1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
/*!
 * Generic matrix type.
 *
 * Matrices are generic over some type `T`. If `T` is [Numeric](../numeric/index.html) then
 * the matrix can be used in a mathematical way.
 */

use std::ops::{Add, Sub, Mul, Neg, Div};

pub mod iterators;
pub mod slices;

use crate::matrices::iterators::{
    ColumnIterator, RowIterator, ColumnMajorIterator,
    ColumnReferenceIterator, RowReferenceIterator, ColumnMajorReferenceIterator};
use crate::matrices::slices::Slice2D;
use crate::numeric::{Numeric, NumericRef};
use crate::linear_algebra;

/**
 * A general purpose matrix of some type. This type may implement
 * no traits, in which case the matrix will be rather useless. If the
 * type implements [`Clone`](https://doc.rust-lang.org/std/clone/trait.Clone.html)
 * most storage and accessor methods are defined and if the type implements
 * [`Numeric`](../numeric/index.html) then the matrix can be used in
 * a mathematical way.
 *
 * When doing numeric operations with Matrices you should be careful to not
 * consume a matrix by accidentally using it by value. All the operations are
 * also defined on references to matrices so you should favor `&x * &y` style
 * notation for matrices you intend to continue using.
 *
 * # Matrix size invariants
 *
 * Matrices must always be at least 1x1. You cannot construct a matrix with no rows or
 * no columns, and any function that resizes matrices will error if you try to use it
 * in a way that would construct a 0x1, 1x0, or 0x0 matrix. The maximum size of a matrix
 * is dependent on the platform's `std::usize::MAX` value. Matrices with dimensions NxM
 * such that N * M < `std::usize::MAX` should not cause any errors in this library, but
 * expanding their size further may cause panics and or errors. At the time of writing it
 * is theoretically possible to construct and use matrices where the product of their number
 * of rows and columns exceed `std::usize::MAX` but this should not be relied upon and may
 * become an error in the future. Concerned readers should note that on a 64 bit computer this
 * maximum value is 18,446,744,073,709,551,615 so running out of memory is likely to occur first.
 */
#[derive(Debug)]
pub struct Matrix<T> {
    data: Vec<Vec<T>>
}

/// The maximum row and column lengths are usize, due to the internal storage being backed by
/// nested Vecs
pub type Row = usize;
pub type Column = usize;

/**
 * Methods for matrices of any type, including non numerical types such as bool.
 */
impl <T> Matrix<T> {
    /**
     * Creates a unit (1x1) matrix from some element
     */
    pub fn unit(value: T) -> Matrix<T> {
        Matrix {
            data: vec![vec![value]]
        }
    }

    /**
     * Creates a row vector (1xN) from a list
     */
    pub fn row(values: Vec<T>) -> Matrix<T> {
        Matrix {
            data: vec![values]
        }
    }

    /**
     * Creates a column vector (Nx1) from a list
     */
    pub fn column(values: Vec<T>) -> Matrix<T> {
        Matrix {
            data: values.into_iter().map(|x| vec![x]).collect()
        }
    }

    /**
     * Creates a matrix from a nested array of values, each inner vector
     * being a row, and hence the outer vector containing all rows in sequence, the
     * same way as when writing matrices in mathematics.
     *
     * Example of a 2 x 3 matrix in both notations:
     * ```ignore
     *   [
     *      1, 2, 4
     *      8, 9, 3
     *   ]
     * ```
     * ```
     * use easy_ml::matrices::Matrix;
     * Matrix::from(vec![
     *     vec![ 1, 2, 4 ],
     *     vec![ 8, 9, 3 ]]);
     * ```
     */
    pub fn from(values: Vec<Vec<T>>) -> Matrix<T> {
        assert!(!values.is_empty(), "No rows defined");
        // check length of first row is > 1
        assert!(!values[0].is_empty(), "No column defined");
        // check length of each row is the same
        assert!(values.iter().map(|x| x.len()).all(|x| x == values[0].len()), "Inconsistent size");
        Matrix {
            data: values
        }
    }

