[][src]Struct duku::Vec2

#[repr(C)]pub struct Vec2 {
    pub x: f32,
    pub y: f32,
}

2-component Vector.

Used for 2D sizing and positioning.

Examples

let point1 = Vec2::new(-10.0, -10.0);
let point2 = Vec2::new(10.0, 10.0);

// when drawing
t.line(point1, point2);

Fields

x: f32

the X component

y: f32

the Y component

Implementations

impl Vec2[src]

pub const fn new(x: f32, y: f32) -> Self[src]

Create a vector

pub const fn up() -> Self[src]

Create a vector facing up

pub const fn down() -> Self[src]

Create a vector facing down

pub const fn left() -> Self[src]

Create a vector facing left

pub const fn right() -> Self[src]

Create a vector facing right

pub fn dot(&self, other: impl Into<Self>) -> f32[src]

Calculate the dot-product of the vector

pub fn sqr_length(&self) -> f32[src]

Calculate the squared length of a vector

Can sometimes be used instead of length, because this is faster.

pub fn length(&self) -> f32[src]

Calculate the length of a vector

pub fn unit(&self) -> Self[src]

Calculate the unit vector

The unit vector is of length 1 and can also be thought of as the direction of the vector.

pub fn normal(&self) -> Self[src]

Calculate the normal vector

The normal vector is a vector perpendicular to the original.

May not be unit length

pub fn angle_between(&self, other: impl Into<Self>) -> f32[src]

Calculate the angle between 2 vectors

Resulting angle is in degrees

Examples

let up = Vec2::up();
let right = Vec2::right();
let angle = up.angle_between(right);
// angle is ~90 degrees

pub fn floor(&self) -> Self[src]

Floor every component of the vector

pub fn ceil(&self) -> Self[src]

Ceil every component of the vector

pub fn round(&self) -> Self[src]

Round every component of the vector

Trait Implementations

impl Add<Vec2> for Vec2[src]

type Output = Self

The resulting type after applying the + operator.

impl AddAssign<Vec2> for Vec2[src]

impl Clone for Vec2[src]

impl Copy for Vec2[src]

impl Debug for Vec2[src]

impl Default for Vec2[src]

impl Div<f32> for Vec2[src]

type Output = Self

The resulting type after applying the / operator.

impl DivAssign<f32> for Vec2[src]

impl From<[f32; 2]> for Vec2[src]

impl Index<usize> for Vec2[src]

type Output = f32

The returned type after indexing.

impl IndexMut<usize> for Vec2[src]

impl Mul<f32> for Vec2[src]

type Output = Self

The resulting type after applying the * operator.

impl MulAssign<f32> for Vec2[src]

impl Neg for Vec2[src]

type Output = Self

The resulting type after applying the - operator.

impl PartialEq<Vec2> for Vec2[src]

impl StructuralPartialEq for Vec2[src]

impl Sub<Vec2> for Vec2[src]

type Output = Self

The resulting type after applying the - operator.

impl SubAssign<Vec2> for Vec2[src]

Auto Trait Implementations

impl RefUnwindSafe for Vec2

impl Send for Vec2

impl Sync for Vec2

impl Unpin for Vec2

impl UnwindSafe for Vec2

Blanket Implementations

impl<T> Any for T where
    T: 'static + ?Sized
[src]

impl<T> Borrow<T> for T where
    T: ?Sized
[src]

impl<T> BorrowMut<T> for T where
    T: ?Sized
[src]

impl<T> From<T> for T[src]

impl<T, U> Into<U> for T where
    U: From<T>, 
[src]

impl<T> ToOwned for T where
    T: Clone
[src]

type Owned = T

The resulting type after obtaining ownership.

impl<T, U> TryFrom<U> for T where
    U: Into<T>, 
[src]

type Error = Infallible

The type returned in the event of a conversion error.

impl<T, U> TryInto<U> for T where
    U: TryFrom<T>, 
[src]

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.