    vec![ 1, 3 ],
     *    vec![ 2, 4 ]]);
     * assert_eq!(x.transpose(), y);
     * ```
     */
    pub fn transpose(&self) -> Matrix<T> {
        Matrix::from_fn((self.columns(), self.rows()), |(column, row)| {
            self.get(row, column)
        })
    }

    /**
     * Transposes the matrix in place (if it is square).
     *
     * ```
     * use easy_ml::matrices::Matrix;
     * let mut x = Matrix::from(vec![
     *    vec![ 1, 2 ],
     *    vec![ 3, 4 ]]);
     * x.transpose_mut();
     * let y = Matrix::from(vec![
     *    vec![ 1, 3 ],
     *    vec![ 2, 4 ]]);
     * assert_eq!(x, y);
     * ```
     *
     * Note: None square matrices were erroneously not supported in previous versions (<=1.8.0) and
     * could be incorrectly mutated. This method will now correctly transpose non square matrices
     * by not attempting to transpose them in place.
     */
    pub fn transpose_mut(&mut self) {
        if self.rows() != self.columns() {
            let transposed = self.transpose();
            self.data = transposed.data;
            self.rows = transposed.rows;
            self.columns = transposed.columns;
        } else {
            for i in 0..self.rows() {
                for j in 0..self.columns() {
                    if i > j {
                        continue;
                    }
                    let temp = self.get(i, j);
                    self.set(i, j, self.get(j, i));
                    self.set(j, i, temp);
                }
            }
        }
    }

    /**
     * Returns an iterator over a column vector in this matrix. Columns are 0 indexed.
     *
     * If you have a matrix such as:
     * ```ignore
     * [
     *    1, 2, 3
     *    4, 5, 6
     *    7, 8, 9
     * ]
     * ```
     * then a column of 0, 1, and 2 will yield [1, 4, 7], [2, 5, 8] and [3, 6, 9]
     * respectively. If you do not need to copy the elements use
     * [`column_reference_iter`](Matrix::column_reference_iter) instead.
     *
     * # Panics
     *
     * Panics if the column does not exist in this matrix.
     */
    #[track_caller]
    pub fn column_iter(&self, column: Column) -> ColumnIterator<T> {
        ColumnIterator::new(self, column)
    }

    /**
     * Returns an iterator over a row vector in this matrix. Rows are 0 indexed.
     *
     * If you have a matrix such as:
     * ```ignore
     * [
     *    1, 2, 3
     *    4, 5, 6
     *    7, 8, 9
     * ]
     * ```
     * then a row of 0, 1, and 2 will yield [1, 2, 3], [4, 5, 6] and [7, 8, 9]
     * respectively. If you do not need to copy the elements use
     * [`row_reference_iter`](Matrix::row_reference_iter) instead.
     *
     * # Panics
     *
     * Panics if the row does not exist in this matrix.
     */
    #[track_caller]
    pub fn row_iter(&self, row: Row) -> RowIterator<T> {
        RowIterator::new(self, row)
    }

    /**
     * Returns a column major iterator over all values in this matrix, proceeding through each
     * column in order.
     *
     * If you have a matrix such as:
     * ```ignore
     * [
     *    1, 2
     *    3, 4
     * ]
     * ```
     * then the iterator will yield [1, 3, 2, 4]. If you do not need to copy the
     * elements use [`column_major_reference_iter`](Matrix::column_major_reference_iter) instead.
     */
    pub fn column_major_iter(&self) -> ColumnMajorIterator<T> {
        ColumnMajorIterator::new(self)
    }

    /**
     * Returns a row major iterator over all values in this matrix, proceeding through each
     * row in order.
     *
     * If you have a matrix such as:
     * ```ignore
     * [
     *    1, 2
     *    3, 4
     * ]
     * ```
     * then the iterator will yield [1, 2, 3, 4]. If you do not need to copy the
     * elements use [`row_major_reference_iter`](Matrix::row_major_reference_iter) instead.
     */
    pub fn row_major_iter(&self) -> RowMajorIterator<T> {
        RowMajorIterator::new(self)
    }

