1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
#![forbid(unsafe_code)]
#![deny(clippy::all, missing_docs)]

//! Caches for storing the results of repeated function calls. The cache types
//! available use minimal dynamic dispatch to allow storing arbitrarily many
//! types of query results in a single parent store.
//!
//! There are two main flavors of cache available for use in this crate:
//!
//! | Shared type                 | Synchronized? |
//! |-----------------------------|---------------|
//! | [`sync::SharedSendCache`]   | Mutex         |
//! | [`local::SharedLocalCache`] | RefCell       |
//!
//! These variants are used by calling [`sync::SharedSendCache::cache_with`] or
//! [`local::SharedLocalCache::cache`].
//!
//! The shared cache types above are implemented by wrapping these "inner"
//! types:
//!
//! | Mutable type          | Requires `Send`? |
//! |-----------------------|------------------|
//! | [`sync::SendCache`]   | yes              |
//! | [`local::LocalCache`] | no               |
//!
//! These "inner" caches require mutable access to call their functions like
//! [`local::LocalCache::get`] which returns either a reference or a
//! [`CacheMiss`] that can be passed back to the cache in
//! [`local::LocalCache::store`] to initialize a value in the cache.
//!
//! See [`sync::SendCache::get`] and [`sync::SendCache::store`] for the
//! thread-safe equivalents.
//!
//! The shared variants are defined by wrapping these inner cache types in
//! reference counting and synchronized mutability.
//!
//! # Query types
//!
//! Each query type maps to a typed "namespace" within the unityped cache
//! storage, each query having a distinct type each for its scope, input, and
//! output.
//!
//! ## Scopes
//!
//! The scope of a query is its identifier within cache storage.
//! Scopes must implement `Eq` and `Hash` so that results can be
//! efficiently and uniquely indexed within a namespace.
//!
//! Each scope identifies 0-1 `(Input, Output)` pairs in each namespace. The
//! same type of scope can be used in multiple queries without collision if
//! the types of inputs, outputs, or both differ.
//!
//! ## Inputs
//!
//! The input to a query determines when it is (re-)run. If a given query has
//! been run before, then the previous input is compared to the current input
//! before potentially running the query. If the input hasn't changed, the query
//! can be skipped and its previously-stored output is returned.
//!
//! ## Outputs
//!
//! The only constraint on query outputs is that they are owned (`Output:
//! 'static`). This imposes the inconvenient requirement that all access to
//! stored values occurs during the scope of a closure (similar to thread-locals
//! in the standard library).
//!
//! The most common way to work around this requirement is to choose output
//! types that cheaply implement [`std::clone::Clone`].
//!
//! # Allocations
//!
//! In order to store distinct query results in the same container, allocations
//! and indirection are required.
//!
//! ## Borrowed query parameters
//!
//! All of the cache functions accept a reference to a type `Key:
//! ToOwned<Owned=Scope>` so that the scope is only cloned on the first
//! insertion to its storage and all subsequent lookups can be with a borrowed
//! type.
//!
//! Like the query scope, functions to get cache values accept a borrowed
//! version of the input and only clone it when the input has changed.
//!
//! ## Causes
//!
//! There are three situations where these caches allocate:
//!
//! 1. caching new types which haven't been seen by that cache instance yet
//! 2. storing the results of a new query
//! 3. updating the results of a stored query
//!
//! There are several types of allocations performed by the caches in this
//! crate:
//!
//! | Allocation                         | Causes   |
//! |------------------------------------|----------|
//! | box a new, empty namespace         | (1)      |
//! | resize a cache's map of namespaces | (1)      |
//! | call `.to_owned()` on a scope/key  | (2)      |
//! | resize a namespace's storage       | (2)      |
//! | call `.to_owned()` on an input/arg | (2), (3) |
//!
//! Outside of these, only user-defined functions should perform any allocation.
//!
//! # Garbage Collection
//!
//! Every value in the cache has a "liveness" which is set to
//! "alive" when the value is first stored and again when it is read.
//!
//! The inner caches offer [`local::LocalCache::gc`] and [`sync::SendCache::gc`]
//! which are also exposed through [`local::SharedLocalCache::gc`] and
//! [`sync::SharedSendCache::gc`]. When called, the `gc()` method retains only
//! those values which are still "alive" and then marks them all "dead".
//!
//! This behavior resembles a simple mark-and-sweep garbage collector where the
//! "mark phase" is the use of the cache in between `gc()` calls. Any values
//! which weren't used in the mark phase are dropped in the next "sweep phase"
//! when `gc()` is called.
//!
//! ## Nested Queries
//!
//! While it is possible to nest use of the shared caches within the init
//! closures passed to them, the caches do not yet track the required dependency
//! relationship to correctly retain intermediate cached results across GCs.
//! While this works well enough for some scenarios it needs to be resolved in
//! the general case before this way of using this crate is recommended.

