1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
use crate::bigint::BigUintWrapper;
use crate::crypto::{Rsa, RsaParameter};
use num_bigint_dig::BigUint;
use rand::prelude::SliceRandom;
use rand::{CryptoRng, RngCore};
use serde::{Deserialize, Serialize};
use std::convert::TryInto;
use uuid::Uuid;

#[derive(Clone, Debug, Default, PartialEq, Serialize, Deserialize)]
/// The [Deck] struct is the starting point to shuffle. It contains n cards. The deck doesn't care
/// what cards it represents.
///
/// # Example
///
/// ```
/// # use distributed_cards::{Deck, Prime, RsaParameter};
/// # use uuid::Uuid;
/// # use rand::thread_rng;
/// let rng = &mut thread_rng();
/// let primes = [Prime::random(128, rng), Prime::random(128, rng)]; // each participant contributes one prime
/// let rsa_parameter = RsaParameter::from_primes(&primes);
/// let uuid = Uuid::from_u128(0x_1905709b_e2ae_469c_9589_4e37dcf3e5bc); // must be unique and unpredictable for each shuffle
/// let deck = Deck::new(104, uuid);
/// let (encrypted_deck, key) = deck.shuffle_encrypt(&rsa_parameter, rng);
/// assert!(deck.is_shuffle_encrypt_valid(&key, &encrypted_deck));
/// ```
pub struct Deck {
    num_cards: u32,
    shuffle_id: Uuid,
}

impl Deck {
    /// Creates a new deck with n cards numbered 0 up to n-1. The given shuffle_id must be unique
    /// over all shuffles, but both parameters have to be the same for each participant
    pub fn new(num_cards: u32, shuffle_id: Uuid) -> Deck {
        Deck {
            num_cards,
            shuffle_id,
        }
    }

    // output format of card: [1] [4 byte card_id] [16 byte shuffle_id]
    // the number of bits required should always be exactly 161
    fn encode_card(card: u32, shuffle_id: Uuid) -> BigUint {
        (BigUint::from(1u32) << 160)
            + (BigUint::from(card) << 128)
            + BigUint::from(shuffle_id.as_u128())
    }

    fn decode_card(card: BigUint) -> Option<(u32, Uuid)> {
        if card.bits() != 161 {
            return None;
        }
        let card = card.to_bytes_be();
        let id = u32::from_be_bytes(card[1..5].try_into().unwrap());
        let uuid = Uuid::from_bytes(card[5..].try_into().unwrap());
        Some((id, uuid))
    }

    fn to_encrypted_deck(&self) -> EncryptedDeck {
        let cards = (0..self.num_cards)
            .into_iter()
            .map(|i| BigUintWrapper(Deck::encode_card(i, self.shuffle_id)))
            .collect();
        EncryptedDeck { cards }
    }
}

#[derive(Clone, Debug, PartialEq, Serialize, Deserialize)]
pub struct EncryptedDeck {
    cards: Vec<BigUintWrapper>,
}

/// 1st shuffling phase
impl Deck {
    pub fn shuffle_encrypt<Rng: CryptoRng + RngCore>(
        &self,
        rsa_parameter: &RsaParameter,
        rng: &mut Rng,
    ) -> (EncryptedDeck, Rsa) {
        let deck: EncryptedDeck = self.to_encrypted_deck();
        deck.shuffle_encrypt(rsa_parameter, rng)
    }

    pub fn is_shuffle_encrypt_valid(&self, key: &Rsa, encrypted_deck: &EncryptedDeck) -> bool {
        let deck: EncryptedDeck = self.to_encrypted_deck();
        deck.is_shuffle_encrypt_valid(key, encrypted_deck)
    }
}

impl EncryptedDeck {
    fn encrypt(&self, key: &Rsa) -> EncryptedDeck {
        let cards = self
            .cards
            .iter()
            .map(|c| BigUintWrapper(key.encrypt(c.0.clone())))
            .collect();
        EncryptedDeck { cards }
    }

    fn decrypt(&self, key: &Rsa) -> EncryptedDeck {
        let cards = self
            .cards
            .iter()
            .map(|c| BigUintWrapper(key.decrypt(c.0.clone())))
            .collect();
        EncryptedDeck { cards }
    }
}

/// 1st shuffling phase
impl EncryptedDeck {
    pub fn shuffle_encrypt<Rng: CryptoRng + RngCore>(
        &self,
        rsa_parameter: &RsaParameter,
        rng: &mut Rng,
    ) -> (EncryptedDeck, Rsa) {
        let key = Rsa::gen_with_parameter(rsa_parameter.clone(), rng);
        let mut deck = self.encrypt(&key);
        deck.cards.shuffle(rng);
        (deck, key)
    }