    /**
     * Returns a iterator over the main diagonal of this matrix.
     *
     * If you have a matrix such as:
     * ```ignore
     * [
     *    1, 2
     *    3, 4
     * ]
     * ```
     * then the iterator will yield [1, 4]. If you do not need to copy the
     * elements use [`diagonal_reference_iter`](Matrix::diagonal_reference_iter) instead.
     *
     * # Examples
     *
     * Computing a [trace](https://en.wikipedia.org/wiki/Trace_(linear_algebra))
     * ```
     * use easy_ml::matrices::Matrix;
     * let matrix = Matrix::from(vec![
     *     vec![ 1, 2, 3 ],
     *     vec![ 4, 5, 6 ],
     *     vec![ 7, 8, 9 ],
     * ]);
     * let trace: i32 = matrix.diagonal_iter().sum();
     * assert_eq!(trace, 1 + 5 + 9);
     * ```
     */
    pub fn diagonal_iter(&self) -> DiagonalIterator<T> {
        DiagonalIterator::new(self)
    }

    /**
     * Creates a matrix of the provided size with all elements initialised to the provided value
     *
     * # Panics
     *
     * Panics if no values are provided. Note: this method erroneously did not validate its inputs
     * in Easy ML versions up to and including 1.7.0
     */
    #[track_caller]
    pub fn empty(value: T, size: (Row, Column)) -> Matrix<T> {
        assert!(size.0 > 0 && size.1 > 0, "Size must be at least 1x1");
        Matrix {
            data: vec![value; size.0 * size.1],
            rows: size.0,
            columns: size.1,
        }
    }

    /**
     * Gets a copy of the value at this row and column. Rows and Columns are 0 indexed.
     *
     * # Panics
     *
     * Panics if the index is out of range.
     */
    #[track_caller]
    pub fn get(&self, row: Row, column: Column) -> T {
        assert!(
            row < self.rows(),
            "Row out of index, only have {} rows",
            self.rows()
        );
        assert!(
            column < self.columns(),
            "Column out of index, only have {} columns",
            self.columns()
        );
        self.data[self.get_index(row, column)].clone()
    }

    /**
     * Similar to matrix.get(0, 0) in that this returns the element in the first
     * row and first column, except that this method will panic if the matrix is
     * not 1x1.
     *
     * This is provided as a convenience function when you want to convert a unit matrix
     * to a scalar, such as after taking a dot product of two vectors.
     *
     * # Example
     *
     * ```
     * use easy_ml::matrices::Matrix;
     * let x = Matrix::column(vec![ 1.0, 2.0, 3.0 ]);
     * let sum_of_squares: f64 = (x.transpose() * x).scalar();
     * ```
     *
     * # Panics
     *
     * Panics if the matrix is not 1x1
     */
    #[track_caller]
    pub fn scalar(&self) -> T {
        assert!(
            self.rows() == 1,
            "Cannot treat matrix as scalar as it has more than one row"
        );
        assert!(
            self.columns() == 1,
            "Cannot treat matrix as scalar as it has more than one column"
        );
        self.get(0, 0)
    }

    /**
     * Applies a function to all values in the matrix, modifying
     * the matrix in place.
     */
    pub fn map_mut(&mut self, mapping_function: impl Fn(T) -> T) {
        for value in self.data.iter_mut() {
            *value = mapping_function(value.clone());
        }
    }

    /**
     * Applies a function to all values and each value's index in the
     * matrix, modifying the matrix in place.
     */
    pub fn map_mut_with_index(&mut self, mapping_function: impl Fn(T, Row, Column) -> T) {
        self.row_major_reference_mut_iter()
            .with_index()
            .for_each(|((i, j), x)| {
                *x = mapping_function(x.clone(), i, j);
            });
    }

