1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
// Copyright 2019 The xi-editor Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

//! Support for lenses, a way of focusing on subfields of data.

use std::marker::PhantomData;
use std::ops;
use std::sync::Arc;

pub use druid_derive::Lens;

use crate::kurbo::Size;
use crate::{BoxConstraints, Data, Env, Event, EventCtx, LayoutCtx, PaintCtx, UpdateCtx, Widget};

/// A lens is a datatype that gives access to a part of a larger
/// data structure.
///
/// A simple example of a lens is a field of a struct; in this case,
/// the lens itself is zero-sized. Another case is accessing an array
/// element, in which case the lens contains the array index.
///
/// Many `Lens` implementations will be derived by macro, but custom
/// implementations are practical as well.
///
/// The name "lens" is inspired by the [Haskell lens] package, which
/// has generally similar goals. It's likely we'll develop more
/// sophistication, for example combinators to combine lenses.
///
/// [Haskell lens]: http://hackage.haskell.org/package/lens
pub trait Lens<T: ?Sized, U: ?Sized> {
    /// Get non-mut access to the field.
    ///
    /// Runs the supplied closure with a reference to the data. It's
    /// structured this way, as opposed to simply returning a reference,
    /// so that the data might be synthesized on-the-fly by the lens.
    fn with<V, F: FnOnce(&U) -> V>(&self, data: &T, f: F) -> V;

    /// Get mutable access to the field.
    ///
    /// This method is defined in terms of a closure, rather than simply
    /// yielding a mutable reference, because it is intended to be used
    /// with value-type data (also known as immutable data structures).
    /// For example, a lens for an immutable list might be implemented by
    /// cloning the list, giving the closure mutable access to the clone,
    /// then updating the reference after the closure returns.
    fn with_mut<V, F: FnOnce(&mut U) -> V>(&self, data: &mut T, f: F) -> V;
}

/// Helpers for manipulating `Lens`es
pub trait LensExt<A: ?Sized, B: ?Sized>: Lens<A, B> {
    /// Copy the targeted value out of `data`
    fn get(&self, data: &A) -> B
    where
        B: Clone,
    {
        self.with(data, |x| x.clone())
    }

    /// Set the targeted value in `data` to `value`
    fn put(&self, data: &mut A, value: B)
    where
        B: Sized,
    {
        self.with_mut(data, |x| *x = value);
    }

    /// Compose a `Lens<A, B>` with a `Lens<B, C>` to produce a `Lens<A, C>`
    ///
    /// ```
    /// # use druid::*;
    /// struct Foo { x: (u32, bool) }
    /// let lens = lens!(Foo, x).then(lens!((u32, bool), 1));
    /// assert_eq!(lens.get(&Foo { x: (0, true) }), true);
    /// ```
    fn then<Other, C>(self, other: Other) -> Then<Self, Other, B>
    where
        Other: Lens<B, C> + Sized,
        C: ?Sized,
        Self: Sized,
    {
        Then::new(self, other)
    }

    /// Combine a `Lens<A, B>` with a function that can transform a `B` and its inverse.
    ///
    /// Useful for cases where the desired value doesn't physically exist in `A`, but can be
    /// computed. For example, a lens like the following might be used to adapt a value with the
    /// range 0-2 for use with a `Widget<f64>` like `Slider` that has a range of 0-1:
    ///
    /// ```
    /// # use druid::*;
    /// let lens = lens!((bool, f64), 1);
    /// assert_eq!(lens.map(|x| x / 2.0, |x, y| *x = y * 2.0).get(&(true, 2.0)), 1.0);
    /// ```
    ///
    /// The computed `C` may represent a whole or only part of the original `B`.
    fn map<Get, Put, C>(self, get: Get, put: Put) -> Then<Self, Map<Get, Put>, B>
    where
        Get: Fn(&B) -> C,
        Put: Fn(&mut B, C),
        Self: Sized,
    {
        self.then(Map::new(get, put))
    }