    /**
     * Returns the dimensionality of this matrix in Row, Column format
     */
    pub fn size(&self) -> (Row, Column) {
        (self.data.len(), self.data[0].len())
    }

    /**
     * Gets the number of rows in this matrix.
     */
    pub fn rows(&self) -> Row {
        self.data.len()
    }

    /**
     * Gets the number of columns in this matrix.
     */
    pub fn columns(&self) -> Column {
        self.data[0].len()
    }

    /**
     * Gets a reference to the value at this row and column. Rows and Columns are 0 indexed.
     */
    pub fn get_reference(&self, row: Row, column: Column) -> &T {
        assert!(row < self.rows(), "Row out of index");
        assert!(column < self.columns(), "Column out of index");
        &self.data[row][column]
    }

    /**
     * Sets a new value to this row and column. Rows and Columns are 0 indexed.
     */
    pub fn set(&mut self, row: Row, column: Column, value: T) {
        assert!(row < self.rows(), "Row out of index");
        assert!(column < self.columns(), "Column out of index");
        self.data[row][column] = value;
    }

    /**
     * Removes a row from this Matrix, shifting all other rows to the left.
     * Rows are 0 indexed.
     *
     * This will panic if the row does not exist or the matrix only has
     * one row.
     */
    pub fn remove_row(&mut self, row: Row) {
        assert!(self.rows() > 1);
        self.data.remove(row);
    }

    /**
     * Removes a column from this Matrix, shifting all other columns to the left.
     * Columns are 0 indexed.
     *
     * This will panic if the column does not exist or the matrix only has
     * one column.
     */
    pub fn remove_column(&mut self, column: Column) {
        assert!(self.columns() > 1);
        for row in 0..self.rows() {
            self.data[row].remove(column);
        }
    }

    /**
     * Returns an iterator over references to a column vector in this matrix.
     * Columns are 0 indexed.
     */
    pub fn column_reference_iter(&self, column: Column) -> ColumnReferenceIterator<T> {
        ColumnReferenceIterator::new(self, column)
    }

    /**
     * Returns an iterator over references to a row vector in this matrix.
     * Rows are 0 indexed.
     */
    pub fn row_reference_iter(&self, row: Row) -> RowReferenceIterator<T> {
        RowReferenceIterator::new(self, row)
    }

    /**
     * Returns a column major iterator over references to all values in this matrix,
     * proceeding through each column in order.
     */
    pub fn column_major_reference_iter(&self) -> ColumnMajorReferenceIterator<T> {
        ColumnMajorReferenceIterator::new(self)
    }

    /**
     * Shrinks this matrix down from its current MxN size down to
     * some new size OxP where O and P are determined by the kind of
     * slice given and 1 <= O <= M and 1 <= P <= N.
     *
     * Only rows and columns specified by the slice will be retained, so for
     * instance if the Slice is constructed by
     * `Slice2D::new().rows(Slice::Range(0..2)).columns(Slice::Range(0..3))` then the
     * modified matrix will be no bigger than 2x3 and contain up to the first two
     * rows and first three columns that it previously had.
     *
     * See [Slice](./slices/enum.Slice.html) for constructing slices.
     *
     * # Panics
     *
     * This function will panic if the slice would delete all rows or all columns
     * from this matrix, ie the resulting matrix must be at least 1x1.
     */
    pub fn retain_mut(&mut self, slice: Slice2D) {
        // iterate through rows and columns backwards so removing entries doesn't
        // invalidate the index
        for row in (0..self.rows()).rev() {
            for column in (0..self.columns()).rev() {
                if !slice.accepts(row, column) {
                    self.data[row].remove(column);
                }
            }
            // delete empty rows
            if self.data[row].is_empty() {
                self.data.remove(row);
            }
        }
        assert!(
            !self.data.is_empty(),
            "Provided slice must leave at least 1 row in the retained matrix");
        assert!(
            !self.data[0].is_empty(),
            "Provided slice must leave at least 1 column in the retained matrix");
        // By construction jagged slices should be impossible, if this
        // invariant later changes by accident it would be possible to break the
        // rectangle shape invariant on a matrix object
        // As Slice2D should prevent the construction of jagged slices no
        // check is here to detect if all rows are still the same length
    }
}