    /**
     * Creates and returns a new matrix with all values from the original with the
     * function applied to each. This can be used to change the type of the matrix
     * such as creating a mask:
     * ```
     * use easy_ml::matrices::Matrix;
     * let x = Matrix::from(vec![
     *    vec![ 0.0, 1.2 ],
     *    vec![ 5.8, 6.9 ]]);
     * let y = x.map(|element| element > 2.0);
     * let result = Matrix::from(vec![
     *    vec![ false, false ],
     *    vec![ true, true ]]);
     * assert_eq!(&y, &result);
     * ```
     */
    pub fn map<U>(&self, mapping_function: impl Fn(T) -> U) -> Matrix<U>
    where
        U: Clone,
    {
        let mapped = self
            .data
            .iter()
            .map(|x| mapping_function(x.clone()))
            .collect();
        Matrix::from_flat_row_major(self.size(), mapped)
    }

    /**
     * Creates and returns a new matrix with all values from the original
     * and the index of each value mapped by a function. This can be used
     * to perform elementwise operations that are not defined on the
     * Matrix type itself.
     *
     * # Exmples
     *
     * Matrix elementwise division:
     *
     * ```
     * use easy_ml::matrices::Matrix;
     * let x = Matrix::from(vec![
     *     vec![ 9.0, 2.0 ],
     *     vec![ 4.0, 3.0 ]]);
     * let y = Matrix::from(vec![
     *     vec![ 3.0, 2.0 ],
     *     vec![ 1.0, 3.0 ]]);
     * let z = x.map_with_index(|x, row, column| x / y.get(row, column));
     * let result = Matrix::from(vec![
     *     vec![ 3.0, 1.0 ],
     *     vec![ 4.0, 1.0 ]]);
     * assert_eq!(&z, &result);
     * ```
     */
    pub fn map_with_index<U>(&self, mapping_function: impl Fn(T, Row, Column) -> U) -> Matrix<U>
    where
        U: Clone,
    {
        let mapped = self
            .row_major_iter()
            .with_index()
            .map(|((i, j), x)| mapping_function(x, i, j))
            .collect();
        Matrix::from_flat_row_major(self.size(), mapped)
    }

    /**
     * Inserts a new row into the Matrix at the provided index,
     * shifting other rows to the right and filling all entries with the
     * provided value. Rows are 0 indexed.
     *
     * # Panics
     *
     * This will panic if the row is greater than the number of rows in the matrix.
     */
    #[track_caller]
    pub fn insert_row(&mut self, row: Row, value: T) {
        assert!(
            row <= self.rows(),
            "Row to insert must be <= to {}",
            self.rows()
        );
        for column in 0..self.columns() {
            self.data.insert(self.get_index(row, column), value.clone());
        }
        self.rows += 1;
    }

    /**
     * Inserts a new row into the Matrix at the provided index, shifting other rows
     * to the right and filling all entries with the values from the iterator in sequence.
     * Rows are 0 indexed.
     *
     * # Panics
     *
     * This will panic if the row is greater than the number of rows in the matrix,
     * or if the iterator has fewer elements than `self.columns()`.
     *
     * Example of duplicating a row:
     * ```
     * use easy_ml::matrices::Matrix;
     * let x: Matrix<u8> = Matrix::row(vec![ 1, 2, 3 ]);
     * let mut y = x.clone();
     * // duplicate the first row as the second row
     * y.insert_row_with(1, x.row_iter(0));
     * assert_eq!((2, 3), y.size());
     * let mut values = y.column_major_iter();
     * assert_eq!(Some(1), values.next());
     * assert_eq!(Some(1), values.next());
     * assert_eq!(Some(2), values.next());
     * assert_eq!(Some(2), values.next());
     * assert_eq!(Some(3), values.next());
     * assert_eq!(Some(3), values.next());
     * assert_eq!(None, values.next());
     * ```
     */
    #[track_caller]
    pub fn insert_row_with<I>(&mut self, row: Row, mut values: I)
    where
        I: Iterator<Item = T>,
    {
        assert!(
            row <= self.rows(),
            "Row to insert must be <= to {}",
            self.rows()
        );
        for column in 0..self.columns() {
            self.data.insert(
                self.get_index(row, column),
                values.next().unwrap_or_else(|| {
                    panic!("At least {} values must be provided", self.columns())
                }),
            );
        }
        self.rows += 1;
    }

