1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
use {DomNode, Listener};

use opt_std::marker::PhantomData;

/// `DomNodeProcessor`s are used to iterate over `DomNode`s which may or may not be the same type.
/// Implementations of this trait resemble traditional `fold` functions, modifying an accumulator
/// (of type `Acc`) and returning an error as necessary.
pub trait DomNodeProcessor<'a, Message> {

    /// Type of the accumulator updated by `get_processor`
    type Acc;

    /// Type of error returned by failed calls to `get_processor`
    type Error;

    /// Returns a folding function capable of processing elements of type `T: DomNode`.
    fn get_processor<T: DomNode<Message>>()
        -> fn(&mut Self::Acc, &'a T) -> Result<(), Self::Error>;
}

/// Collection of `DomNode`s with a common message type
pub trait DomNodes<Message> {
    /// Processes all of the `DomNode`s in the given collection using processor `P` and
    /// accumulator `acc`.
    fn process_all<'a, P: DomNodeProcessor<'a, Message>>(&'a self, acc: &mut P::Acc) -> Result<(), P::Error>;
}

/// `ListenerProcessor`s are used to iterate over `Listeners`s which may or may not be the same
/// type. Implementations of this trait resemble traditional `fold` functions, modifying an
/// accumulator (of type `Acc`) and returning an error as necessary.
pub trait ListenerProcessor<'a, Message> {

    /// Type of the accumulator updated by `get_processor`
    type Acc;

    /// Type of error returned by failed calls to `get_processor`
    type Error;

    /// Returns a folding function capable of processing elements of type `T: DomNode`.
    ///
    /// TODO: Example
    fn get_processor<T: Listener<Message>>() -> fn(&mut Self::Acc, &'a T) -> Result<(), Self::Error>;
}

/// Collection of `Listener`s with a common message type
pub trait Listeners<Message> {
    /// Processes all of the listeners in the given collection using processor `P` and
    /// accumulator `acc`.
    fn process_all<'a, P: ListenerProcessor<'a, Message>>(&'a self, acc: &mut P::Acc) -> Result<(), P::Error>;
}

impl<Message> DomNodes<Message> for () {
    fn process_all<'a, P: DomNodeProcessor<'a, Message>>(&'a self, _acc: &mut P::Acc) -> Result<(), P::Error> {
        Ok(())
    }
}

impl<M> DomNodes<M> for PhantomData<M> {
    fn process_all<'a, P: DomNodeProcessor<'a, M>>(&'a self, _acc: &mut P::Acc) -> Result<(), P::Error> {
        Ok(())
    }
}

/// Zero-sized empty collection of listeners
pub struct EmptyListeners;
impl<Message> Listeners<Message> for EmptyListeners {
    fn process_all<'a, P: ListenerProcessor<'a, Message>>(&'a self, _acc: &mut P::Acc) -> Result<(), P::Error> {
        Ok(())
    }
}

impl<Message, T: DomNodes<Message>> DomNodes<Message> for Option<T> {
    fn process_all<'a, P: DomNodeProcessor<'a, Message>>(&'a self, acc: &mut P::Acc) -> Result<(), P::Error> {
        if let Some(ref inner) = *self {
            inner.process_all::<P>(acc)
        } else {
            Ok(())
        }
    }
}

impl<Message, L: Listeners<Message>> Listeners<Message> for Option<L> {
    fn process_all<'a, P: ListenerProcessor<'a, Message>>(&'a self, acc: &mut P::Acc) -> Result<(), P::Error> {
        if let Some(ref inner) = *self {
            inner.process_all::<P>(acc)
        } else {
            Ok(())
        }
    }
}

impl<Message, T: DomNodes<Message>> DomNodes<Message> for [T] {
    fn process_all<'a, P: DomNodeProcessor<'a, Message>>(&'a self, acc: &mut P::Acc) -> Result<(), P::Error> {
        for x in self {
            x.process_all::<P>(acc)?;
        }
        Ok(())
    }
}

impl<Message, T: Listeners<Message>> Listeners<Message> for [T] {
    fn process_all<'a, P: ListenerProcessor<'a, Message>>(&'a self, acc: &mut P::Acc) -> Result<(), P::Error> {
        for x in self {
            x.process_all::<P>(acc)?;
        }
        Ok(())
    }
}

#[cfg(any(feature = "use_std", test))]
impl<Message, T: DomNodes<Message>> DomNodes<Message> for Vec<T> {
    fn process_all<'a, P: DomNodeProcessor<'a, Message>>(&'a self, acc: &mut P::Acc) -> Result<(), P::Error> {
        for x in self {
            x.process_all::<P>(acc)?;
        }
        Ok(())
    }
}

