1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
//! An append-only collection of update batches.
//!
//! The `Spine` is a general-purpose trace implementation based on collection and merging 
//! immutable batches of updates. It is generic with respect to the batch type, and can be 
//! instantiated for any implementor of `trace::Batch`.

use ::Diff;
use lattice::Lattice;
use trace::{Batch, BatchReader, Trace, TraceReader};
use trace::cursor::cursor_list::CursorList;
use trace::cursor::Cursor;
use trace::Merger;

enum MergeState<K, V, T, R, B: Batch<K, V, T, R>> {
    Merging(B, B, Option<Vec<T>>, <B as Batch<K,V,T,R>>::Merger),
    Complete(B),
}

impl<K, V, T: Eq, R, B: Batch<K, V, T, R>> MergeState<K, V, T, R, B> {
    fn complete(mut self) -> B {
        if let MergeState::Merging(ref source1, ref source2, ref frontier, ref mut in_progress) = self {
            let mut fuel = usize::max_value();
            in_progress.work(source1, source2, frontier, &mut fuel);
            assert!(fuel > 0);
        }
        match self {
            // ALLOC: Here is where we may de-allocate batches.
            MergeState::Merging(_, _, _, finished) => finished.done(),
            MergeState::Complete(x) => x,
        }
    }

    fn is_complete(&self) -> bool {
        match *self {
            MergeState::Complete(_) => true,
            _ => false,
        }
    }
    fn begin_merge(batch1: B, batch2: B, frontier: Option<Vec<T>>) -> Self {
        assert!(batch1.upper() == batch2.lower());
        let begin_merge = <B as Batch<K, V, T, R>>::begin_merge(&batch1, &batch2);
        MergeState::Merging(batch1, batch2, frontier, begin_merge)
    }
    fn work(mut self, fuel: &mut usize) -> Self {
        if let MergeState::Merging(ref source1, ref source2, ref frontier, ref mut in_progress) = self {
            in_progress.work(source1, source2, frontier, fuel);
        }
        if *fuel > 0 {
            match self {
                // ALLOC: Here is where we may de-allocate batches.
                MergeState::Merging(_, _, _, finished) => MergeState::Complete(finished.done()),
                MergeState::Complete(x) => MergeState::Complete(x),
            }
        }
        else { self }
    }
    fn len(&self) -> usize {
        match *self {
            MergeState::Merging(ref batch1, ref batch2, _, _) => batch1.len() + batch2.len(),
            MergeState::Complete(ref batch) => batch.len(),
        }
    }
}

/// An append-only collection of update tuples.
///
/// A spine maintains a small number of immutable collections of update tuples, merging the collections when
/// two have similar sizes. In this way, it allows the addition of more tuples, which may then be merged with
/// other immutable collections. 
pub struct Spine<K, V, T: Lattice+Ord, R: Diff, B: Batch<K, V, T, R>> {
    phantom: ::std::marker::PhantomData<(K, V, R)>,
    advance_frontier: Vec<T>,            // Times after which the trace must accumulate correctly.
    through_frontier: Vec<T>,            // Times after which the trace must be able to subset its inputs.
    merging: Vec<Option<MergeState<K,V,T,R,B>>>, // Several possibly shared collections of updates.
    pending: Vec<B>,                     // Batches at times in advance of `frontier`.
    // max_len: usize,
    // max_dur: ::std::time::Duration,
    // reserve: usize,                      // fuel reserves.
}

impl<K, V, T, R, B> TraceReader<K, V, T, R> for Spine<K, V, T, R, B> 
where 
    K: Ord+Clone,           // Clone is required by `batch::advance_*` (in-place could remove).
    V: Ord+Clone,           // Clone is required by `batch::advance_*` (in-place could remove).
    T: Lattice+Ord+Clone,   // Clone is required by `advance_by` and `batch::advance_*`.
    R: Diff,
    B: Batch<K, V, T, R>+Clone+'static,
{
    type Batch = B;
    type Cursor = CursorList<K, V, T, R, <B as BatchReader<K, V, T, R>>::Cursor>;

    fn cursor_through(&mut self, upper: &[T]) -> Option<(Self::Cursor, <Self::Cursor as Cursor<K, V, T, R>>::Storage)> {

        // we shouldn't grab a cursor into a closed trace, right?
        assert!(self.advance_frontier.len() > 0);