    /**
     * Inserts a new column into the Matrix at the provided index, shifting other
     * columns to the right and filling all entries with the provided value.
     * Columns are 0 indexed.
     *
     * # Panics
     *
     * This will panic if the column is greater than the number of columns in the matrix.
     */
    #[track_caller]
    pub fn insert_column(&mut self, column: Column, value: T) {
        assert!(
            column <= self.columns(),
            "Column to insert must be <= to {}",
            self.columns()
        );
        for row in (0..self.rows()).rev() {
            self.data.insert(self.get_index(row, column), value.clone());
        }
        self.columns += 1;
    }

    /**
     * Inserts a new column into the Matrix at the provided index, shifting other columns
     * to the right and filling all entries with the values from the iterator in sequence.
     * Columns are 0 indexed.
     *
     * # Panics
     *
     * This will panic if the column is greater than the number of columns in the matrix,
     * or if the iterator has fewer elements than `self.rows()`.
     *
     * Example of duplicating a column:
     * ```
     * use easy_ml::matrices::Matrix;
     * let x: Matrix<u8> = Matrix::column(vec![ 1, 2, 3 ]);
     * let mut y = x.clone();
     * // duplicate the first column as the second column
     * y.insert_column_with(1, x.column_iter(0));
     * assert_eq!((3, 2), y.size());
     * let mut values = y.column_major_iter();
     * assert_eq!(Some(1), values.next());
     * assert_eq!(Some(2), values.next());
     * assert_eq!(Some(3), values.next());
     * assert_eq!(Some(1), values.next());
     * assert_eq!(Some(2), values.next());
     * assert_eq!(Some(3), values.next());
     * assert_eq!(None, values.next());
     * ```
     */
    #[track_caller]
    pub fn insert_column_with<I>(&mut self, column: Column, values: I)
    where
        I: Iterator<Item = T>,
    {
        assert!(
            column <= self.columns(),
            "Column to insert must be <= to {}",
            self.columns()
        );
        let mut array_values = values.collect::<Vec<T>>();
        assert!(
            array_values.len() >= self.rows(),
            "At least {} values must be provided",
            self.rows()
        );
        for row in (0..self.rows()).rev() {
            self.data
                .insert(self.get_index(row, column), array_values.pop().unwrap());
        }
        self.columns += 1;
    }

    /**
     * Makes a copy of this matrix shrunk down in size according to the slice. See
     * [retain_mut](Matrix::retain_mut()).
     */
    pub fn retain(&self, slice: Slice2D) -> Matrix<T> {
        let mut retained = self.clone();
        retained.retain_mut(slice);
        retained
    }
}

/**
 * Any matrix of a Cloneable type implements Clone.
 */
impl<T: Clone> Clone for Matrix<T> {
    fn clone(&self) -> Self {
        self.map(|element| element)
    }
}

/**
 * Any matrix of a Displayable type implements Display
 *
 * You can control the precision of the formatting using format arguments, i.e.
 * `format!("{:.3}", matrix)`
 */
impl<T: std::fmt::Display> std::fmt::Display for Matrix<T> {
    fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
        crate::matrices::views::format_view(self, f)
    }
}

/**
 * Any matrix and two different dimension names can be converted to a 2 dimensional tensor with
 * the same number of rows and columns.
 *
 * Conversion will fail if the dimension names for `self.rows()` and `self.columns()` respectively
 * are the same.
 */
impl<T> TryFrom<(Matrix<T>, [crate::tensors::Dimension; 2])> for crate::tensors::Tensor<T, 2> {
    type Error = crate::tensors::InvalidShapeError<2>;

    fn try_from(value: (Matrix<T>, [crate::tensors::Dimension; 2])) -> Result<Self, Self::Error> {
        let (matrix, [row_name, column_name]) = value;
        let shape = [(row_name, matrix.rows), (column_name, matrix.columns)];
        let check = crate::tensors::InvalidShapeError::new(shape);
        if !check.is_valid() {
            return Err(check);
        }
        // Now we know the shape is valid, we can call the standard Tensor constructor knowing
        // it won't fail since our data length will match the size of our shape.
        Ok(crate::tensors::Tensor::from(shape, matrix.data))
    }
}