/**
 * Methods for matrices with types that can be copied, but still not neccessarily numerical.
 */
impl <T: Clone> Matrix<T> {
    /**
     * Computes and returns the transpose of this matrix
     *
     * ```
     * use easy_ml::matrices::Matrix;
     * let x = Matrix::from(vec![
     *    vec![ 1, 2 ],
     *    vec![ 3, 4 ]]);
     * let y = Matrix::from(vec![
     *    vec![ 1, 3 ],
     *    vec![ 2, 4 ]]);
     * assert_eq!(x.transpose(), y);
     * ```
     */
    pub fn transpose(&self) -> Matrix<T> {
        let mut result = Matrix::empty(self.get(0, 0), (self.columns(), self.rows()));
        for i in 0..self.columns() {
            for j in 0..self.rows() {
                result.set(i, j, self.get(j, i).clone());
            }
        }
        result
    }

    /**
     * Transposes the matrix in place.
     *
     * ```
     * use easy_ml::matrices::Matrix;
     * let mut x = Matrix::from(vec![
     *    vec![ 1, 2 ],
     *    vec![ 3, 4 ]]);
     * x.transpose_mut();
     * let y = Matrix::from(vec![
     *    vec![ 1, 3 ],
     *    vec![ 2, 4 ]]);
     * assert_eq!(x, y);
     * ```
     */
    pub fn transpose_mut(&mut self) {
        for i in 0..self.rows() {
            for j in 0..self.columns() {
                if i > j {
                    continue;
                }
                let temp = self.get(i, j);
                self.set(i, j, self.get(j, i));
                self.set(j, i, temp);
            }
        }
    }

    /**
     * Returns an iterator over a column vector in this matrix. Columns are 0 indexed.
     *
     * If you have a matrix such as:
     * ```ignore
     * [
     *    1, 2, 3
     *    4, 5, 6
     *    7, 8, 9
     * ]
     * ```
     * then a column of 0, 1, and 2 will yield [1, 4, 7], [2, 5, 8] and [3, 6, 9]
     * respectively. If you do not need to copy the elements use `column_reference_iter`
     * instead.
     */
    pub fn column_iter(&self, column: Column) -> ColumnIterator<T> {
        ColumnIterator::new(self, column)
    }

    /**
     * Returns an iterator over a row vector in this matrix. Rows are 0 indexed.
     *
     * If you have a matrix such as:
     * ```ignore
     * [
     *    1, 2, 3
     *    4, 5, 6
     *    7, 8, 9
     * ]
     * ```
     * then a row of 0, 1, and 2 will yield [1, 2, 3], [4, 5, 6] and [7, 8, 9]
     * respectively. If you do not need to copy the elements use `row_reference_iter`
     * instead.
     */
    pub fn row_iter(&self, row: Row) -> RowIterator<T> {
        RowIterator::new(self, row)
    }

    /**
     * Returns a column major iterator over all values in this matrix, proceeding through each
     * column in order.
     *
     * If you have a matrix such as:
     * ```ignore
     * [
     *    1, 2
     *    3, 4
     * ]
     * ```
     * then the iterator will yield [1, 3, 2, 4]. If you do not need to copy the
     * elements use `column_major_reference_iter` instead.
     */
    pub fn column_major_iter(&self) -> ColumnMajorIterator<T> {
        ColumnMajorIterator::new(self)
    }

    /**
     * Creates a matrix of the provided size with all elements initialised to the provided value
     */
    pub fn empty(value: T, size: (Row, Column)) -> Matrix<T> {
        Matrix {
            data: vec![vec![value; size.1]; size.0]
        }
    }

    /**
     * Gets a copy of the value at this row and column. Rows and Columns are 0 indexed.
     */
    pub fn get(&self, row: Row, column: Column) -> T {
        assert!(row < self.rows(), "Row out of index");
        assert!(column < self.columns(), "Column out of index");
        self.data[row][column].clone()
    }

