1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
use super::{DataStream, SecretKey, Transport};
use std::{
    pin::Pin,
    sync::Arc,
    task::{Context, Poll},
};
use tokio::{
    io::{self, AsyncRead, AsyncWrite, ReadBuf},
    sync::mpsc,
};

/// Represents a data stream comprised of two inmemory channels
#[derive(Debug)]
pub struct InmemoryStream {
    incoming: InmemoryStreamReadHalf,
    outgoing: InmemoryStreamWriteHalf,
}

impl InmemoryStream {
    pub fn new(incoming: mpsc::Receiver<Vec<u8>>, outgoing: mpsc::Sender<Vec<u8>>) -> Self {
        Self {
            incoming: InmemoryStreamReadHalf(incoming),
            outgoing: InmemoryStreamWriteHalf(outgoing),
        }
    }

    /// Returns (incoming_tx, outgoing_rx, stream)
    pub fn make(buffer: usize) -> (mpsc::Sender<Vec<u8>>, mpsc::Receiver<Vec<u8>>, Self) {
        let (incoming_tx, incoming_rx) = mpsc::channel(buffer);
        let (outgoing_tx, outgoing_rx) = mpsc::channel(buffer);

        (
            incoming_tx,
            outgoing_rx,
            Self::new(incoming_rx, outgoing_tx),
        )
    }

    /// Returns pair of streams that are connected such that one sends to the other and
    /// vice versa
    pub fn pair(buffer: usize) -> (Self, Self) {
        let (tx, rx, stream) = Self::make(buffer);
        (stream, Self::new(rx, tx))
    }
}

impl AsyncRead for InmemoryStream {
    fn poll_read(
        mut self: Pin<&mut Self>,
        cx: &mut Context<'_>,
        buf: &mut ReadBuf<'_>,
    ) -> Poll<io::Result<()>> {
        Pin::new(&mut self.incoming).poll_read(cx, buf)
    }
}

impl AsyncWrite for InmemoryStream {
    fn poll_write(
        mut self: Pin<&mut Self>,
        cx: &mut Context<'_>,
        buf: &[u8],
    ) -> Poll<io::Result<usize>> {
        Pin::new(&mut self.outgoing).poll_write(cx, buf)
    }

    fn poll_flush(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<io::Result<()>> {
        Pin::new(&mut self.outgoing).poll_flush(cx)
    }

    fn poll_shutdown(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<io::Result<()>> {
        Pin::new(&mut self.outgoing).poll_shutdown(cx)
    }
}

/// Read portion of an inmemory channel
#[derive(Debug)]
pub struct InmemoryStreamReadHalf(mpsc::Receiver<Vec<u8>>);

impl AsyncRead for InmemoryStreamReadHalf {
    fn poll_read(
        mut self: Pin<&mut Self>,
        cx: &mut Context<'_>,
        buf: &mut ReadBuf<'_>,
    ) -> Poll<io::Result<()>> {
        self.0.poll_recv(cx).map(|x| match x {
            Some(x) => {
                buf.put_slice(&x);
                Ok(())
            }
            None => Ok(()),
        })
    }
}

/// Write portion of an inmemory channel
#[derive(Debug)]
pub struct InmemoryStreamWriteHalf(mpsc::Sender<Vec<u8>>);

impl AsyncWrite for InmemoryStreamWriteHalf {
    fn poll_write(
        self: Pin<&mut Self>,
        _: &mut Context<'_>,
        buf: &[u8],
    ) -> Poll<io::Result<usize>> {
        match self.0.try_send(buf.to_vec()) {
            Ok(_) => Poll::Ready(Ok(buf.len())),
            Err(_) => Poll::Ready(Ok(0)),
        }
    }

    fn poll_flush(self: Pin<&mut Self>, _: &mut Context<'_>) -> Poll<io::Result<()>> {
        Poll::Ready(Ok(()))
    }

    fn poll_shutdown(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<io::Result<()>> {
        self.poll_flush(cx)
    }
}

impl DataStream for InmemoryStream {
    type Read = InmemoryStreamReadHalf;
    type Write = InmemoryStreamWriteHalf;

    fn to_connection_tag(&self) -> String {
        String::from("inmemory-stream")
    }

    fn into_split(self) -> (Self::Read, Self::Write) {
        (self.incoming, self.outgoing)
    }
}

impl Transport<InmemoryStream> {
    /// Produces a pair of inmemory transports that are connected to each other with matching
    /// auth and encryption keys
    ///
    /// Sets the buffer for message passing for each underlying stream to the given buffer size
    pub fn pair(buffer: usize) -> (Transport<InmemoryStream>, Transport<InmemoryStream>) {
        let auth_key = Arc::new(SecretKey::default());
        let crypt_key = Arc::new(SecretKey::default());

        let (a, b) = InmemoryStream::pair(buffer);
        let a = Transport::new(a, Some(Arc::clone(&auth_key)), Arc::clone(&crypt_key));
        let b = Transport::new(b, Some(auth_key), crypt_key);
        (a, b)
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use tokio::io::{AsyncReadExt, AsyncWriteExt};

