1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
// Copyright (c) 2020-2022  David Sorokin <david.sorokin@gmail.com>, based in Yoshkar-Ola, Russia
//
// This Source Code Form is subject to the terms of the Mozilla Public
// License, v. 2.0. If a copy of the MPL was not distributed with this
// file, You can obtain one at https://mozilla.org/MPL/2.0/.

use std::rc::Rc;
use std::marker::PhantomData;

use crate::simulation;
use crate::simulation::error::*;
use crate::simulation::Point;
use crate::simulation::ref_comp::RefComp;
use crate::simulation::observable::*;
use crate::simulation::observable::source::*;
use crate::simulation::simulation::*;
use crate::simulation::event::*;
use crate::simulation::process::*;
use crate::simulation::strategy::*;
use crate::simulation::resource::*;

use dvcompute_utils::simulation::stats::*;

/// A type synonym for the ordinary FIFO queue, also known as the FCFS
/// (First Come - First Serviced) queue.
pub type FCFSQueue<T> = Queue<FCFSStrategy, FCFSStrategy, FCFSStrategy, T>;

/// A type synonym for the ordinary LIFO queue, also known as the LCFS
/// (Last Come - First Serviced) queue.
pub type LCFSQueue<T> = Queue<FCFSStrategy, LCFSStrategy, FCFSStrategy, T>;

/// Represents a bounded queue by using the specified strategies for enqueueing (input), `SI`,
/// internal storing (in memory), `SM`, and dequeueing (output), `SO`, where `T` denotes
/// the type of items stored in the queue.
pub struct Queue<SI, SM, SO, T>
    where SI: QueueStrategy,
          SM: QueueStrategy,
          SO: QueueStrategy
{
    /// The queue capacity.
    max_count: isize,

    /// The enqueue resource.
    enqueue_resource: Rc<Resource<SI>>,

    /// The queue store.
    queue_store: QueueStorageBox<QueueItem<T>, SM::Priority>,

    /// The dequeue resource.
    dequeue_resource: Rc<Resource<SO>>,

    /// The queue size.
    count: RefComp<isize>,

    /// The size statistics.
    count_stats: RefComp<TimingStats<isize>>,

    /// The enqueue count.
    enqueue_count: RefComp<isize>,

    /// The count of lost items.
    enqueue_lost_count: RefComp<isize>,

    /// The count of stored items.
    enqueue_store_count: RefComp<isize>,

    /// The dequeue count.
    dequeue_count: RefComp<isize>,

    /// The count of extracted items.
    dequeue_extract_count: RefComp<isize>,

    /// The wait time.
    wait_time: RefComp<SamplingStats<f64>>,

    /// The total wait time.
    total_wait_time: RefComp<SamplingStats<f64>>,

    /// The enqueue wait time.
    enqueue_wait_time: RefComp<SamplingStats<f64>>,

    /// The dequeue wait time.
    dequeue_wait_time: RefComp<SamplingStats<f64>>,

    /// The observable source when the enqueue is initiated.
    enqueue_initiated_source: ObservableSource<T>,

    /// The observable source when the item is lost.
    enqueue_lost_source: ObservableSource<T>,

    /// The observable source when the item is stored.
    enqueue_stored_source: ObservableSource<T>,

    /// The observable source when the item is requested for.
    dequeue_requested_source: ObservableSource<()>,

    /// The observable source when the item is extracted.
    dequeue_extracted_source: ObservableSource<T>
}

/// Stores the item and a time of its enqueueing.
#[derive(Clone)]
struct QueueItem<T> {

    /// The item value.
    value: T,

    /// The time of enqueueing the item.
    input_time: f64,

    /// The time of storing the item.
    storing_time: f64
}

/// Create a new bounded FCFS (a.k.a FIFO) queue by the specified capacity.
#[inline]
pub fn new_fcfs_queue<T>(max_count: isize) -> NewQueue<FCFSStrategy, FCFSStrategy, FCFSStrategy, T>
    where T: 'static
{
    NewQueue {
        enqueue_strategy: FCFSStrategy::Instance,
        storing_strategy: FCFSStrategy::Instance,
        dequeue_strategy: FCFSStrategy::Instance,
        max_count: max_count,
        _phantom: PhantomData
    }
}

/// Create a new bounded LCFS (a.k.a LIFO) queue by the specified capacity.
#[inline]
pub fn new_lcfs_queue<T>(max_count: isize) -> NewQueue<FCFSStrategy, LCFSStrategy, FCFSStrategy, T>
    where T: 'static
{
    NewQueue {
        enqueue_strategy: FCFSStrategy::Instance,
        storing_strategy: LCFSStrategy::Instance,
        dequeue_strategy: FCFSStrategy::Instance,
        max_count: max_count,
        _phantom: PhantomData
    }
}

impl<SI, SM, SO, T> Queue<SI, SM, SO, T>
    where SI: QueueStrategy + 'static,
          SM: QueueStrategy + 'static,
          SO: QueueStrategy + 'static,
          T: Clone + 'static
{
    /// Create a new bounded queue by the specified strategies and capacity.
    #[inline]
    pub fn new(enqueue_strategy: SI,
        storing_strategy: SM,
        dequeue_strategy: SO,
        max_count: isize) -> NewQueue<SI, SM, SO, T>
    {
        NewQueue {
            enqueue_strategy: enqueue_strategy,
            storing_strategy: storing_strategy,
            dequeue_strategy: dequeue_strategy,
            max_count: max_count,
            _phantom: PhantomData
        }
    }