    /**
     * Similar to matrix.get(0, 0) in that this returns the element in the first
     * row and first column, except that this method will panic if the matrix is
     * not 1x1.
     *
     * This is provided as a convenience function when you want to convert a unit matrix
     * to a scalar, such as after taking a dot product of two vectors.
     *
     * # Example
     *
     * ```
     * use easy_ml::matrices::Matrix;
     * let x = Matrix::column(vec![ 1.0, 2.0, 3.0 ]);
     * let sum_of_squares: f64 = (x.transpose() * x).scalar();
     * ```
     */
    pub fn scalar(&self) -> T {
        assert!(self.rows() == 1, "Cannot treat matrix as scalar as it has more than one row");
        assert!(self.columns() == 1, "Cannot treat matrix as scalar as it has more than one column");
        self.get(0, 0)
    }

    /**
     * Applies a function to all values in the matrix, modifying
     * the matrix in place.
     */
    pub fn map_mut(&mut self, mapping_function: impl Fn(T) -> T) {
        for i in 0..self.rows() {
            for j in 0..self.columns() {
                self.set(i, j, mapping_function(self.get(i, j).clone()));
            }
        }
    }

    /**
     * Applies a function to all values and each value's index in the
     * matrix, modifying the matrix in place.
     */
    pub fn map_mut_with_index(&mut self, mapping_function: impl Fn(T, Row, Column) -> T) {
        for i in 0..self.rows() {
            for j in 0..self.columns() {
                self.set(i, j, mapping_function(self.get(i, j).clone(), i, j));
            }
        }
    }

    /**
     * Creates and returns a new matrix with all values from the original with the
     * function applied to each. This can be used to change the type of the matrix
     * such as creating a mask:
     * ```
     * use easy_ml::matrices::Matrix;
     * let x = Matrix::from(vec![
     *    vec![ 0.0, 1.2 ],
     *    vec![ 5.8, 6.9 ]]);
     * let y = x.map(|element| element > 2.0);
     * let result = Matrix::from(vec![
     *    vec![ false, false ],
     *    vec![ true, true ]]);
     * assert_eq!(&y, &result);
     * ```
     */
    pub fn map<U>(&self, mapping_function: impl Fn(T) -> U) -> Matrix<U>
            where U: Clone {
        // compute the first mapped value so we have a value of type U
        // to initialise the mapped matrix with
        let first_value: U = mapping_function(self.get(0, 0));
        let mut mapped = Matrix::empty(first_value, self.size());
        for i in 0..self.rows() {
            for j in 0..self.columns() {
                mapped.set(i, j, mapping_function(self.get(i, j).clone()));
            }
        }
        mapped
    }

    /**
     * Creates and returns a new matrix with all values from the original
     * and the index of each value mapped by a function. This can be used
     * to perform elementwise operations that are not defined on the
     * Matrix type itself.
     *
     * # Exmples
     *
     * Matrix elementwise division:
     *
     * ```
     * use easy_ml::matrices::Matrix;
     * let x = Matrix::from(vec![
     *     vec![ 9.0, 2.0 ],
     *     vec![ 4.0, 3.0 ]]);
     * let y = Matrix::from(vec![
     *     vec![ 3.0, 2.0 ],
     *     vec![ 1.0, 3.0 ]]);
     * let z = x.map_with_index(|x, row, column| x / y.get(row, column));
     * let result = Matrix::from(vec![
     *     vec![ 3.0, 1.0 ],
     *     vec![ 4.0, 1.0 ]]);
     * assert_eq!(&z, &result);
     * ```
     */
    pub fn map_with_index<U>(&self, mapping_function: impl Fn(T, Row, Column) -> U) -> Matrix<U>
            where U: Clone {
        // compute the first mapped value so we have a value of type U
        // to initialise the mapped matrix with
        let first_value: U = mapping_function(self.get(0, 0), 0, 0);
        let mut mapped = Matrix::empty(first_value, self.size());
        for i in 0..self.rows() {
            for j in 0..self.columns() {
                mapped.set(i, j, mapping_function(self.get(i, j).clone(), i, j));
            }
        }
        mapped
    }