    #[test]
    fn to_connection_tag_should_be_hardcoded_string() {
        let (_, _, stream) = InmemoryStream::make(1);
        assert_eq!(stream.to_connection_tag(), "inmemory-stream");
    }

    #[tokio::test]
    async fn make_should_return_sender_that_sends_data_to_stream() {
        let (tx, _, mut stream) = InmemoryStream::make(3);

        tx.send(b"test msg 1".to_vec()).await.unwrap();
        tx.send(b"test msg 2".to_vec()).await.unwrap();
        tx.send(b"test msg 3".to_vec()).await.unwrap();

        // Should get data matching a singular message
        let mut buf = [0; 256];
        let len = stream.read(&mut buf).await.unwrap();
        assert_eq!(&buf[..len], b"test msg 1");

        // Next call would get the second message
        let len = stream.read(&mut buf).await.unwrap();
        assert_eq!(&buf[..len], b"test msg 2");

        // When the last of the senders is dropped, we should still get
        // the rest of the data that was sent first before getting
        // an indicator that there is no more data
        drop(tx);

        let len = stream.read(&mut buf).await.unwrap();
        assert_eq!(&buf[..len], b"test msg 3");

        let len = stream.read(&mut buf).await.unwrap();
        assert_eq!(len, 0, "Unexpectedly got more data");
    }

    #[tokio::test]
    async fn make_should_return_receiver_that_receives_data_from_stream() {
        let (_, mut rx, mut stream) = InmemoryStream::make(3);

        stream.write_all(b"test msg 1").await.unwrap();
        stream.write_all(b"test msg 2").await.unwrap();
        stream.write_all(b"test msg 3").await.unwrap();

        // Should get data matching a singular message
        assert_eq!(rx.recv().await, Some(b"test msg 1".to_vec()));

        // Next call would get the second message
        assert_eq!(rx.recv().await, Some(b"test msg 2".to_vec()));

        // When the stream is dropped, we should still get
        // the rest of the data that was sent first before getting
        // an indicator that there is no more data
        drop(stream);

        assert_eq!(rx.recv().await, Some(b"test msg 3".to_vec()));

        assert_eq!(rx.recv().await, None, "Unexpectedly got more data");
    }

    #[tokio::test]
    async fn into_split_should_provide_a_read_half_that_receives_from_sender() {
        let (tx, _, stream) = InmemoryStream::make(3);
        let (mut read_half, _) = stream.into_split();

        tx.send(b"test msg 1".to_vec()).await.unwrap();
        tx.send(b"test msg 2".to_vec()).await.unwrap();
        tx.send(b"test msg 3".to_vec()).await.unwrap();

        // Should get data matching a singular message
        let mut buf = [0; 256];
        let len = read_half.read(&mut buf).await.unwrap();
        assert_eq!(&buf[..len], b"test msg 1");

        // Next call would get the second message
        let len = read_half.read(&mut buf).await.unwrap();
        assert_eq!(&buf[..len], b"test msg 2");

        // When the last of the senders is dropped, we should still get
        // the rest of the data that was sent first before getting
        // an indicator that there is no more data
        drop(tx);

        let len = read_half.read(&mut buf).await.unwrap();
        assert_eq!(&buf[..len], b"test msg 3");

        let len = read_half.read(&mut buf).await.unwrap();
        assert_eq!(len, 0, "Unexpectedly got more data");
    }

    #[tokio::test]
    async fn into_split_should_provide_a_write_half_that_sends_to_receiver() {
        let (_, mut rx, stream) = InmemoryStream::make(3);
        let (_, mut write_half) = stream.into_split();

        write_half.write_all(b"test msg 1").await.unwrap();
        write_half.write_all(b"test msg 2").await.unwrap();
        write_half.write_all(b"test msg 3").await.unwrap();

        // Should get data matching a singular message
        assert_eq!(rx.recv().await, Some(b"test msg 1".to_vec()));

        // Next call would get the second message
        assert_eq!(rx.recv().await, Some(b"test msg 2".to_vec()));

        // When the stream is dropped, we should still get
        // the rest of the data that was sent first before getting
        // an indicator that there is no more data
        drop(write_half);

        assert_eq!(rx.recv().await, Some(b"test msg 3".to_vec()));

        assert_eq!(rx.recv().await, None, "Unexpectedly got more data");
    }
}