    /// Return the queue capacity, i.e. its maximum size.
    #[inline]
    pub fn max_count(&self) -> isize {
        self.max_count
    }

    /// Test whether the queue is empty.
    #[inline]
    pub fn is_empty(queue: Rc<Self>) -> impl Event<Item = bool> + Clone {
        cons_event(move |p| {
            Result::Ok(queue.count.read_at(p) == 0)
        })
    }

    /// Notifies when the `is_empty` property changes.
    #[inline]
    pub fn is_empty_changed(queue: Rc<Self>) -> impl Observable<Message = bool> + Clone {
        queue.is_empty_changed_()
            .mapc(move |()| {
                Queue::is_empty(queue.clone())
            })
    }

    /// Notifies when the `is_empty` property changes.
    #[inline]
    pub fn is_empty_changed_(&self) -> impl Observable<Message = ()> + Clone {
        self.count_changed_()
    }

    /// Test whether the queue is full.
    #[inline]
    pub fn is_full(queue: Rc<Self>) -> impl Event<Item = bool> + Clone {
        cons_event(move |p| {
            Result::Ok(queue.count.read_at(p) == queue.max_count)
        })
    }

    /// Notifies when the `is_full` property changes.
    #[inline]
    pub fn is_full_changed(queue: Rc<Self>) -> impl Observable<Message = bool> + Clone {
        queue.is_full_changed_()
            .mapc(move |()| {
                Queue::is_full(queue.clone())
            })
    }

    /// Notifies when the `is_full` property changes.
    #[inline]
    pub fn is_full_changed_(&self) -> impl Observable<Message = ()> + Clone {
        self.count_changed_()
    }

    /// Return the current queue size.
    #[inline]
    pub fn count(queue: Rc<Self>) -> impl Event<Item = isize> + Clone {
        cons_event(move |p| {
            Result::Ok(queue.count.read_at(p))
        })
    }

    /// Return the statistics for the queue size.
    #[inline]
    pub fn count_stats(queue: Rc<Self>) -> impl Event<Item = TimingStats<isize>> + Clone {
        cons_event(move |p| {
            Result::Ok(queue.count_stats.read_at(p))
        })
    }

    /// Notifies when the `count` property changes.
    #[inline]
    pub fn count_changed(queue: Rc<Self>) -> impl Observable<Message = isize> + Clone {
        queue.count_changed_()
            .mapc(move |()| {
                Queue::count(queue.clone())
            })
    }

    /// Notifies when the `count` property changes.
    #[inline]
    pub fn count_changed_(&self) -> impl Observable<Message = ()> + Clone {
        self.enqueue_stored().map(|_| {})
            .merge(self.dequeue_extracted().map(|_| {}))
    }

    /// Return the total number of enqueue operations, including those ones that have failed due to full capacity.
    #[inline]
    pub fn enqueue_count(queue: Rc<Self>) -> impl Event<Item = isize> + Clone {
        cons_event(move |p| {
            Result::Ok(queue.enqueue_count.read_at(p))
        })
    }

    /// Notifies when the `enqueue_count` property changes.
    #[inline]
    pub fn enqueue_count_changed(queue: Rc<Self>) -> impl Observable<Message = isize> + Clone {
        queue.enqueue_count_changed_()
            .mapc(move |()| {
                Queue::enqueue_count(queue.clone())
            })
    }

    /// Notifies when the `enqueue_count` property changes.
    #[inline]
    pub fn enqueue_count_changed_(&self) -> impl Observable<Message = ()> + Clone {
        self.enqueue_initiated().map(|_| {})
    }

    /// Return the total number of items that could not be enqueued due to full capacity.
    #[inline]
    pub fn enqueue_lost_count(queue: Rc<Self>) -> impl Event<Item = isize> + Clone {
        cons_event(move |p| {
            Result::Ok(queue.enqueue_lost_count.read_at(p))
        })
    }

    /// Notifies when the `enqueue_lost_count` property changes.
    #[inline]
    pub fn enqueue_lost_count_changed(queue: Rc<Self>) -> impl Observable<Message = isize> + Clone {
        queue.enqueue_lost_count_changed_()
            .mapc(move |()| {
                Queue::enqueue_lost_count(queue.clone())
            })
    }

    /// Notifies when the `enqueue_lost_count` property changes.
    #[inline]
    pub fn enqueue_lost_count_changed_(&self) -> impl Observable<Message = ()> + Clone {
        self.enqueue_lost().map(|_| {})
    }

    /// Return the total number of input items that were stored.
    #[inline]
    pub fn enqueue_store_count(queue: Rc<Self>) -> impl Event<Item = isize> + Clone {
        cons_event(move |p| {
            Result::Ok(queue.enqueue_store_count.read_at(p))
        })
    }

    /// Notifies when the `enqueue_store_count` property changes.
    #[inline]
    pub fn enqueue_store_count_changed(queue: Rc<Self>) -> impl Observable<Message = isize> + Clone {
        queue.enqueue_store_count_changed_()
            .mapc(move |()| {
                Queue::enqueue_store_count(queue.clone())
            })
    }