    /**
     * Inserts a new row into the Matrix at the provided index,
     * shifting other rows to the right and filling all entries with the
     * provided value. Rows are 0 indexed.
     *
     * This will panic if the row is greater than the number of rows in the matrix.
     */
    pub fn insert_row(&mut self, row: Row, value: T) {
        let new_row = vec![value; self.columns()];
        self.data.insert(row, new_row);
    }

    /**
     * Inserts a new row into the Matrix at the provided index, shifting other rows
     * to the right and filling all entries with the values from the iterator in sequence.
     * Rows are 0 indexed.
     *
     * This will panic if the row is greater than the number of rows in the matrix,
     * or if the iterator has fewer elements than `self.columns()`.
     *
     * Example of duplicating a row:
     * ```
     * use easy_ml::matrices::Matrix;
     * let x: Matrix<u8> = Matrix::row(vec![ 1, 2, 3 ]);
     * let mut y = x.clone();
     * // duplicate the first row as the second row
     * y.insert_row_with(1, x.row_iter(0));
     * assert_eq!((2, 3), y.size());
     * let mut values = y.column_major_iter();
     * assert_eq!(Some(1), values.next());
     * assert_eq!(Some(1), values.next());
     * assert_eq!(Some(2), values.next());
     * assert_eq!(Some(2), values.next());
     * assert_eq!(Some(3), values.next());
     * assert_eq!(Some(3), values.next());
     * assert_eq!(None, values.next());
     * ```
     */
    pub fn insert_row_with<I>(&mut self, row: Row, values: I)
    where I: Iterator<Item = T> {
        let new_row = values.take(self.columns()).collect();
        self.data.insert(row, new_row);
    }

    /**
     * Inserts a new column into the Matrix at the provided index, shifting other
     * columns to the right and filling all entries with the provided value.
     * Columns are 0 indexed.
     *
     * This will panic if the column is greater than the number of columns in the matrix.
     */
    pub fn insert_column(&mut self, column: Column, value: T) {
        for row in 0..self.rows() {
            self.data[row].insert(column, value.clone());
        }
    }

    /**
     * Inserts a new column into the Matrix at the provided index, shifting other columns
     * to the right and filling all entries with the values from the iterator in sequence.
     * Columns are 0 indexed.
     *
     * This will panic if the column is greater than the number of columns in the matrix,
     * or if the iterator has fewer elements than `self.rows()`.
     *
     * Example of duplicating a column:
     * ```
     * use easy_ml::matrices::Matrix;
     * let x: Matrix<u8> = Matrix::column(vec![ 1, 2, 3 ]);
     * let mut y = x.clone();
     * // duplicate the first column as the second column
     * y.insert_column_with(1, x.column_iter(0));
     * assert_eq!((3, 2), y.size());
     * let mut values = y.column_major_iter();
     * assert_eq!(Some(1), values.next());
     * assert_eq!(Some(2), values.next());
     * assert_eq!(Some(3), values.next());
     * assert_eq!(Some(1), values.next());
     * assert_eq!(Some(2), values.next());
     * assert_eq!(Some(3), values.next());
     * assert_eq!(None, values.next());
     * ```
     */
    pub fn insert_column_with<I>(&mut self, column: Column, mut values: I)
    where I: Iterator<Item = T> {
        for row in 0..self.rows() {
            self.data[row].insert(column, values.next().unwrap());
        }
    }

    /**
     * Makes a copy of this matrix shrunk down in size according to the slice. See
     * [retain_mut](#method.retain_mut).
     */
    pub fn retain(&self, slice: Slice2D) -> Matrix<T> {
        let mut retained = self.clone();
        retained.retain_mut(slice);
        retained
    }
}

/**
 * Any matrix of a Cloneable type implements Clone.
 */
impl <T: Clone> Clone for Matrix<T> {
    fn clone(&self) -> Self {
        self.map(|element| element)
    }
}