use downcast_rs::{impl_downcast, Downcast};
use hash_hasher::HashBuildHasher;
use hashbrown::hash_map::DefaultHashBuilder;
use std::{
    any::TypeId,
    fmt::Debug,
    hash::{BuildHasher, Hash, Hasher},
    marker::PhantomData,
};

mod cache_cell;
mod dep_node;
mod namespace;

#[macro_use] // put this after other modules so we don't accidentally depend on root-only macros
mod definition;

use namespace::{KeyMiss, Namespace};

/// The result of a failed attempt to retrieve a value from the cache.
/// Initialize a full [`CacheEntry`] for storage with [`CacheMiss::init`].
pub struct CacheMiss<'k, Key: ?Sized, Scope, Input, Output, H = DefaultHashBuilder> {
    query: Query<Scope, Input, Output>,
    key: KeyMiss<'k, Key, H>,
}

impl<'k, Key: ?Sized, Scope, Input, Output, H> CacheMiss<'k, Key, Scope, Input, Output, H> {
    /// Prepare the cache miss to be populated by running `query(arg)`,
    /// returning a separate value. The value returned (`R`) is typically
    /// derived in some way from the stored `Output`.
    pub fn init<R>(
        self,
        input: Input,
        query: impl FnOnce(&Input) -> (Output, R),
    ) -> (CacheEntry<'k, Key, Scope, Input, Output, H>, R) {
        let (output, to_return) = query(&input);
        (CacheEntry { output, input, miss: self }, to_return)
    }
}

/// A fully-initialized input/output pair, ready to be written to the store.
pub struct CacheEntry<'k, Key: ?Sized, Scope, Input, Output, H = DefaultHashBuilder> {
    miss: CacheMiss<'k, Key, Scope, Input, Output, H>,
    input: Input,
    output: Output,
}

/// A cache for types which are not thread-safe (`?Send`).
pub mod local {
    use super::*;
    use hash_hasher::HashBuildHasher;
    use hashbrown::HashMap;
    use std::{
        any::TypeId,
        borrow::Borrow,
        cell::RefCell,
        cmp::Eq,
        fmt::{Debug, Formatter, Result as FmtResult},
        hash::Hash,
        rc::Rc,
    };

    define_cache!(local, LocalCache, Rc, RefCell::borrow_mut);
}

/// A thread-safe cache which requires stored types implement `Send`.
pub mod sync {
    use super::*;
    use hash_hasher::HashBuildHasher;
    use hashbrown::HashMap;
    use parking_lot::Mutex;
    use std::{
        any::TypeId,
        borrow::Borrow,
        cmp::Eq,
        fmt::{Debug, Formatter, Result as FmtResult},
        hash::Hash,
        sync::Arc,
    };

    define_cache!(sync, SendCache: Send, Arc, Mutex::lock);
}

/// A type which can contain values of varying liveness, including itself.
trait Gc: Downcast + Debug {
    /// Remove dead entries, returning the container's own status afterwards.
    fn sweep(&mut self) -> Liveness;
}

impl_downcast!(Gc);

/// Describes the outcome of garbage collection for a cached value.
#[derive(Debug, PartialEq)]
enum Liveness {
    /// The value is still live.
    Live,
    /// The value should be dropped.
    Dead,
}

/// The type of a dynamic cache query, used to shard storage in a fashion
/// similar to `anymap` or `typemap`.
struct Query<Scope, Input, Output, H = HashBuildHasher> {
    ty: PhantomData<(Scope, Input, Output)>,
    hasher: PhantomData<H>,
    hash: u64,
}

impl<Scope, Input, Output, H> Query<Scope, Input, Output, H>
where
    Scope: 'static,
    Input: 'static,
    Output: 'static,
    H: BuildHasher,
{
    fn new(build: &H) -> Self {
        // this is a bit unrustic but it lets us keep the typeid defined once
        let mut new = Query { ty: PhantomData, hasher: PhantomData, hash: 0 };
        let mut hasher = build.build_hasher();
        new.ty().hash(&mut hasher);
        new.hash = hasher.finish();
        new
    }

    fn make_namespace(&self) -> Box<Namespace<Scope, Input, Output>> {
        Box::new(Namespace::default())
    }

    fn hash(&self) -> u64 {
        self.hash
    }

    fn ty(&self) -> TypeId {
        TypeId::of::<(Scope, Input, Output)>()
    }
}