1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
//! This crate defines a buffer data structure optimized to be written to and read from standard
//! `Vec`s.
//!
//! [`VecCopy`] is particularly useful when dealing with plain data whose type is determined at
//! run time.  Note that data is stored in the underlying byte buffers in native endian form, thus
//! requesting typed data from a buffer on a platform with different endianness is unsafe.
//!
//! # Caveats
//!
//! [`VecCopy`] doesn't support zero-sized types.
//!
//! [`VecCopy`]: struct.VecCopy

pub mod macros;
mod bytes;
pub mod traits;
#[macro_use]
mod value;
pub mod index_slice;
mod slice_copy;
mod slice_drop;
mod vec_copy;
mod vec_drop;

pub use downcast_rs as downcast;
pub use dync_derive::dync_mod;
pub use dync_derive::dync_trait;
pub use index_slice::*;
pub use slice_copy::*;
pub use slice_drop::*;
pub use value::*;
pub use vec_copy::*;
pub use vec_drop::*;

/// Convert a given container with a dynamic vtable to a concrete type.
///
/// This macro will panic if the conversion fails.
#[macro_export]
macro_rules! from_dyn {
    (SliceDrop < dyn $trait:path as $vtable:path >) => {{
        from_dyn![@slice SliceDrop < dyn $trait as $vtable >]
    }};
    (SliceDropMut < dyn $trait:path as $vtable:path >) => {{
        from_dyn![@slice SliceDropMut < dyn $trait as $vtable >]
    }};
    (VecDrop < dyn $trait:path as $vtable:path >) => {{
        from_dyn![@owned VecDrop < dyn $trait as $vtable >]
    }};
    (SliceCopy < dyn $trait:path as $vtable:path >) => {{
        from_dyn![@slice SliceCopy < dyn $trait as $vtable >]
    }};
    (SliceCopyMut < dyn $trait:path as $vtable:path >) => {{
        from_dyn![@slice SliceCopyMut < dyn $trait as $vtable >]
    }};
    (VecCopy < dyn $trait:path as $vtable:path >) => {{
        from_dyn![@owned VecCopy < dyn $trait as $vtable >]
    }};
    (@owned $vec:ident < dyn $trait:path as $vtable:path>) => {{
        fn from_dyn<V: $trait>(vec: $crate::$vec<dyn $trait>) -> $crate::$vec<V> {
            unsafe {
                let (data, size, id, vtable) = vec.into_raw_parts();
                // If vtables were shared with Rc, we would use this:
                //let updated_vtable: std::rc::Rc<V> = vtable.downcast_rc().ok().unwrap();
                let updated_vtable: Box<V> = vtable.downcast().ok().unwrap();
                $vec::from_raw_parts(data, size, id, updated_vtable)
            }
        }

        from_dyn::<$vtable>
    }};
    (@slice $slice:ident < dyn $trait:path >) => {{
        fn from_dyn<'a, V: ?Sized + HasDrop + std::any::Any>(slice: $crate::$slice<'a, V>) -> $crate::$slice<'a, $vtable> {
            unsafe {
                let (data, size, id, vtable) = slice.into_raw_parts();
                match vtable {
                    $crate::VTableRef::Ref(v) => {
                        let updated_vtable: &$vtable = v.downcast_ref().unwrap();
                        $slice::from_raw_parts(data, size, id, updated_vtable)
                    }
                    $crate::VTableRef::Box(v) => {
                        let updated_vtable: Box<$vtable> = v.downcast().unwrap();
                        $slice::from_raw_parts(data, size, id, updated_vtable)
                    }
                    #[cfg(feature = "shared-vtables")]
                    $crate::VTableRef::Rc(v) => {
                        let updated_vtable: std::rc::Rc<$vtable> = v.downcast().unwrap();
                        $slice::from_raw_parts(data, size, id, updated_vtable)
                    }
                }
            }
        }