// FIXME: conflicting implementations of trait `std::convert::TryInto<_>` for type `matrices::Matrix<_>`
// /**
//  * An error indicating failure to convert a matrix to a scalar because it is not a unit matrix.
//  */
// pub struct ScalarConversionError;
//
// impl <T: Clone> std::convert::TryInto<T> for Matrix<T> {
//     /**
//      * Attempts to convert a unit matrix into a scalar. If the matrix is not 1x1 then
//      * an error is returned.
//      */
//     fn try_into(&self) -> Result<T, ScalarConversionError> {
//         if self.rows() == 1 && self.columns() == 1 {
//             Ok(self.get(0, 0))
//         } else {
//             Err(ScalarConversionError)
//         }
//     }
// }

/**
 * Methods for matrices with numerical types, such as f32 or f64.
 *
 * Note that unsigned integers are not Numeric because they do not
 * implement [Neg](https://doc.rust-lang.org/std/ops/trait.Neg.html). You must first
 * wrap unsigned integers via [Wrapping](https://doc.rust-lang.org/std/num/struct.Wrapping.html).
 *
 * While these methods will all be defined on signed integer types as well, such as i16 or i32,
 * in many cases integers cannot be used sensibly in these computations. If you
 * have a matrix of type i8 for example, you should consider mapping it into a floating
 * type before doing heavy linear algebra maths on it.
 *
 * Determinants can be computed without loss of precision using sufficiently large signed
 * integers because the only operations performed on the elements are addition, subtraction
 * and mulitplication. However the inverse of a matrix such as
 *
 * ```ignore
 * [
 *   4, 7
 *   2, 8
 * ]
 * ```
 *
 * is
 *
 * ```ignore
 * [
 *   0.6, -0.7,
 *  -0.2, 0.4
 * ]
 * ```
 *
 * which requires a type that supports decimals to accurately represent.
 *
 * Mapping matrix type example:
 * ```
 * use easy_ml::matrices::Matrix;
 * use std::num::Wrapping;
 *
 * let matrix: Matrix<u8> = Matrix::from(vec![
 *     vec![ 2, 3 ],
 *     vec![ 6, 0 ]
 * ]);
 * // determinant is not defined on this matrix because u8 is not Numeric
 * // println!("{:?}", matrix.determinant()); // won't compile
 * // however Wrapping<u8> is numeric
 * let matrix = matrix.map(|element| Wrapping(element));
 * println!("{:?}", matrix.determinant()); // -> 238 (overflow)
 * println!("{:?}", matrix.map(|element| element.0 as i16).determinant()); // -> -18
 * println!("{:?}", matrix.map(|element| element.0 as f32).determinant()); // -> -18.0
 * ```
 */
impl <T: Numeric> Matrix<T>
where for<'a> &'a T: NumericRef<T> {
    /**
     * Returns the determinant of this square matrix, or None if the matrix
     * does not have a determinant. See [`linear_algebra`](../linear_algebra/fn.determinant.html)
     */
    pub fn determinant(&self) -> Option<T> {
        linear_algebra::determinant(self)
    }

    /**
    * Computes the inverse of a matrix provided that it exists. To have an inverse a
    * matrix must be square (same number of rows and columns) and it must also have a
    * non zero determinant. See [`linear_algebra`](../linear_algebra/fn.inverse.html)
    */
    pub fn inverse(&self) -> Option<Matrix<T>>
    where T: Add<Output = T> + Mul<Output = T> + Sub<Output = T> + Div<Output = T> {
        linear_algebra::inverse(self)
    }

    /**
     * Computes the covariance matrix for this NxM feature matrix, in which
     * each N'th row has M features to find the covariance and variance of. See
     * [`linear_algebra`](../linear_algebra/fn.covariance_column_features.html)
     */
    pub fn covariance_column_features(&self) -> Matrix<T> {
        linear_algebra::covariance_column_features(self)
    }

    /**
     * Computes the covariance matrix for this NxM feature matrix, in which
     * each M'th column has N features to find the covariance and variance of. See
     * [`linear_algebra`](../linear_algebra/fn.covariance_row_features.html)
     */
    pub fn covariance_row_features(&self) -> Matrix<T> {
        linear_algebra::covariance_row_features(self)
    }
}