#[cfg(any(feature = "use_std", test))]
impl<Message, T: Listeners<Message>> Listeners<Message> for Vec<T> {
    fn process_all<'a, P: ListenerProcessor<'a, Message>>(&'a self, acc: &mut P::Acc) -> Result<(), P::Error> {
        for x in self {
            x.process_all::<P>(acc)?;
        }
        Ok(())
    }
}

macro_rules! array_impls {
    ($($len:expr,)*) => { $(
        impl<M, T: DomNodes<M>> DomNodes<M> for [T; $len] {
            fn process_all<'a, P: DomNodeProcessor<'a, M>>(&'a self, acc: &mut P::Acc) -> Result<(), P::Error> {
                for x in self {
                    x.process_all::<P>(acc)?;
                }
                Ok(())
            }
        }

        impl<M, T: Listeners<M>> Listeners<M> for [T; $len] {
            fn process_all<'a, P: ListenerProcessor<'a, M>>(&'a self, acc: &mut P::Acc) -> Result<(), P::Error> {
                for x in self {
                    x.process_all::<P>(acc)?;
                }
                Ok(())
            }
        }
    )* }
}

array_impls!(
    0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,
    17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
);

// Credit to @shepmaster for structure of recursive tuple macro
macro_rules! tuple_impls {
    () => {};

    // Copywrite @shepmaster
    (($idx:tt => $typ:ident), $( ($nidx:tt => $ntyp:ident), )*) => {
        /*
         * Invoke recursive reversal of list that ends in the macro expansion implementation
         * of the reversed list
        */
        tuple_impls!([($idx, $typ);] $( ($nidx => $ntyp), )*);
        tuple_impls!($( ($nidx => $ntyp), )*); // invoke macro on tail
    };

    /*
     * ([accumulatedList], listToReverse); recursively calls tuple_impls until the list to reverse
     + is empty (see next pattern)
    */
    ([$(($accIdx: tt, $accTyp: ident);)+]  ($idx:tt => $typ:ident), $( ($nidx:tt => $ntyp:ident), )*) => {
      tuple_impls!([($idx, $typ); $(($accIdx, $accTyp); )*] $( ($nidx => $ntyp), ) *);
    };

    // Finally expand into the implementation
    ([($idx:tt, $typ:ident); $( ($nidx:tt, $ntyp:ident); )*]) => {
        impl<M, $typ, $( $ntyp ),*> DomNodes<M> for ($typ, $( $ntyp ),*)
            where $typ: DomNodes<M>,
                  $( $ntyp: DomNodes<M>),*
        {
            fn process_all<'a, P>(&'a self, acc: &mut P::Acc) -> Result<(), P::Error>
                    where P: DomNodeProcessor<'a, M> {
                &self.$idx.process_all::<P>(acc)?;
                $(
                    &self.$nidx.process_all::<P>(acc)?;
                )*
                Ok(())
            }
        }

        impl<M, $typ, $( $ntyp ),*> Listeners<M> for ($typ, $( $ntyp ),*)
            where $typ: Listeners<M>,
                  $( $ntyp: Listeners<M>),*
        {
            fn process_all<'a, P>(&'a self, acc: &mut P::Acc) -> Result<(), P::Error>
                    where P: ListenerProcessor<'a, M> {
                &self.$idx.process_all::<P>(acc)?;
                $(
                    &self.$nidx.process_all::<P>(acc)?;
                )*
                Ok(())
            }
        }
    }
}

tuple_impls!(
    (9 => J),
    (8 => I),
    (7 => H),
    (6 => G),
    (5 => F),
    (4 => E),
    (3 => D),
    (2 => C),
    (1 => B),
    (0 => A),
);

#[cfg(feature = "use_either_n")]
mod either_impls {
    use super::{DomNodes, DomNodeProcessor, Listeners, ListenerProcessor};

    extern crate either_n;
    use self::either_n::*;

    macro_rules! impl_enums {
        () => {};

        (($enum_name_head:ident, $n_head:ident),
        $(($enum_name_tail:ident, $n_tail:ident),)*) => {

            impl<M, $n_head, $( $n_tail ),*> DomNodes<M> for
                $enum_name_head<$n_head, $( $n_tail ),*>
                where $n_head: DomNodes<M>, $( $n_tail: DomNodes<M> ),*
            {
                fn process_all<'a, P>(&'a self, acc: &mut P::Acc) -> Result<(), P::Error>
                        where P: DomNodeProcessor<'a, M> {
                    match *self {
                        $enum_name_head::$n_head(ref value) =>
                            value.process_all::<P>(acc)?,
                        $(
                            $enum_name_head::$n_tail(ref value) =>
                                value.process_all::<P>(acc)?
                        ),*
                    };
                    Ok(())
                }
            }

            impl<M, $n_head, $( $n_tail ),*> Listeners<M> for
                $enum_name_head<$n_head, $( $n_tail ),*>
                where $n_head: Listeners<M>, $( $n_tail: Listeners<M> ),*
            {
                fn process_all<'a, P>(&'a self, acc: &mut P::Acc) -> Result<(), P::Error>
                        where P: ListenerProcessor<'a, M> {
                    match *self {
                        $enum_name_head::$n_head(ref value) =>
                            value.process_all::<P>(acc)?,
                        $(
                            $enum_name_head::$n_tail(ref value) =>
                                value.process_all::<P>(acc)?
                        ),*
                    };
                    Ok(())
                }
            }

            impl_enums!($( ($enum_name_tail, $n_tail), )*);
        }
    }

    impl_enums!(
        (Either8, Eight),
        (Either7, Seven),
        (Either6, Six),
        (Either5, Five),
        (Either4, Four),
        (Either3, Three),
        (Either2, Two),
        (Either1, One),
    );
}