    /// checks if the shuffle_encrypt mechanism was executed correctly and it can be reversed again
    pub fn is_shuffle_encrypt_valid(&self, key: &Rsa, result: &EncryptedDeck) -> bool {
        let mut decrypted_result = result.decrypt(key);
        decrypted_result.cards.sort();
        let mut cards = self.cards.clone();
        cards.sort();
        cards == decrypted_result.cards
    }
}

// 2nd shuffling phase
impl EncryptedDeck {
    fn card_specific(&self, shuffle_key: &Rsa, keys: &[Rsa]) -> EncryptedDeck {
        let cards = self
            .cards
            .iter()
            .zip(keys)
            .map(|(card, key)| BigUintWrapper(shuffle_key.decrypt(key.encrypt(card.0.clone()))))
            .collect();
        EncryptedDeck { cards }
    }

    /// removes shuffling key from cards and encrypts each card with a unique random key
    /// returns the deck and all card specific keys
    pub fn encrypt_card_specific<Rng: CryptoRng + RngCore>(
        &self,
        shuffle_key: &Rsa,
        rsa_parameter: &RsaParameter,
        rng: &mut Rng,
    ) -> (EncryptedDeck, Vec<Rsa>) {
        let keys: Vec<Rsa> = (0..self.cards.len())
            .into_iter()
            .map(|_| Rsa::gen_with_parameter(rsa_parameter.clone(), rng))
            .collect();
        let deck = self.card_specific(shuffle_key, &keys);
        (deck, keys)
    }
    /// checks whether the encrypt_card_specific function was executed correctly
    /// needs to know the keys involved, so can only be called for peers after the game has ended
    /// and everyone published all their keys
    pub fn is_encrypt_card_specific_valid(
        &self,
        shuffle_key: &Rsa,
        result: &EncryptedDeck,
        keys: &[Rsa],
    ) -> bool {
        &self.card_specific(shuffle_key, keys) == result
    }
}

impl EncryptedDeck {
    /// Returns None on error
    ///
    /// # Panics
    ///
    /// If card_id >= num_cards
    pub fn decrypt_card(
        &self,
        card_id: u32,
        shuffle_id: Uuid,
        own_key: &Rsa,
        other_keys: &[Rsa],
    ) -> Option<u32> {
        let decrypted = other_keys.iter().fold(
            own_key.decrypt(self.cards[card_id as usize].0.clone()),
            |card, key| key.decrypt(card),
        );
        let (card, uuid) = Deck::decode_card(decrypted)?;
        if uuid == shuffle_id {
            Some(card)
        } else {
            None
        }
    }
}

#[cfg(test)]
mod test {
    use super::*;
    use crate::crypto::Prime;
    use rand::thread_rng;

    #[test]
    fn encode_card() {
        let expected = [
            1u8, 0, 0, 0, 14, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,
        ];
        assert_eq!(
            Deck::encode_card(14, Uuid::from_slice(&expected[5..]).unwrap()).to_bytes_be(),
            expected
        )
    }

    #[test]
    fn decode_card() {
        let expected = [
            1u8, 0, 0, 0, 14, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,
        ];
        let card = BigUint::from_bytes_be(&expected);
        assert_eq!(
            Deck::decode_card(card),
            Some((14, Uuid::from_bytes(expected[5..].try_into().unwrap())))
        );
    }

    #[test]
    fn decode_card_err() {
        let expected = [
            1u8, 0, 0, 0, 14, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,
        ];
        assert_eq!(
            Deck::decode_card(BigUint::from_bytes_be(&expected[1..])),
            None
        );
        assert_eq!(
            Deck::decode_card(BigUint::from_bytes_be(&expected) << 1),
            None
        );
    }

    #[test]
    fn shuffle_encrypt() {
        let rng = &mut thread_rng();
        let primes = [Prime::random(128, rng), Prime::random(128, rng)];
        let rsa_parameter = RsaParameter::from_primes(&primes);
        let uuid = Uuid::from_u128(0x_1905709b_e2ae_469c_9589_4e37dcf3e5bc);
        let deck = Deck::new(4, uuid);
        let (encrypted_deck, key) = deck.shuffle_encrypt(&rsa_parameter, rng);
        assert!(deck.is_shuffle_encrypt_valid(&key, &encrypted_deck));
    }