// FIXME: want this to be callable in the main numeric impl block
impl <T: Numeric> Matrix<T> {
    /**
     * Creates a diagonal matrix of the provided size with the diagonal elements
     * set to the provided value and all other elements in the matrix set to 0.
     * A diagonal matrix is always square.
     *
     * The size is still taken as a tuple to facilitate creating a diagonal matrix
     * from the dimensionality of an existing one. If the provided value is 1 then
     * this will create an identity matrix.
     *
     * A 3 x 3 identity matrix:
     * ```ignore
     * [
     *   1, 0, 0
     *   0, 1, 0
     *   0, 0, 1
     * ]
     * ```
     */
    pub fn diagonal(value: T, size: (Row, Column)) -> Matrix<T> {
        assert!(size.0 == size.1);
        let mut matrix = Matrix {
            data: vec![vec![T::zero(); size.1]; size.0]
        };
        for i in 0..size.0 {
            matrix.set(i, i, value.clone());
        }
        matrix
    }
}

/**
 * PartialEq is implemented as two matrices are equal if and only if all their elements
 * are equal and they have the same size.
 */
impl <T: PartialEq> PartialEq for Matrix<T> {
    fn eq(&self, other: &Self) -> bool {
        if self.rows() != other.rows() {
            return false;
        }
        if self.columns() != other.columns() {
            return false;
        }
        // perform elementwise check, return true only if every element in
        // each matrix is the same
        self.data.iter()
            .zip(other.data.iter())
            .all(|(x, y)| x.iter().zip(y.iter()).all(|(a, b)| a == b))
    }
}

/**
 * Matrix multiplication for two referenced matrices.
 *
 * This is matrix multiplication such that a matrix of dimensionality (LxM) multiplied with
 * a matrix of dimensionality (MxN) yields a new matrix of dimensionality (LxN) with each element
 * corresponding to the sum of products of the ith row in the first matrix and the jth column in
 * the second matrix.
 *
 * Matrices of the wrong sizes will result in a panic. No broadcasting is performed, ie you cannot
 * multiply a (NxM) matrix by a (Nx1) column vector, you must transpose one of the arguments so
 * that the operation is valid.
 */
impl <T: Numeric> Mul for &Matrix<T>
where for<'a> &'a T: NumericRef<T> {
    // Tell the compiler our output type is another matrix of type T
    type Output = Matrix<T>;

    fn mul(self, rhs: Self) -> Self::Output {
        // LxM * MxN -> LxN
        assert!(self.columns() == rhs.rows(),
            "Mismatched Matrices, left is {}x{}, right is {}x{}, * is only defined for MxN * NxL",
            self.rows(), self.columns(), rhs.rows(), rhs.columns());

        let mut result = Matrix::empty(self.get(0, 0), (self.rows(), rhs.columns()));
        for i in 0..self.rows() {
            for j in 0..rhs.columns() {
                // compute dot product for each element in the new matrix
                result.set(i, j,
                    self.row_reference_iter(i)
                    .zip(rhs.column_reference_iter(j))
                    .map(|(x, y)| x * y)
                    .sum());
            }
        }
        result
    }
}

/**
 * Matrix multiplication for two matrices.
 */
impl <T: Numeric> Mul for Matrix<T>
where for<'a> &'a T: NumericRef<T> {
    type Output = Matrix<T>;
    fn mul(self, rhs: Self) -> Self::Output {
        &self * &rhs
    }
}

/**
 * Matrix multiplication for two matrices with one referenced.
 */
impl <T: Numeric> Mul<&Matrix<T>> for Matrix<T>
where for<'a> &'a T: NumericRef<T> {
    type Output = Matrix<T>;
    fn mul(self, rhs: &Self) -> Self::Output {
        &self * rhs
    }
}

/**
 * Matrix multiplication for two matrices with one referenced.
 */
impl <T: Numeric> Mul<Matrix<T>> for &Matrix<T>
where for<'a> &'a T: NumericRef<T> {
    type Output = Matrix<T>;
    fn mul(self, rhs: Matrix<T>) -> Self::Output {
        self * &rhs
    }
}