        from_dyn
    }};
}

/// Convert a given container type (e.g. `VecCopy` or `SliceDyn`) to have a dynamic VTable.
#[macro_export]
macro_rules! into_dyn {
    (SliceDrop < dyn $trait:path >) => {{
        into_dyn![@slice SliceDrop < dyn $trait >]
    }};
    (SliceDropMut < dyn $trait:ident >) => {{
        into_dyn![@slice SliceDropMut < dyn $trait >]
    }};
    (VecDrop < dyn $trait:ident >) => {{
        into_dyn![@owned VecDrop < dyn $trait >]
    }};
    (SliceCopy < dyn $trait:ident >) => {{
        into_dyn![@slice SliceCopy < dyn $trait >]
    }};
    (SliceCopyMut < dyn $trait:ident >) => {{
        into_dyn![@slice SliceCopyMut < dyn $trait >]
    }};
    (VecCopy < dyn $trait:ident >) => {{
        into_dyn![@owned VecCopy < dyn $trait >]
    }};
    (@owned $vec:ident < dyn $trait:ident >) => {{
        fn into_dyn<V: 'static + $trait>(vec: $crate::$vec<V>) -> $crate::$vec<dyn $trait> {
            unsafe {
                let (data, size, id, vtable) = vec.into_raw_parts();
                // If vtables were shared with Rc, we would use this:
                //let updated_vtable: std::rc::Rc<dyn $trait> = vtable;
                let updated_vtable: Box<dyn $trait> = vtable;
                $vec::from_raw_parts(data, size, id, updated_vtable)
            }
        }

        into_dyn
    }};
    (@slice $slice:ident < dyn $trait:path >) => {{
        fn into_dyn<'a, V: 'static + $trait>(slice: $crate::$slice<'a, V>) -> $crate::$slice<'a, dyn $trait> {
            unsafe {
                let (data, size, id, vtable) = slice.into_raw_parts();
                match vtable {
                    $crate::VTableRef::Ref(v) => {
                        let updated_vtable: &dyn $trait = v;
                        $slice::from_raw_parts(data, size, id, updated_vtable)
                    }
                    $crate::VTableRef::Box(v) => {
                        let updated_vtable: Box<dyn $trait> = v;
                        $slice::from_raw_parts(data, size, id, updated_vtable)
                    }
                    #[cfg(feature = "shared-vtables")]
                    $crate::VTableRef::Rc(v) => {
                        let updated_vtable: std::rc::Rc<dyn $trait> = v;
                        $slice::from_raw_parts(data, size, id, updated_vtable)
                    }
                }
            }
        }

        into_dyn
    }};
}

/// A helper trait for accessing internal byte representations of elements represented as
/// contiguous byte slices.
pub(crate) trait ElementBytes {
    /// Get the slice of bytes representing all the elements.
    fn bytes(&self) -> &[std::mem::MaybeUninit<u8>];

    /// The size of an element in bytes.
    fn element_size(&self) -> usize;

    /// Get a range of byte indices representing the given element index.
    #[inline]
    fn index_byte_range(&self, i: usize) -> std::ops::Range<usize> {
        i * self.element_size()..(i + 1) * self.element_size()
    }

    /// Index into an immutable slice of bytes.
    #[inline]
    fn index_byte_slice(&self, i: usize) -> &[std::mem::MaybeUninit<u8>] {
        &self.bytes()[self.index_byte_range(i)]
    }
}

/// A helper trait for mutably accessing internal byte representations of elements represented as
/// contiguous byte slices.
pub(crate) trait ElementBytesMut: ElementBytes {
    /// Get the mutable slice of bytes representing all the elements.
    fn bytes_mut(&mut self) -> &mut [std::mem::MaybeUninit<u8>];

    /// Index into a mutable slice of bytes.
    #[inline]
    fn index_byte_slice_mut(&mut self, i: usize) -> &mut [std::mem::MaybeUninit<u8>] {
        let rng = self.index_byte_range(i);
        &mut self.bytes_mut()[rng]
    }

    /// Swap elements at indicies `i` and `j` represented by the bytes.
    ///
    /// If `i` is the same as `j` this function does nothing.
    #[inline]
    fn swap(&mut self, i: usize, j: usize) {
        if i == j {
            return;
        }
        let element_size = self.element_size();
        let r_rng = self.index_byte_range(0);
        if i < j {
            let l_rng = self.index_byte_range(i);
            let (l, r) = self.bytes_mut().split_at_mut(element_size * j);
            l[l_rng].swap_with_slice(&mut r[r_rng])
        } else {
            let l_rng = self.index_byte_range(j);
            let (l, r) = self.bytes_mut().split_at_mut(element_size * i);
            l[l_rng].swap_with_slice(&mut r[r_rng])
        }
    }
}