    /// Invoke a type's `Deref` impl
    ///
    /// ```
    /// # use druid::*;
    /// assert_eq!(lens::Id.deref().get(&Box::new(42)), 42);
    /// ```
    fn deref(self) -> Then<Self, Deref, B>
    where
        B: ops::Deref + ops::DerefMut,
        Self: Sized,
    {
        self.then(Deref)
    }

    /// Access an index in a container
    ///
    /// ```
    /// # use druid::*;
    /// assert_eq!(lens::Id.index(2).get(&vec![0u32, 1, 2, 3]), 2);
    /// ```
    fn index<I>(self, index: I) -> Then<Self, Index<I>, B>
    where
        I: Clone,
        B: ops::Index<I> + ops::IndexMut<I>,
        Self: Sized,
    {
        self.then(Index::new(index))
    }

    /// Adapt to operate on the contents of an `Arc` with efficient copy-on-write semantics
    ///
    /// ```
    /// # use druid::*; use std::sync::Arc;
    /// let lens = lens::Id.index(2).in_arc();
    /// let mut x = Arc::new(vec![0, 1, 2, 3]);
    /// let original = x.clone();
    /// assert_eq!(lens.get(&x), 2);
    /// lens.put(&mut x, 2);
    /// assert!(Arc::ptr_eq(&original, &x), "no-op writes don't cause a deep copy");
    /// lens.put(&mut x, 42);
    /// assert_eq!(&*x, &[0, 1, 42, 3]);
    /// ```
    fn in_arc(self) -> InArc<Self>
    where
        A: Clone,
        B: Data,
        Self: Sized,
    {
        InArc::new(self)
    }
}

impl<A: ?Sized, B: ?Sized, T: Lens<A, B>> LensExt<A, B> for T {}

// A case can be made this should be in the `widget` module.

/// A wrapper for its widget subtree to have access to a part
/// of its parent's data.
///
/// Every widget in druid is instantiated with access to data of some
/// type; the root widget has access to the entire application data.
/// Often, a part of the widget hierarchy is only concerned with a part
/// of that data. The `LensWrap` widget is a way to "focus" the data
/// reference down, for the subtree. One advantage is performance;
/// data changes that don't intersect the scope of the lens aren't
/// propagated.
///
/// Another advantage is generality and reuse. If a widget (or tree of
/// widgets) is designed to work with some chunk of data, then with a
/// lens that same code can easily be reused across all occurrences of
/// that chunk within the application state.
///
/// This wrapper takes a [`Lens`] as an argument, which is a specification
/// of a struct field, or some other way of narrowing the scope.
///
/// [`Lens`]: trait.Lens.html
pub struct LensWrap<U, L, W> {
    inner: W,
    lens: L,
    // The following is a workaround for otherwise getting E0207.
    phantom: PhantomData<U>,
}

impl<U, L, W> LensWrap<U, L, W> {
    /// Wrap a widget with a lens.
    ///
    /// When the lens has type `Lens<T, U>`, the inner widget has data
    /// of type `U`, and the wrapped widget has data of type `T`.
    pub fn new(inner: W, lens: L) -> LensWrap<U, L, W> {
        LensWrap {
            inner,
            lens,
            phantom: Default::default(),
        }
    }
}

impl<T, U, L, W> Widget<T> for LensWrap<U, L, W>
where
    T: Data,
    U: Data,
    L: Lens<T, U>,
    W: Widget<U>,
{
    fn event(&mut self, ctx: &mut EventCtx, event: &Event, data: &mut T, env: &Env) {
        let inner = &mut self.inner;
        self.lens
            .with_mut(data, |data| inner.event(ctx, event, data, env))
    }

    fn update(&mut self, ctx: &mut UpdateCtx, old_data: Option<&T>, data: &T, env: &Env) {
        let inner = &mut self.inner;
        let lens = &self.lens;
        if let Some(old_data) = old_data {
            lens.with(old_data, |old_data| {
                lens.with(data, |data| {
                    if !old_data.same(data) {
                        inner.update(ctx, Some(old_data), data, env);
                    }
                })
            })
        } else {
            lens.with(data, |data| inner.update(ctx, None, data, env));
        }
    }

    fn layout(&mut self, ctx: &mut LayoutCtx, bc: &BoxConstraints, data: &T, env: &Env) -> Size {
        let inner = &mut self.inner;
        self.lens
            .with(data, |data| inner.layout(ctx, bc, data, env))
    }

    fn paint(&mut self, paint_ctx: &mut PaintCtx, data: &T, env: &Env) {
        let inner = &mut self.inner;
        self.lens
            .with(data, |data| inner.paint(paint_ctx, data, env));
    }
}