    /// Notifies when the `enqueue_store_count` property changes.
    #[inline]
    pub fn enqueue_store_count_changed_(&self) -> impl Observable<Message = ()> + Clone {
        self.enqueue_stored().map(|_| {})
    }

    /// Return the total number of requests to dequeue the items.
    #[inline]
    pub fn dequeue_count(queue: Rc<Self>) -> impl Event<Item = isize> + Clone {
        cons_event(move |p| {
            Result::Ok(queue.dequeue_count.read_at(p))
        })
    }

    /// Notifies when the `dequeue_count` property changes.
    #[inline]
    pub fn dequeue_count_changed(queue: Rc<Self>) -> impl Observable<Message = isize> + Clone {
        queue.dequeue_count_changed_()
            .mapc(move |()| {
                Queue::dequeue_count(queue.clone())
            })
    }

    /// Notifies when the `dequeue_count` property changes.
    #[inline]
    pub fn dequeue_count_changed_(&self) -> impl Observable<Message = ()> + Clone {
        self.dequeue_requested()
    }

    /// Return the total number of items that were extracted from the queue with help of dequeue operations.
    #[inline]
    pub fn dequeue_extract_count(queue: Rc<Self>) -> impl Event<Item = isize> + Clone {
        cons_event(move |p| {
            Result::Ok(queue.dequeue_extract_count.read_at(p))
        })
    }

    /// Notifies when the `dequeue_extract_count` property changes.
    #[inline]
    pub fn dequeue_extract_count_changed(queue: Rc<Self>) -> impl Observable<Message = isize> + Clone {
        queue.dequeue_extract_count_changed_()
            .mapc(move |()| {
                Queue::dequeue_extract_count(queue.clone())
            })
    }

    /// Notifies when the `dequeue_extract_count` property changes.
    #[inline]
    pub fn dequeue_extract_count_changed_(&self) -> impl Observable<Message = ()> + Clone {
        self.dequeue_extracted().map(|_| {})
    }

    /// Return the load factor: the queue size divided by its capacity, i.e. maximum size.
    #[inline]
    pub fn load_factor(queue: Rc<Self>) -> impl Event<Item = f64> + Clone {
        cons_event(move |p| {
            Result::Ok({
                let x = queue.count.read_at(p);
                let y = queue.max_count;
                (x as f64) / (y as f64)
            })
        })
    }

    /// Notifies when the `load_factor` property changes.
    #[inline]
    pub fn load_factor_changed(queue: Rc<Self>) -> impl Observable<Message = f64> + Clone {
        queue.load_factor_changed_()
            .mapc(move |()| {
                Queue::load_factor(queue.clone())
            })
    }

    /// Notifies when the `load_factor` property changes.
    #[inline]
    pub fn load_factor_changed_(&self) -> impl Observable<Message = ()> + Clone {
        self.count_changed_()
    }

    /// Return the rate of input items that were enqueued: how many items per time.
    #[inline]
    pub fn enqueue_rate(queue: Rc<Self>) -> impl Event<Item = f64> + Clone {
        cons_event(move |p| {
            Result::Ok({
                let x  = queue.enqueue_count.read_at(p);
                let t0 = p.run.specs.start_time;
                let t  = p.time;
                (x as f64) / (t - t0)
            })
        })
    }

    /// Return the rate of input items that were stored: how many items per time.
    #[inline]
    pub fn store_rate(queue: Rc<Self>) -> impl Event<Item = f64> + Clone {
        cons_event(move |p| {
            Result::Ok({
                let x  = queue.enqueue_store_count.read_at(p);
                let t0 = p.run.specs.start_time;
                let t  = p.time;
                (x as f64) / (t - t0)
            })
        })
    }

    /// Return the rate of requests for dequeueing the items: how many items per time.
    /// It does not include the failed attempts to dequeue immediately without suspension.
    #[inline]
    pub fn dequeue_rate(queue: Rc<Self>) -> impl Event<Item = f64> + Clone {
        cons_event(move |p| {
            Result::Ok({
                let x  = queue.dequeue_count.read_at(p);
                let t0 = p.run.specs.start_time;
                let t  = p.time;
                (x as f64) / (t - t0)
            })
        })
    }

    /// Return the rate of output items that were actually extracted from the queue: how many items per time.
    #[inline]
    pub fn dequeue_extract_rate(queue: Rc<Self>) -> impl Event<Item = f64> + Clone {
        cons_event(move |p| {
            Result::Ok({
                let x  = queue.dequeue_extract_count.read_at(p);
                let t0 = p.run.specs.start_time;
                let t  = p.time;
                (x as f64) / (t - t0)
            })
        })
    }

    /// Return the wait time from the time at which the item was stored in the queue to
    /// the time at which it was dequeued.
    #[inline]
    pub fn wait_time(queue: Rc<Self>) -> impl Event<Item = SamplingStats<f64>> + Clone {
        cons_event(move |p| {
            Result::Ok(queue.wait_time.read_at(p))
        })
    }