/**
 * Methods for matrices with numerical types, such as f32 or f64.
 *
 * Note that unsigned integers are not Numeric because they do not
 * implement [Neg](std::ops::Neg). You must first
 * wrap unsigned integers via [Wrapping](std::num::Wrapping) or [Saturating](std::num::Saturating).
 *
 * While these methods will all be defined on signed integer types as well, such as i16 or i32,
 * in many cases integers cannot be used sensibly in these computations. If you
 * have a matrix of type i8 for example, you should consider mapping it into a floating
 * type before doing heavy linear algebra maths on it.
 *
 * Determinants can be computed without loss of precision using sufficiently large signed
 * integers because the only operations performed on the elements are addition, subtraction
 * and mulitplication. However the inverse of a matrix such as
 *
 * ```ignore
 * [
 *   4, 7
 *   2, 8
 * ]
 * ```
 *
 * is
 *
 * ```ignore
 * [
 *   0.6, -0.7,
 *  -0.2, 0.4
 * ]
 * ```
 *
 * which requires a type that supports decimals to accurately represent.
 *
 * Mapping matrix type example:
 * ```
 * use easy_ml::matrices::Matrix;
 * use std::num::Wrapping;
 *
 * let matrix: Matrix<u8> = Matrix::from(vec![
 *     vec![ 2, 3 ],
 *     vec![ 6, 0 ]
 * ]);
 * // determinant is not defined on this matrix because u8 is not Numeric
 * // println!("{:?}", matrix.determinant()); // won't compile
 * // however Wrapping<u8> is numeric
 * let matrix = matrix.map(|element| Wrapping(element));
 * println!("{:?}", matrix.determinant()); // -> 238 (overflow)
 * println!("{:?}", matrix.map(|element| element.0 as i16).determinant()); // -> -18
 * println!("{:?}", matrix.map(|element| element.0 as f32).determinant()); // -> -18.0
 * ```
 */
impl<T: Numeric> Matrix<T>
where
    for<'a> &'a T: NumericRef<T>,
{
    /**
     * Returns the determinant of this square matrix, or None if the matrix
     * does not have a determinant. See [`linear_algebra`](super::linear_algebra::determinant())
     */
    pub fn determinant(&self) -> Option<T> {
        linear_algebra::determinant::<T>(self)
    }

    /**
     * Computes the inverse of a matrix provided that it exists. To have an inverse a
     * matrix must be square (same number of rows and columns) and it must also have a
     * non zero determinant. See [`linear_algebra`](super::linear_algebra::inverse())
     */
    pub fn inverse(&self) -> Option<Matrix<T>> {
        linear_algebra::inverse::<T>(self)
    }

    /**
     * Computes the covariance matrix for this NxM feature matrix, in which
     * each N'th row has M features to find the covariance and variance of. See
     * [`linear_algebra`](super::linear_algebra::covariance_column_features())
     */
    pub fn covariance_column_features(&self) -> Matrix<T> {
        linear_algebra::covariance_column_features::<T>(self)
    }

    /**
     * Computes the covariance matrix for this NxM feature matrix, in which
     * each M'th column has N features to find the covariance and variance of. See
     * [`linear_algebra`](super::linear_algebra::covariance_row_features())
     */
    pub fn covariance_row_features(&self) -> Matrix<T> {
        linear_algebra::covariance_row_features::<T>(self)
    }
}