/// Lens accessing a member of some type using accessor functions
///
/// See also the `lens` macro.
///
/// ```
/// let lens = druid::lens::Field::new(|x: &Vec<u32>| &x[42], |x| &mut x[42]);
/// ```
pub struct Field<Get, GetMut> {
    get: Get,
    get_mut: GetMut,
}

impl<Get, GetMut> Field<Get, GetMut> {
    /// Construct a lens from a pair of getter functions
    pub fn new<T: ?Sized, U: ?Sized>(get: Get, get_mut: GetMut) -> Self
    where
        Get: Fn(&T) -> &U,
        GetMut: Fn(&mut T) -> &mut U,
    {
        Self { get, get_mut }
    }
}

impl<T, U, Get, GetMut> Lens<T, U> for Field<Get, GetMut>
where
    T: ?Sized,
    U: ?Sized,
    Get: Fn(&T) -> &U,
    GetMut: Fn(&mut T) -> &mut U,
{
    fn with<V, F: FnOnce(&U) -> V>(&self, data: &T, f: F) -> V {
        f((self.get)(data))
    }

    fn with_mut<V, F: FnOnce(&mut U) -> V>(&self, data: &mut T, f: F) -> V {
        f((self.get_mut)(data))
    }
}

/// Construct a lens accessing a type's field
///
/// This is a convenience macro for constructing `Field` lenses for fields or indexable elements.
///
/// ```
/// struct Foo { x: u32 }
/// let lens = druid::lens!(Foo, x);
/// let lens = druid::lens!((u32, bool), 1);
/// let lens = druid::lens!([u8], [4]);
/// ```
#[macro_export]
macro_rules! lens {
    ($ty:ty, [$index:expr]) => {
        $crate::lens::Field::new::<$ty, _>(|x| &x[$index], |x| &mut x[$index])
    };
    ($ty:ty, $field:tt) => {
        $crate::lens::Field::new::<$ty, _>(|x| &x.$field, |x| &mut x.$field)
    };
}

/// `Lens` composed of two lenses joined together
#[derive(Debug, Copy)]
pub struct Then<T, U, B: ?Sized> {
    left: T,
    right: U,
    _marker: PhantomData<B>,
}

impl<T, U, B: ?Sized> Then<T, U, B> {
    /// Compose two lenses
    ///
    /// See also `LensExt::then`.
    pub fn new<A: ?Sized, C: ?Sized>(left: T, right: U) -> Self
    where
        T: Lens<A, B>,
        U: Lens<B, C>,
    {
        Self {
            left,
            right,
            _marker: PhantomData,
        }
    }
}

impl<T, U, A, B, C> Lens<A, C> for Then<T, U, B>
where
    A: ?Sized,
    B: ?Sized,
    C: ?Sized,
    T: Lens<A, B>,
    U: Lens<B, C>,
{
    fn with<V, F: FnOnce(&C) -> V>(&self, data: &A, f: F) -> V {
        self.left.with(data, |b| self.right.with(b, f))
    }

    fn with_mut<V, F: FnOnce(&mut C) -> V>(&self, data: &mut A, f: F) -> V {
        self.left.with_mut(data, |b| self.right.with_mut(b, f))
    }
}

impl<T: Clone, U: Clone, B> Clone for Then<T, U, B> {
    fn clone(&self) -> Self {
        Self {
            left: self.left.clone(),
            right: self.right.clone(),
            _marker: PhantomData,
        }
    }
}