/**
 * Elementwise addition for two referenced matrices.
 */
impl <T: Numeric> Add for &Matrix<T>
where for<'a> &'a T: NumericRef<T> {
    // Tell the compiler our output type is another matrix of type T
    type Output = Matrix<T>;

    fn add(self, rhs: Self) -> Self::Output {
        // LxM + LxM -> LxM
        assert!(self.size() == rhs.size(),
            "Mismatched Matrices, left is {}x{}, right is {}x{}, + is only defined for MxN + MxN",
            self.rows(), self.columns(), rhs.rows(), rhs.columns());

        let mut result = Matrix::empty(self.get(0, 0), self.size());
        for i in 0..self.rows() {
            for j in 0..self.columns() {
                result.set(i, j, self.get_reference(i, j) + rhs.get_reference(i, j));
            }
        }
        result
    }
}

/**
 * Elementwise addition for two matrices.
 */
impl <T: Numeric> Add for Matrix<T>
where for<'a> &'a T: NumericRef<T> {
    type Output = Matrix<T>;
    fn add(self, rhs: Self) -> Self::Output {
        &self + &rhs
    }
}

/**
 * Elementwise addition for two matrices with one referenced.
 */
impl <T: Numeric> Add<&Matrix<T>> for Matrix<T>
where for<'a> &'a T: NumericRef<T> {
    type Output = Matrix<T>;
    fn add(self, rhs: &Self) -> Self::Output {
        &self + rhs
    }
}

/**
 * Elementwise addition for two matrices with one referenced.
 */
impl <T: Numeric> Add<Matrix<T>> for &Matrix<T>
where for<'a> &'a T: NumericRef<T> {
    type Output = Matrix<T>;
    fn add(self, rhs: Matrix<T>) -> Self::Output {
        self + &rhs
    }
}

/**
 * Elementwise subtraction for two referenced matrices.
 */
impl <T: Numeric> Sub for &Matrix<T>
where for<'a> &'a T: NumericRef<T> {
    // Tell the compiler our output type is another matrix of type T
    type Output = Matrix<T>;

    fn sub(self, rhs: Self) -> Self::Output {
        // LxM - LxM -> LxM
        assert!(self.size() == rhs.size(),
            "Mismatched Matrices, left is {}x{}, right is {}x{}, - is only defined for MxN - MxN",
            self.rows(), self.columns(), rhs.rows(), rhs.columns());

        let mut result = Matrix::empty(self.get(0, 0), self.size());
        for i in 0..self.rows() {
            for j in 0..self.columns() {
                result.set(i, j, self.get_reference(i, j) - rhs.get_reference(i, j));
            }
        }
        result
    }
}

/**
 * Elementwise subtraction for two matrices.
 */
impl <T: Numeric> Sub for Matrix<T>
where for<'a> &'a T: NumericRef<T> {
    type Output = Matrix<T>;
    fn sub(self, rhs: Self) -> Self::Output {
        &self - &rhs
    }
}

/**
 * Elementwise subtraction for two matrices with one referenced.
 */
impl <T: Numeric> Sub<&Matrix<T>> for Matrix<T>
where for<'a> &'a T: NumericRef<T> {
    type Output = Matrix<T>;
    fn sub(self, rhs: &Self) -> Self::Output {
        &self - rhs
    }
}

/**
 * Elementwise subtraction for two matrices with one referenced.
 */
impl <T: Numeric> Sub<Matrix<T>> for &Matrix<T>
where for<'a> &'a T: NumericRef<T> {
    type Output = Matrix<T>;
    fn sub(self, rhs: Matrix<T>) -> Self::Output {
        self - &rhs
    }
}

/**
 * Elementwise negation for a referenced matrix.
 */
impl <T: Numeric> Neg for &Matrix<T>
where for<'a> &'a T: NumericRef<T> {
    // Tell the compiler our output type is another matrix of type T
    type Output = Matrix<T>;

    fn neg(self) -> Self::Output {
        self.map(|v| -v)
    }
}

/**
 * Elementwise negation for a matrix.
 */
impl <T: Numeric> Neg for Matrix<T>
where for<'a> &'a T: NumericRef<T> {
    // Tell the compiler our output type is another matrix of type T
    type Output = Matrix<T>;

    fn neg(self) -> Self::Output {
        - &self
    }
}