/**
 * Methods for matrices with numerical real valued types, such as f32 or f64.
 *
 * This excludes signed and unsigned integers as they do not support decimal
 * precision and hence can't be used for operations like square roots.
 *
 * Third party fixed precision and infinite precision decimal types should
 * be able to implement all of the methods for [Real] and then utilise these functions.
 */
impl<T: Numeric + Real> Matrix<T>
where
    for<'a> &'a T: NumericRef<T> + RealRef<T>,
{
    /**
     * Computes the [L2 norm](https://en.wikipedia.org/wiki/Euclidean_vector#Length)
     * of this row or column vector, also referred to as the length or magnitude,
     * and written as ||x||, or sometimes |x|.
     *
     * ||**a**|| = sqrt(a<sub>1</sub><sup>2</sup> + a<sub>2</sub><sup>2</sup> + a<sub>3</sub><sup>2</sup>...) = sqrt(**a**<sup>T</sup> * **a**)
     *
     * This is a shorthand for `(x.transpose() * x).scalar().sqrt()` for
     * column vectors and `(x * x.transpose()).scalar().sqrt()` for row vectors, ie
     * the square root of the dot product of a vector with itself.
     *
     * The euclidean length can be used to compute a
     * [unit vector](https://en.wikipedia.org/wiki/Unit_vector), that is, a
     * vector with length of 1. This should not be confused with a unit matrix,
     * which is another name for an identity matrix.
     *
     * ```
     * use easy_ml::matrices::Matrix;
     * let a = Matrix::column(vec![ 1.0, 2.0, 3.0 ]);
     * let length = a.euclidean_length(); // (1^2 + 2^2 + 3^2)^0.5
     * let unit = a / length;
     * assert_eq!(unit.euclidean_length(), 1.0);
     * ```
     *
     * # Panics
     *
     * If the matrix is not a vector, ie if it has more than one row and more than one
     * column.
     */
    #[track_caller]
    pub fn euclidean_length(&self) -> T {
        if self.columns() == 1 {
            // column vector
            (self.transpose() * self).scalar().sqrt()
        } else if self.rows() == 1 {
            // row vector
            (self * self.transpose()).scalar().sqrt()
        } else {
            panic!(
                "Cannot compute unit vector of a non vector, rows: {}, columns: {}",
                self.rows(),
                self.columns()
            );
        }
    }
}

// FIXME: want this to be callable in the main numeric impl block
impl<T: Numeric> Matrix<T> {
    /**
     * Creates a diagonal matrix of the provided size with the diagonal elements
     * set to the provided value and all other elements in the matrix set to 0.
     * A diagonal matrix is always square.
     *
     * The size is still taken as a tuple to facilitate creating a diagonal matrix
     * from the dimensionality of an existing one. If the provided value is 1 then
     * this will create an identity matrix.
     *
     * A 3 x 3 identity matrix:
     * ```ignore
     * [
     *   1, 0, 0
     *   0, 1, 0
     *   0, 0, 1
     * ]
     * ```
     *
     * # Panics
     *
     * If the provided size is not square.
     */
    #[track_caller]
    pub fn diagonal(value: T, size: (Row, Column)) -> Matrix<T> {
        assert!(size.0 == size.1);
        let mut matrix = Matrix::empty(T::zero(), size);
        for i in 0..size.0 {
            matrix.set(i, i, value.clone());
        }
        matrix
    }

    /**
     * Creates a diagonal matrix with the elements along the diagonal set to the
     * provided values and all other elements in the matrix set to 0.
     * A diagonal matrix is always square.
     *
     * Examples
     *
     * ```
     * use easy_ml::matrices::Matrix;
     * let matrix = Matrix::from_diagonal(vec![ 1, 1, 1 ]);
     * assert_eq!(matrix.size(), (3, 3));
     * let copy = Matrix::from_diagonal(matrix.diagonal_iter().collect());
     * assert_eq!(matrix, copy);
     * assert_eq!(matrix, Matrix::from(vec![
     *     vec![ 1, 0, 0 ],
     *     vec![ 0, 1, 0 ],
     *     vec![ 0, 0, 1 ],
     * ]))
     * ```
     */
    pub fn from_diagonal(values: Vec<T>) -> Matrix<T> {
        let mut matrix = Matrix::empty(T::zero(), (values.len(), values.len()));
        for (i, element) in values.into_iter().enumerate() {
            matrix.set(i, i, element);
        }
        matrix
    }
}