    #[test]
    fn encrypt_card_specific() {
        let rng = &mut thread_rng();
        let primes = [Prime::random(128, rng), Prime::random(128, rng)];
        let rsa_parameter = RsaParameter::from_primes(&primes);
        let uuid = Uuid::from_u128(0x_1905709b_e2ae_469c_9589_4e37dcf3e5bc);
        let deck = Deck::new(4, uuid);
        let (encrypted_deck, key) = deck.shuffle_encrypt(&rsa_parameter, rng);
        assert!(deck.is_shuffle_encrypt_valid(&key, &encrypted_deck));

        let (phase_2, phase_2_keys) =
            encrypted_deck.encrypt_card_specific(&key, &rsa_parameter, rng);
        assert!(encrypted_deck.is_encrypt_card_specific_valid(&key, &phase_2, &phase_2_keys));
    }

    #[test]
    fn decode() {
        let rng = &mut thread_rng();
        let primes = [Prime::random(128, rng), Prime::random(128, rng)];
        let rsa_parameter = RsaParameter::from_primes(&primes);
        let uuid = Uuid::from_u128(0x_1905709b_e2ae_469c_9589_4e37dcf3e5bc);
        let deck = Deck::new(16, uuid);
        let (encrypted_deck, key) = deck.shuffle_encrypt(&rsa_parameter, rng);
        assert!(deck.is_shuffle_encrypt_valid(&key, &encrypted_deck));

        let (phase_2, phase_2_keys) =
            encrypted_deck.encrypt_card_specific(&key, &rsa_parameter, rng);
        assert!(encrypted_deck.is_encrypt_card_specific_valid(&key, &phase_2, &phase_2_keys));

        let mut decrypted: Vec<u32> = phase_2_keys
            .iter()
            .enumerate()
            .map(|(i, key)| {
                phase_2
                    .decrypt_card(i as u32, uuid.clone(), key, &[])
                    .unwrap()
            })
            .collect();
        decrypted.sort();
        assert_eq!(decrypted, (0..16).collect::<Vec<_>>());
    }

    #[test]
    fn encrypt_card_2() {
        let rng = &mut thread_rng();
        let primes = [Prime::random(128, rng), Prime::random(128, rng)];
        let rsa_parameter = RsaParameter::from_primes(&primes);
        let shuffle_id = Uuid::from_u128(0x_1905709b_e2ae_469c_9589_4e37dcf3e5bc);
        let deck = Deck::new(1, shuffle_id);

        // shuffle phase 1
        let (a_phase_1, a_shuffle_key) = deck.shuffle_encrypt(&rsa_parameter, rng);
        assert!(deck.is_shuffle_encrypt_valid(&a_shuffle_key, &a_phase_1));
        let (b_phase_1, b_shuffle_key) = a_phase_1.shuffle_encrypt(&rsa_parameter, rng);
        assert!(a_phase_1.is_shuffle_encrypt_valid(&b_shuffle_key, &b_phase_1));

        // shuffle phase 2
        let (a_phase_2, a_phase_2_keys) =
            b_phase_1.encrypt_card_specific(&a_shuffle_key, &rsa_parameter, rng);
        assert!(b_phase_1.is_encrypt_card_specific_valid(
            &a_shuffle_key,
            &a_phase_2,
            &a_phase_2_keys
        ));
        let (b_phase_2, b_phase_2_keys) =
            a_phase_2.encrypt_card_specific(&b_shuffle_key, &rsa_parameter, rng);
        assert!(a_phase_2.is_encrypt_card_specific_valid(
            &b_shuffle_key,
            &b_phase_2,
            &b_phase_2_keys
        ));

        // decrypt ingame
        assert_eq!(
            b_phase_2.decrypt_card(
                0,
                shuffle_id,
                &a_phase_2_keys[0],
                &[b_phase_2_keys[0].clone()]
            ),
            Some(0)
        );
        assert_eq!(
            b_phase_2.decrypt_card(
                0,
                shuffle_id,
                &b_phase_2_keys[0],
                &[a_phase_2_keys[0].clone()]
            ),
            Some(0)
        );
    }

    #[test]
    fn serialize_encrypted() {
        let encrypted_deck = EncryptedDeck {
            cards: vec![BigUintWrapper(BigUint::from(
                0x_1905709b_e2ae_469c_9589_4e37dcf3e5bc_u128,
            ))],
        };
        assert_eq!(
            serde_json::to_string(&encrypted_deck).unwrap(),
            r#"{"cards":["GQVwm+KuRpyViU433PPlvA=="]}"#.to_owned()
        );
    }
}