    /// Notifies when the `wait_time` property changes.
    #[inline]
    pub fn wait_time_changed(queue: Rc<Self>) -> impl Observable<Message = SamplingStats<f64>> + Clone {
        queue.wait_time_changed_()
            .mapc(move |()| {
                Queue::wait_time(queue.clone())
            })
    }

    /// Notifies when the `wait_time` property changes.
    #[inline]
    pub fn wait_time_changed_(&self) -> impl Observable<Message = ()> + Clone {
        self.dequeue_extracted().map(|_| {})
    }

    /// Return the total wait time from the time at which the enqueue operation
    /// was initiated to the time at which the item was dequeued.
    ///
    /// In some sense, `total_wait_time` == `enqueue_wait_time` + `wait_time`.
    #[inline]
    pub fn total_wait_time(queue: Rc<Self>) -> impl Event<Item = SamplingStats<f64>> + Clone {
        cons_event(move |p| {
            Result::Ok(queue.total_wait_time.read_at(p))
        })
    }

    /// Notifies when the `total_wait_time` property changes.
    #[inline]
    pub fn total_wait_time_changed(queue: Rc<Self>) -> impl Observable<Message = SamplingStats<f64>> + Clone {
        queue.total_wait_time_changed_()
            .mapc(move |()| {
                Queue::total_wait_time(queue.clone())
            })
    }

    /// Notifies when the `total_wait_time` property changes.
    #[inline]
    pub fn total_wait_time_changed_(&self) -> impl Observable<Message = ()> + Clone {
        self.dequeue_extracted().map(|_| {})
    }

    /// Return the enqueue wait time from the time at which the enqueue operation
    /// was initiated to the time at which the item was stored in the queue.
    #[inline]
    pub fn enqueue_wait_time(queue: Rc<Self>) -> impl Event<Item = SamplingStats<f64>> + Clone {
        cons_event(move |p| {
            Result::Ok(queue.enqueue_wait_time.read_at(p))
        })
    }

    /// Notifies when the `enqueue_wait_time` property changes.
    #[inline]
    pub fn enqueue_wait_time_changed(queue: Rc<Self>) -> impl Observable<Message = SamplingStats<f64>> + Clone {
        queue.enqueue_wait_time_changed_()
            .mapc(move |()| {
                Queue::enqueue_wait_time(queue.clone())
            })
    }

    /// Notifies when the `enqueue_wait_time` property changes.
    #[inline]
    pub fn enqueue_wait_time_changed_(&self) -> impl Observable<Message = ()> + Clone {
        self.enqueue_stored().map(|_| {})
    }

    /// Return the dequeue wait time from the time at which the dequeue request was made
    /// to the time at which the corresponding item was actually dequeued.
    #[inline]
    pub fn dequeue_wait_time(queue: Rc<Self>) -> impl Event<Item = SamplingStats<f64>> + Clone {
        cons_event(move |p| {
            Result::Ok(queue.dequeue_wait_time.read_at(p))
        })
    }

    /// Notifies when the `dequeue_wait_time` property changes.
    #[inline]
    pub fn dequeue_wait_time_changed(queue: Rc<Self>) -> impl Observable<Message = SamplingStats<f64>> + Clone {
        queue.dequeue_wait_time_changed_()
            .mapc(move |()| {
                Queue::dequeue_wait_time(queue.clone())
            })
    }

    /// Notifies when the `dequeue_wait_time` property changes.
    #[inline]
    pub fn dequeue_wait_time_changed_(&self) -> impl Observable<Message = ()> + Clone {
        self.dequeue_extracted().map(|_| {})
    }

    /// Return a long-term average queue rate calculated as
    /// the average queue size divided by the average wait time.
    ///
    /// This value may be less than the actual arrival rate as the queue is
    /// bounded and new arrivals may be blocked while the queue remains full.
    #[inline]
    pub fn rate(queue: Rc<Self>) -> impl Event<Item = f64> + Clone {
        cons_event(move |p| {
            Result::Ok({
                let x = queue.count_stats.read_at(p);
                let y = queue.wait_time.read_at(p);
                x.mean() / y.mean
            })
        })
    }

    /// Notifies when the `rate` property changes.
    #[inline]
    pub fn rate_changed(queue: Rc<Self>) -> impl Observable<Message = f64> + Clone {
        queue.rate_changed_()
            .mapc(move |()| {
                Queue::rate(queue.clone())
            })
    }

    /// Notifies when the `rate` property changes.
    #[inline]
    pub fn rate_changed_(&self) -> impl Observable<Message = ()> + Clone {
        self.enqueue_stored().map(|_| {})
            .merge(self.dequeue_extracted().map(|_| {}))
    }

    /// Dequeue by suspending the process if the queue is empty.
    pub fn dequeue(queue: Rc<Self>) -> impl Process<Item = T> {
        cons_event({
            let queue = queue.clone();
            move |p| {
                queue.dequeue_request(p)
            }
        })
        .into_process()
        .flat_map(move |t| {
            request_resource(queue.dequeue_resource.clone())
                .flat_map(move |()| {
                    cons_event(move |p| {
                        queue.dequeue_extract(t, p)
                    })
                    .into_process()
                })
        })
    }