/**
 * PartialEq is implemented as two matrices are equal if and only if all their elements
 * are equal and they have the same size.
 */
impl<T: PartialEq> PartialEq for Matrix<T> {
    #[inline]
    fn eq(&self, other: &Self) -> bool {
        if self.rows() != other.rows() {
            return false;
        }
        if self.columns() != other.columns() {
            return false;
        }
        // perform elementwise check, return true only if every element in
        // each matrix is the same
        self.data.iter().zip(other.data.iter()).all(|(x, y)| x == y)
    }
}

#[test]
fn test_sync() {
    fn assert_sync<T: Sync>() {}
    assert_sync::<Matrix<f64>>();
}

#[test]
fn test_send() {
    fn assert_send<T: Send>() {}
    assert_send::<Matrix<f64>>();
}

#[cfg(feature = "serde")]
mod serde_impls {
    use crate::matrices::{Column, Matrix, Row};
    use serde::{Deserialize, Deserializer};

    #[derive(Deserialize)]
    #[serde(rename = "Matrix")]
    struct MatrixDeserialize<T> {
        data: Vec<T>,
        rows: Row,
        columns: Column,
    }

    impl<'de, T> Deserialize<'de> for Matrix<T>
    where
        T: Deserialize<'de>,
    {
        fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
        where
            D: Deserializer<'de>,
        {
            MatrixDeserialize::<T>::deserialize(deserializer).map(|d| {
                // Safety: Use the no copy constructor that performs validation to prevent invalid
                // serialized data being created as a Matrix, which would then break all the
                // code that's relying on these invariants.
                Matrix::from_flat_row_major((d.rows, d.columns), d.data)
            })
        }
    }
}

#[cfg(feature = "serde")]
#[test]
fn test_serialize() {
    fn assert_serialize<T: Serialize>() {}
    assert_serialize::<Matrix<f64>>();
}

#[cfg(feature = "serde")]
#[test]
fn test_deserialize() {
    use serde::Deserialize;
    fn assert_deserialize<'de, T: Deserialize<'de>>() {}
    assert_deserialize::<Matrix<f64>>();
}

#[cfg(feature = "serde")]
#[test]
fn test_serialization_deserialization_loop() {
    #[rustfmt::skip]
    let matrix = Matrix::from(vec![
        vec![1,  2,  3,  4],
        vec![5,  6,  7,  8],
        vec![9, 10, 11, 12],
    ]);
    let encoded = toml::to_string(&matrix).unwrap();
    assert_eq!(
        encoded,
        r#"data = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]
rows = 3
columns = 4
"#,
    );
    let parsed: Result<Matrix<i32>, _> = toml::from_str(&encoded);
    assert!(parsed.is_ok());
    assert_eq!(matrix, parsed.unwrap())
}

#[cfg(feature = "serde")]
#[test]
#[should_panic]
fn test_deserialization_validation() {
    let _result: Result<Matrix<i32>, _> = toml::from_str(
        r#"data = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]
rows = 3
columns = 3
"#,
    );
}

#[test]
fn test_indexing() {
    let a = Matrix::from(vec![vec![1, 2], vec![3, 4]]);
    assert_eq!(a.get_index(0, 1), 1);
    assert_eq!(a.get_row_column(1), (0, 1));
    assert_eq!(a.get(0, 1), 2);
    let b = Matrix::from(vec![vec![1, 2, 3], vec![5, 6, 7]]);
    assert_eq!(b.get_index(1, 2), 5);
    assert_eq!(b.get_row_column(5), (1, 2));
    assert_eq!(b.get(1, 2), 7);
    assert_eq!(
        Matrix::from(vec![vec![0, 0], vec![0, 0], vec![0, 0]])
            .map_with_index(|_, r, c| format!("{:?}x{:?}", r, c)),
        Matrix::from(vec![
            vec!["0x0", "0x1"],
            vec!["1x0", "1x1"],
            vec!["2x0", "2x1"]
        ])
        .map(|x| x.to_owned())
    );
}