        // Check that `upper` is greater or equal to `self.through_frontier`.
        // Otherwise, the cut could be in `self.merging` and it is user error anyhow.
        if upper.iter().all(|t1| self.through_frontier.iter().any(|t2| t2.less_equal(t1))) {

            let mut cursors = Vec::new();
            let mut storage = Vec::new();

            for merge_state in self.merging.iter().rev() {
                match *merge_state {
                    Some(MergeState::Merging(ref batch1, ref batch2, _, _)) => { 
                        cursors.push(batch1.cursor());
                        storage.push(batch1.clone());
                        cursors.push(batch2.cursor());
                        storage.push(batch2.clone());
                    },
                    Some(MergeState::Complete(ref batch)) => {
                        cursors.push(batch.cursor());
                        storage.push(batch.clone());
                    },
                    None => { }
                }
            }

            for batch in &self.pending {
                let include_lower = upper.iter().all(|t1| batch.lower().iter().any(|t2| t2.less_equal(t1)));
                let include_upper = upper.iter().all(|t1| batch.upper().iter().any(|t2| t2.less_equal(t1)));

                if include_lower != include_upper && upper != batch.lower() {
                    panic!("`cursor_through`: `upper` straddles batch");
                    // return None;
                }

                // include pending batches 
                if include_upper {
                    cursors.push(batch.cursor());
                    storage.push(batch.clone());
                }
            }
            Some((CursorList::new(cursors, &storage), storage))
        }
        else {
            None
        }
    }
    fn advance_by(&mut self, frontier: &[T]) {
        self.advance_frontier = frontier.to_vec();
        if self.advance_frontier.len() == 0 {
            self.pending.clear();
            self.merging.clear();
        }
    }
    fn advance_frontier(&mut self) -> &[T] { &self.advance_frontier[..] }
    fn distinguish_since(&mut self, frontier: &[T]) {
        self.through_frontier = frontier.to_vec();
        self.consider_merges();
    }
    fn distinguish_frontier(&mut self) -> &[T] { &self.through_frontier[..] }

    fn map_batches<F: FnMut(&Self::Batch)>(&mut self, mut f: F) {
        for batch in self.merging.iter().rev() {
            match *batch {
                Some(MergeState::Merging(ref batch1, ref batch2, _, _)) => { f(batch1); f(batch2); },
                Some(MergeState::Complete(ref batch)) => { f(batch); },
                None => { },
            }
        }
        for batch in self.pending.iter() {
            f(batch);
        }
    }
}

// A trace implementation for any key type that can be borrowed from or converted into `Key`.
// TODO: Almost all this implementation seems to be generic with respect to the trace and batch types.
impl<K, V, T, R, B> Trace<K, V, T, R> for Spine<K, V, T, R, B> 
where 
    K: Ord+Clone,           // Clone is required by `batch::advance_*` (in-place could remove).
    V: Ord+Clone,           // Clone is required by `batch::advance_*` (in-place could remove).
    T: Lattice+Ord+Clone,   // Clone is required by `advance_by` and `batch::advance_*`.
    R: Diff,
    B: Batch<K, V, T, R>+Clone+'static,
{

    fn new() -> Self {
        Spine { 
            phantom: ::std::marker::PhantomData,
            advance_frontier: vec![<T as Lattice>::minimum()],
            through_frontier: vec![<T as Lattice>::minimum()],
            merging: Vec::new(),
            pending: Vec::new(),
            // max_len: 0,
            // max_dur: Default::default(),
            // reserve: 0,
        }
    }

    // Ideally, this method acts as insertion of `batch`, even if we are not yet able to begin
    // merging the batch. This means it is a good time to perform amortized work proportional
    // to the size of batch.
    fn insert(&mut self, batch: Self::Batch) {

        // we can ignore degenerate batches (TODO: learn where they come from; suppress them?)
        if batch.lower() != batch.upper() {
            self.pending.push(batch);
            self.consider_merges();
        }
        else {
            // degenerate batches had best be empty.
            assert!(batch.len() == 0);
        }
    }
}

impl<K, V, T, R, B> Spine<K, V, T, R, B> 
where 
    K: Ord+Clone,           // Clone is required by `advance_mut`.
    V: Ord+Clone,           // Clone is required by `advance_mut`.
    T: Lattice+Ord+Clone,   // Clone is required by `advance_mut`.
    R: Diff,
    B: Batch<K, V, T, R>,
{
    // Migrate data from `self.pending` into `self.merging`.
    #[inline(never)]
    fn consider_merges(&mut self) {