    /// Dequeue with output prioerity by suspending the process if the queue is empty.
    pub fn dequeue_with_output_priority(queue: Rc<Self>, po: SO::Priority) -> impl Process<Item = T>
        where SO::Priority: Clone
    {
        cons_event({
            let queue = queue.clone();
            move |p| {
                queue.dequeue_request(p)
            }
        })
        .into_process()
        .flat_map(move |t| {
            request_resource_with_priority(queue.dequeue_resource.clone(), po)
                .flat_map(move |()| {
                    cons_event(move |p| {
                        queue.dequeue_extract(t, p)
                    })
                    .into_process()
                })
        })
    }

    /// Try to dequeue immediately.
    pub fn try_dequeue(queue: Rc<Self>) -> impl Event<Item = Option<T>> {
        try_request_resource_within_event(queue.dequeue_resource.clone())
            .flat_map(move |f| {
                if f {
                    cons_event(move |p| {
                        let t = queue.dequeue_request(p)?;
                        let x = queue.dequeue_extract(t, p)?;
                        Result::Ok(Some(x))
                    }).into_boxed()
                } else {
                    return_event(None)
                        .into_boxed()
                }
            })
    }

    /// Remove the item from the queue and return a flag indicating
    /// whether the item was found and actually removed.
    pub fn delete(queue: Rc<Self>, item: T) -> impl Event<Item = bool>
        where T: PartialEq
    {
        let pred = move |x: &T| { *x == item };
        Queue::delete_by(queue, pred)
            .map(|x| { x.is_some() })
    }

    /// Remove the specified item from the queue.
    pub fn delete_(queue: Rc<Self>, item: T) -> impl Event<Item = ()>
        where T: PartialEq
    {
        let pred = move |x: &T| { *x == item };
        Queue::delete_by(queue, pred)
            .map(|_| ())
    }

    /// Remove an item satisfying the specified predicate and return the item if found.
    pub fn delete_by<F>(queue: Rc<Self>, pred: F) -> impl Event<Item = Option<T>>
        where F: Fn(&T) -> bool + 'static
    {
        try_request_resource_within_event(queue.dequeue_resource.clone())
            .flat_map(move |f| {
                if f {
                    cons_event(move |p| {
                        let pred = move |x: &QueueItem<T>| { pred(&x.value) };
                        let pred = Box::new(pred);
                        match queue.queue_store.remove_boxed_by(pred, p) {
                            None => {
                                release_resource_within_event(queue.dequeue_resource.clone())
                                    .call_event(p)?;
                                Result::Ok(None)
                            },
                            Some(i) => {
                                let t = queue.dequeue_request(p)?;
                                let x = queue.dequeue_post_extract(t, i, p)?;
                                Result::Ok(Some(x))
                            }
                        }
                    }).into_boxed()
                } else {
                    return_event(None)
                        .into_boxed()
                }
            })
    }

    /// Test whether there is an item satisfying the specified predicate.
    pub fn exists<F>(queue: Rc<Self>, pred: F) -> impl Event<Item = bool>
        where F: Fn(&T) -> bool + 'static
    {
        cons_event(move |p| {
            let pred = move |x: &QueueItem<T>| { pred(&x.value) };
            let pred = Box::new(pred);
            Result::Ok(queue.queue_store.exists_boxed(pred, p))
        })
    }

    /// Find an item satisfying the specified predicate.
    pub fn find<F>(queue: Rc<Self>, pred: F) -> impl Event<Item = Option<T>>
        where F: Fn(&T) -> bool + 'static,
              T: Clone
    {
        cons_event(move |p| {
            let pred = move |x: &QueueItem<T>| { pred(&x.value) };
            let pred = Box::new(pred);
            Result::Ok(queue.queue_store.find_boxed(pred, p).map(|x| { x.value.clone() }))
        })
    }

    /// Clear the queue.
    pub fn clear(queue: Rc<Self>) -> impl Event<Item = ()> {
        cons_event(move |p| {
            loop {
                let x = Queue::try_dequeue(queue.clone()).call_event(p)?;
                match x {
                    None => return Result::Ok(()),
                    Some(_) => {}
                }
            }
        })
    }

    /// Enqueue the item by suspending the process if the queue is full.
    pub fn enqueue(queue: Rc<Self>, item: T) -> impl Process<Item = ()> {
        cons_event({
            let queue = queue.clone();
            move |p| {
                queue.enqueue_initiate(item, p)
            }
        })
        .into_process()
        .flat_map(move |i| {
            request_resource(queue.enqueue_resource.clone())
                .flat_map(move |()| {
                    cons_event(move |p| {
                        queue.enqueue_store(i, p)
                    })
                    .into_process()
                })
        })
    }

    /// Enqueue the item with input priority by suspending the process
    /// if the queue is full.
    pub fn enqueue_with_input_priority(queue: Rc<Self>, pi: SI::Priority, item: T) -> impl Process<Item = ()>
        where SI::Priority: Clone
    {
        cons_event({
            let queue = queue.clone();
            move |p| {
                queue.enqueue_initiate(item, p)
            }
        })
        .into_process()
        .flat_map(move |i| {
            request_resource_with_priority(queue.enqueue_resource.clone(), pi)
                .flat_map(move |()| {
                    cons_event(move |p| {
                        queue.enqueue_store(i, p)
                    })
                    .into_process()
                })
        })
    }