/// `Lens` built from a getter and a setter
#[derive(Debug, Copy, Clone)]
pub struct Map<Get, Put> {
    get: Get,
    put: Put,
}

impl<Get, Put> Map<Get, Put> {
    /// Construct a mapping
    ///
    /// See also `LensExt::map`
    pub fn new<A: ?Sized, B>(get: Get, put: Put) -> Self
    where
        Get: Fn(&A) -> B,
        Put: Fn(&mut A, B),
    {
        Self { get, put }
    }
}

impl<A: ?Sized, B, Get, Put> Lens<A, B> for Map<Get, Put>
where
    Get: Fn(&A) -> B,
    Put: Fn(&mut A, B),
{
    fn with<V, F: FnOnce(&B) -> V>(&self, data: &A, f: F) -> V {
        f(&(self.get)(data))
    }

    fn with_mut<V, F: FnOnce(&mut B) -> V>(&self, data: &mut A, f: F) -> V {
        let mut temp = (self.get)(data);
        let x = f(&mut temp);
        (self.put)(data, temp);
        x
    }
}

/// `Lens` for invoking `Deref` and `DerefMut` on a type
///
/// See also `LensExt::deref`.
#[derive(Debug, Copy, Clone)]
pub struct Deref;

impl<T: ?Sized> Lens<T, T::Target> for Deref
where
    T: ops::Deref + ops::DerefMut,
{
    fn with<V, F: FnOnce(&T::Target) -> V>(&self, data: &T, f: F) -> V {
        f(data.deref())
    }
    fn with_mut<V, F: FnOnce(&mut T::Target) -> V>(&self, data: &mut T, f: F) -> V {
        f(data.deref_mut())
    }
}

/// `Lens` for indexing containers
#[derive(Debug, Copy, Clone)]
pub struct Index<I> {
    index: I,
}

impl<I> Index<I> {
    /// Construct a lens that accesses a particular index
    ///
    /// See also `LensExt::index`.
    pub fn new(index: I) -> Self {
        Self { index }
    }
}

impl<T, I> Lens<T, T::Output> for Index<I>
where
    T: ?Sized + ops::Index<I> + ops::IndexMut<I>,
    I: Clone,
{
    fn with<V, F: FnOnce(&T::Output) -> V>(&self, data: &T, f: F) -> V {
        f(&data[self.index.clone()])
    }
    fn with_mut<V, F: FnOnce(&mut T::Output) -> V>(&self, data: &mut T, f: F) -> V {
        f(&mut data[self.index.clone()])
    }
}

/// The identity lens: the lens which does nothing, i.e. exposes exactly the original value.
///
/// Useful for starting a lens combinator chain, or passing to lens-based interfaces.
#[derive(Debug, Copy, Clone)]
pub struct Id;

impl<A: ?Sized> Lens<A, A> for Id {
    fn with<V, F: FnOnce(&A) -> V>(&self, data: &A, f: F) -> V {
        f(data)
    }

    fn with_mut<V, F: FnOnce(&mut A) -> V>(&self, data: &mut A, f: F) -> V {
        f(data)
    }
}

/// A `Lens` that exposes data within an `Arc` with copy-on-write semantics
///
/// A copy is only made in the event that a different value is written.
#[derive(Debug, Copy, Clone)]
pub struct InArc<L> {
    inner: L,
}

impl<L> InArc<L> {
    /// Adapt a lens to operate on an `Arc`
    ///
    /// See also `LensExt::in_arc`
    pub fn new<A, B>(inner: L) -> Self
    where
        A: Clone,
        B: Data,
        L: Lens<A, B>,
    {
        Self { inner }
    }
}

impl<A, B, L> Lens<Arc<A>, B> for InArc<L>
where
    A: Clone,
    B: Data,
    L: Lens<A, B>,
{
    fn with<V, F: FnOnce(&B) -> V>(&self, data: &Arc<A>, f: F) -> V {
        self.inner.with(data, f)
    }

    fn with_mut<V, F: FnOnce(&mut B) -> V>(&self, data: &mut Arc<A>, f: F) -> V {
        let mut temp = self.inner.with(data, |x| x.clone());
        let v = f(&mut temp);
        if self.inner.with(data, |x| !x.same(&temp)) {
            self.inner.with_mut(Arc::make_mut(data), |x| *x = temp);
        }
        v
    }
}