        // We have a new design here, in an attempt to rationalize progressive merging of batches.
        //
        // Batches arrive with a number of records, and are assigned a power-of-two "size", which is this
        // number rounded up. Batches are placed in a slot based on their size, and each slot can either be
        // 
        //  i. empty,
        //  ii. occupied by a batch,
        //  iii. occupied by a merge in progress.
        //
        // As we introduce a new batch, we need to do a few things.
        //
        //  0. We determine a size for the batch, and an implied target slot.
        //  1. For each slot smaller than the size of the batch, we should merge the batches so that the first
        //     occupied slot is no less than the target slot of the new batch.
        //  2. We perform size units of work for each merge in progress, starting from the large batches and
        //     working backwards (so that we have had the chance to complete work before starting a new merge).
        //  3. We install the new batch in the target slot, initiating a merge if necessary.
        //
        // At various points we may find that the number of updates in a batch is out of line with the size
        // associated with the slot the batch currently occupies. In this case, we can slide a batch (or a merge
        // in progress) down through empty slots, as long as the number of updates is no more than the associated
        // size.

        while self.pending.len() > 0 && 
              self.through_frontier.iter().all(|t1| self.pending[0].upper().iter().any(|t2| t2.less_equal(t1))) 
        {
            // this could be a VecDeque, if we ever notice this.
            let batch = self.pending.remove(0);

            // println!("batch.len(): {:?}", batch.len());

            // Step 0: Determine batch size and target slot.
            let batch_size = batch.len().next_power_of_two();
            let batch_index = batch_size.trailing_zeros() as usize;
            while self.merging.len() <= batch_index { self.merging.push(None); }

            if self.merging.len() > 32 { println!("len: {:?}", self.merging.len()); }

            // Step 1: Forcibly merge batches in lower slots.
            for position in 0 .. batch_index {
                if let Some(batch) = self.merging[position].take() {
                    let batch = batch.complete();
                    if let Some(batch2) = self.merging[position+1].take() {
                        let batch2 = batch2.complete();
                        self.merging[position+1] = Some(MergeState::begin_merge(batch2, batch, None));
                    }
                    else {
                        self.merging[position+1] = Some(MergeState::Complete(batch));
                    };
                }
            }

            // Step 2: Perform `size` work on each in-progress merge, from large to small.
            let mut fuel;// = 0; //8 * batch_size * self.merging.len();
            for position in (batch_index .. self.merging.len()).rev() {
                fuel = 16 * batch_size;
                if let Some(batch) = self.merging[position].take() {
                    let batch = batch.work(&mut fuel);
                    if batch.is_complete() {
                        let batch = batch.complete();
                        let intended_position = batch.len().next_power_of_two().trailing_zeros() as usize;
                        if intended_position > position {
                            while self.merging.len() <= intended_position { self.merging.push(None); }
                            if let Some(batch2) = self.merging[position+1].take() {
                                if !batch2.is_complete() {
                                    println!("batch[{}] not complete (size: {:?})", position+1, batch2.len());
                                    println!("sizes: {:?}", self.merging.iter().map(|x| x.as_ref().map(|y|y.len()).unwrap_or(0)).collect::<Vec<_>>());
                                }
                                assert!(batch2.is_complete());
                                let batch2 = batch2.complete();
                                let frontier = if position + 1 == self.merging.len() { Some(self.advance_frontier.clone()) } else { None };
                                self.merging[position+1] = Some(MergeState::begin_merge(batch2, batch, frontier));
                            }
                            else {
                                self.merging[position+1] = Some(MergeState::Complete(batch));
                            };
                        }
                        else {
                            self.merging[position] = Some(MergeState::Complete(batch));
                        }
                    }
                    else {
                        self.merging[position] = Some(batch);
                    }
                }
            }

            // Step 3: Insert new batch at target position
            if let Some(batch2) = self.merging[batch_index].take() {
                assert!(batch2.is_complete());
                let batch2 = batch2.complete();
                self.merging[batch_index] = Some(MergeState::begin_merge(batch2, batch, None));
            }
            else {
                self.merging[batch_index] = Some(MergeState::Complete(batch));
            }

            // Step 4: Consider migrating complete batches to lower bins, if appropriate.
            for index in (self.merging.len() .. 1).rev() {
                if self.merging[index].as_ref().map(|x| x.is_complete() && x.len() < (1 << (index-1))).unwrap_or(false) {
                    if self.merging[index-1].is_none() {
                        self.merging[index-1] = self.merging[index].take();
                    }
                }
            }
        }
    }
}