    /// Enqueue the item with storing priority by suspending the process
    /// if the queue is full.
    pub fn enqueue_with_storing_priority(queue: Rc<Self>, pm: SM::Priority, item: T) -> impl Process<Item = ()>
        where SM::Priority: Clone
    {
        cons_event({
            let queue = queue.clone();
            move |p| {
                queue.enqueue_initiate(item, p)
            }
        })
        .into_process()
        .flat_map(move |i| {
            request_resource(queue.enqueue_resource.clone())
                .flat_map(move |()| {
                    cons_event(move |p| {
                        queue.enqueue_store_with_priority(pm, i, p)
                    })
                    .into_process()
                })
        })
    }

    /// Enqueue the item with input and storing priorities by suspending the process
    /// if the queue is full.
    pub fn enqueue_with_input_and_storing_priorities(queue: Rc<Self>, pi: SI::Priority, pm: SM::Priority, item: T) -> impl Process<Item = ()>
        where SI::Priority: Clone,
              SM::Priority: Clone
    {
        cons_event({
            let queue = queue.clone();
            move |p| {
                queue.enqueue_initiate(item, p)
            }
        })
        .into_process()
        .flat_map(move |i| {
            request_resource_with_priority(queue.enqueue_resource.clone(), pi)
                .flat_map(move |()| {
                    cons_event(move |p| {
                        queue.enqueue_store_with_priority(pm, i, p)
                    })
                    .into_process()
                })
        })
    }

    /// Try to enqueue the item. Return `false` within `Event` computation if the queue is full.
    pub fn try_enqueue(queue: Rc<Self>, item: T) -> impl Event<Item = bool> {
        cons_event(move |p| {
            let x = {
                try_request_resource_within_event(queue.enqueue_resource.clone())
                    .call_event(p)
            }?;
            if x {
                let i = queue.enqueue_initiate(item, p)?;
                queue.enqueue_store(i, p)?;
                Result::Ok(true)
            } else {
                Result::Ok(false)
            }
        })
    }

    /// Try to enqueue the item with storing priority. Return `false`
    /// within `Event` computation if the queue is full.
    pub fn try_enqueue_with_storing_priority(queue: Rc<Self>, pm: SM::Priority, item: T) -> impl Event<Item = bool> {
        cons_event(move |p| {
            let x = {
                try_request_resource_within_event(queue.enqueue_resource.clone())
                    .call_event(p)
            }?;
            if x {
                let i = queue.enqueue_initiate(item, p)?;
                queue.enqueue_store_with_priority(pm, i, p)?;
                Result::Ok(true)
            } else {
                Result::Ok(false)
            }
        })
    }

    /// Try to enqueue the item. If the queue is full then
    /// the item will be counted as lost and `false` will be returned.
    pub fn enqueue_or_lose(queue: Rc<Self>, item: T) -> impl Event<Item = bool> {
        cons_event(move |p| {
            let x = {
                try_request_resource_within_event(queue.enqueue_resource.clone())
                    .call_event(p)
            }?;
            if x {
                let i = queue.enqueue_initiate(item, p)?;
                queue.enqueue_store(i, p)?;
                Result::Ok(true)
            } else {
                queue.enqueue_deny(item, p)?;
                Result::Ok(false)
            }
        })
    }

    /// Try to enqueue the item with storing piority. If the queue is full then
    /// the item will be counted as lost and `false` will be returned.
    pub fn enqueue_with_storing_priority_or_lose(queue: Rc<Self>, pm: SM::Priority, item: T) -> impl Event<Item = bool> {
        cons_event(move |p| {
            let x = {
                try_request_resource_within_event(queue.enqueue_resource.clone())
                    .call_event(p)
            }?;
            if x {
                let i = queue.enqueue_initiate(item, p)?;
                queue.enqueue_store_with_priority(pm, i, p)?;
                Result::Ok(true)
            } else {
                queue.enqueue_deny(item, p)?;
                Result::Ok(false)
            }
        })
    }

    /// Try to enqueue the item. If the queue is full then the item will be counted as lost.
    pub fn enqueue_or_lose_(queue: Rc<Self>, item: T) -> impl Event<Item = ()> {
        Queue::enqueue_or_lose(queue, item)
            .map(|_| {})
    }

    /// Try to enqueue the item with storing priority. If the queue is full then
    /// the item will be counted as lost.
    pub fn enqueue_with_storing_priority_or_lose_(queue: Rc<Self>, pm: SM::Priority, item: T) -> impl Event<Item = ()> {
        Queue::enqueue_with_storing_priority_or_lose(queue, pm, item)
            .map(|_| {})
    }

    /// Notifies when the enqueue operation is initiated.
    #[inline]
    pub fn enqueue_initiated(&self) -> impl Observable<Message = T> + Clone {
        self.enqueue_initiated_source.publish()
    }

    /// Notifies when the item to be enqueued is stored.
    #[inline]
    pub fn enqueue_stored(&self) -> impl Observable<Message = T> + Clone {
        self.enqueue_stored_source.publish()
    }

    /// Notifies when the item that would have to be enqueued is lost.
    #[inline]
    pub fn enqueue_lost(&self) -> impl Observable<Message = T> + Clone {
        self.enqueue_lost_source.publish()
    }

    /// Notifies when the dequeue operation is requested for.
    #[inline]
    pub fn dequeue_requested(&self) -> impl Observable<Message = ()> + Clone {
        self.dequeue_requested_source.publish()
    }

    /// Notifies when the item is dequeued.
    #[inline]
    pub fn dequeue_extracted(&self) -> impl Observable<Message = T> + Clone {
        self.dequeue_extracted_source.publish()
    }

    /// Notifies whenever any property changes.
    #[inline]
    pub fn changed_(&self) -> impl Observable<Message = ()> + Clone {
        self.enqueue_initiated().map(|_| {})
            .merge(self.enqueue_stored().map(|_| {}))
            .merge(self.enqueue_lost().map(|_| {}))
            .merge(self.dequeue_requested())
            .merge(self.dequeue_extracted().map(|_| {}))
    }

    /// Accept the dequeue request and return the current simulation time.
    fn dequeue_request(&self, p: &Point) -> simulation::Result<f64> {
        let c  = self.dequeue_count.read_at(p);
        let c2 = c + 1;
        self.dequeue_count.write_at(c2, p);
        self.dequeue_requested_source.trigger_at(&(), p)?;
        Result::Ok(p.time)
    }

    /// Extract an item by the dequeue request.
    fn dequeue_extract(&self, t_r: f64, p: &Point) -> simulation::Result<T> {
        let i = self.queue_store.pop(p).unwrap();
        self.dequeue_post_extract(t_r, i, p)
    }

    /// A post action after extracting the item by the dequeue request.
    fn dequeue_post_extract(&self, t_r: f64, i: QueueItem<T>, p: &Point) -> simulation::Result<T> {
        let t  = p.time;
        let c  = self.count.read_at(p);
        let c2 = c - 1;
        let stats  = self.count_stats.read_at(p);
        let stats2 = stats.add(t, c2);
        let ec  = self.dequeue_extract_count.read_at(p);
        let ec2 = ec + 1;
        self.count.write_at(c2, p);
        self.count_stats.write_at(stats2, p);
        self.dequeue_extract_count.write_at(ec2, p);
        self.dequeue_stat(t_r, &i, p);
        release_resource_within_event(self.enqueue_resource.clone())
            .call_event(p)?;
        self.dequeue_extracted_source
            .trigger_at(&i.value, p)?;
        Result::Ok(i.value)
    }

    /// Update the statistics for the output wait time of the dequeue operation
    /// and the wait time of storing in the queue.
    fn dequeue_stat(&self, t_r: f64, i: &QueueItem<T>, p: &Point) {
        let t0 = i.input_time;
        let t1 = i.storing_time;
        let t  = p.time;
        let stats  = self.dequeue_wait_time.read_at(p);
        let stats2 = stats.add(t - t_r);
        self.dequeue_wait_time.write_at(stats2, p);
        let stats  = self.total_wait_time.read_at(p);
        let stats2 = stats.add(t - t0);
        self.total_wait_time.write_at(stats2, p);
        let stats  = self.wait_time.read_at(p);
        let stats2 = stats.add(t - t1);
        self.wait_time.write_at(stats2, p);
    }

    /// Initiate the process of enqueueing the item.
    fn enqueue_initiate(&self, item: T, p: &Point) -> simulation::Result<QueueItem<T>> {
        let t = p.time;
        let c = self.enqueue_count.read_at(p);
        self.enqueue_count.write_at(c + 1, p);
        self.enqueue_initiated_source
            .trigger_at(&item, p)?;
        Result::Ok(QueueItem {
            value: item,
            input_time: t,
            storing_time: t
        })
    }

    /// Store the item.
    fn enqueue_store(&self, item: QueueItem<T>, p: &Point) -> simulation::Result<()> {
        let t  = p.time;
        let i2 = QueueItem {
            value: item.value,
            input_time: item.input_time,
            storing_time: t
        };
        self.queue_store.push(i2.clone(), p);
        let c  = self.count.read_at(p);
        let c2 = c + 1;
        self.count.write_at(c2, p);
        let stats  = self.count_stats.read_at(p);
        let stats2 = stats.add(t, c2);
        self.count_stats.write_at(stats2, p);
        let sc  = self.enqueue_store_count.read_at(p);
        let sc2 = sc + 1;
        self.enqueue_store_count.write_at(sc2, p);
        self.enqueue_stat(&i2, p);
        release_resource_within_event(self.dequeue_resource.clone())
            .call_event(p)?;
        self.enqueue_stored_source
            .trigger_at(&i2.value, p)
    }

    /// Store the item with priority.
    fn enqueue_store_with_priority(&self, pm: SM::Priority, item: QueueItem<T>, p: &Point) -> simulation::Result<()> {
        let t  = p.time;
        let i2 = QueueItem {
            value: item.value,
            input_time: item.input_time,
            storing_time: t
        };
        self.queue_store.push_with_priority(pm, i2.clone(), p);
        let c  = self.count.read_at(p);
        let c2 = c + 1;
        self.count.write_at(c2, p);
        let stats  = self.count_stats.read_at(p);
        let stats2 = stats.add(t, c2);
        self.count_stats.write_at(stats2, p);
        let sc  = self.enqueue_store_count.read_at(p);
        let sc2 = sc + 1;
        self.enqueue_store_count.write_at(sc2, p);
        self.enqueue_stat(&i2, p);
        release_resource_within_event(self.dequeue_resource.clone())
            .call_event(p)?;
        self.enqueue_stored_source
            .trigger_at(&i2.value, p)
    }

    /// Deny the enqueue operation.
    fn enqueue_deny(&self, item: T, p: &Point) -> simulation::Result<()> {
        let c  = self.enqueue_lost_count.read_at(p);
        let c2 = c + 1;
        self.enqueue_lost_count.write_at(c2, p);
        self.enqueue_lost_source
            .trigger_at(&item, p)
    }

    /// Update the statistics for the input wait time of the enqueue operation.
    fn enqueue_stat(&self, i: &QueueItem<T>, p: &Point) {
        let t0 = i.input_time;
        let t1 = i.storing_time;
        let stats  = self.enqueue_wait_time.read_at(p);
        let stats2 = stats.add(t1 - t0);
        self.enqueue_wait_time.write_at(stats2, p);
    }

    /// Reset the statistics.
    pub fn reset(queue: Rc<Self>) -> impl Event<Item = ()> + Clone {
        cons_event(move |p| {
            let t = p.time;
            let count = queue.count.read_at(p);
            queue.count_stats.write_at(TimingStats::from_sample(t, count), p);
            queue.enqueue_count.write_at(0, p);
            queue.enqueue_lost_count.write_at(0, p);
            queue.enqueue_store_count.write_at(0, p);
            queue.dequeue_count.write_at(0, p);
            queue.dequeue_extract_count.write_at(0, p);
            queue.wait_time.write_at(SamplingStats::empty(), p);
            queue.total_wait_time.write_at(SamplingStats::empty(), p);
            queue.enqueue_wait_time.write_at(SamplingStats::empty(), p);
            queue.dequeue_wait_time.write_at(SamplingStats::empty(), p);
            Result::Ok(())
        })
    }

    /// Wait while the queue is full.
    pub fn wait_while_full(queue: Rc<Self>) -> impl Process<Item = ()> {
        Queue::is_full(queue.clone())
            .into_process()
            .flat_map(move |x| {
                if x {
                    process_await(queue.dequeue_extracted())
                        .flat_map(move |_| {
                            Queue::wait_while_full(queue)
                        })
                        .into_boxed()
                } else {
                    return_process(())
                        .into_boxed()
                }
            })
    }
}

/// Computation that creates a new `Queue`.
#[derive(Clone)]
pub struct NewQueue<SI, SM, SO, T> {

    /// The enqueue strategy.
    enqueue_strategy: SI,

    /// The storing strategy.
    storing_strategy: SM,

    /// The output strategy.
    dequeue_strategy: SO,

    /// The capacity.
    max_count: isize,

    /// To keep the type parameter.
    _phantom: PhantomData<T>
}

impl<SI, SM, SO, T> Event for NewQueue<SI, SM, SO, T>
    where SI: QueueStrategy,
          SM: QueueStrategy,
          SO: QueueStrategy,
          T: 'static
{
    type Item = Queue<SI, SM, SO, T>;

    #[doc(hidden)]
    #[inline]
    fn call_event(self, p: &Point) -> simulation::Result<Self::Item> {
        let NewQueue { enqueue_strategy, storing_strategy, dequeue_strategy, max_count, _phantom } = self;
        if max_count < 0 {
            let msg = String::from("The queue capacity cannot be actually negative");
            let err = Error::retry(msg);
            Result::Err(err)
        } else {
            let t = p.time;
            let enqueue_resource = {
                Resource::<SI>::new_with_max_count(enqueue_strategy, max_count, Some(max_count))
                    .call_simulation(p.run)?
            };
            let queue_store = storing_strategy.new_storage();
            let dequeue_resource = {
                Resource::<SO>::new_with_max_count(dequeue_strategy, 0, Some(max_count))
                    .call_simulation(p.run)?
            };
            Result::Ok(Queue {
                max_count: max_count,
                enqueue_resource: Rc::new(enqueue_resource),
                queue_store: queue_store,
                dequeue_resource: Rc::new(dequeue_resource),
                count: RefComp::new(0),
                count_stats: RefComp::new(TimingStats::from_sample(t, 0)),
                enqueue_count: RefComp::new(0),
                enqueue_lost_count: RefComp::new(0),
                enqueue_store_count: RefComp::new(0),
                dequeue_count: RefComp::new(0),
                dequeue_extract_count: RefComp::new(0),
                wait_time: RefComp::new(SamplingStats::empty()),
                total_wait_time: RefComp::new(SamplingStats::empty()),
                enqueue_wait_time: RefComp::new(SamplingStats::empty()),
                dequeue_wait_time: RefComp::new(SamplingStats::empty()),
                enqueue_initiated_source: ObservableSource::new(),
                enqueue_lost_source: ObservableSource::new(),
                enqueue_stored_source: ObservableSource::new(),
                dequeue_requested_source: ObservableSource::new(),
                dequeue_extracted_source: ObservableSource::new()
            })
        }
    }
}