1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
//! Types which represent a SQL data type.
//!
//! The structs in this module are *only* used as markers to represent a SQL type.
//! They should never be used in your structs.
//! If you'd like to know the rust types which can be used for a given SQL type,
//! see the documentation for that SQL type.
//! Additional types may be provided by other crates.
//!
//! To see which SQL type can be used with a given Rust type,
//! see the "Implementors" section of [`FromSql`].
//!
//! [`FromSql`]: trait.FromSql.html
//!
//! Any backend specific types are re-exported through this module

pub mod ops;
mod ord;
#[macro_use]
#[doc(hidden)]
pub mod impls;
mod fold;

use std::fmt;
use std::ops::{Deref, DerefMut};

#[doc(hidden)]
pub mod structs {
    pub mod data_types {
        //! Structs to represent the primitive equivalent of SQL types where
        //! there is no existing Rust primitive, or where using it would be
        //! confusing (such as date and time types). This module will re-export
        //! all backend specific data structures when compiled against that
        //! backend.
        #[cfg(feature = "postgres")]
        pub use pg::data_types::*;
    }
}

pub use self::ord::SqlOrd;
pub use self::fold::Foldable;

use backend::{Backend, TypeMetadata};
use row::Row;
use std::error::Error;
use std::io::{self, Write};

/// The boolean SQL type.
///
/// On backends without a native boolean type,
/// this is emulated with the smallest supported integer.
///
/// ### [`ToSql`](trait.ToSql.html) impls
///
/// - [`bool`][bool]
///
/// ### [`FromSql`](trait.FromSql.html) impls
///
/// - [`bool`][bool]
///
/// [bool]: https://doc.rust-lang.org/nightly/std/primitive.bool.html
#[derive(Debug, Clone, Copy, Default)]
pub struct Bool;

/// The tiny integer SQL type.
///
/// This is only available on MySQL.
/// Keep in mind that `infer_schema!` will see `TINYINT(1)` as `Bool`,
/// not `Tinyint`.
///
/// ### [`ToSql`](trait.ToSql.html) impls
///
/// - [`i8`][i8]
///
/// ### [`FromSql`](trait.FromSql.html) impls
///
/// - [`i8`][i8]
///
/// [i8]: https://doc.rust-lang.org/nightly/std/primitive.i8.html
#[derive(Debug, Clone, Copy, Default)]
pub struct Tinyint;

/// The small integer SQL type.
///
/// ### [`ToSql`](trait.ToSql.html) impls
///
/// - [`i16`][i16]
///
/// ### [`FromSql`](trait.FromSql.html) impls
///
/// - [`i16`][i16]
///
/// [i16]: https://doc.rust-lang.org/nightly/std/primitive.i16.html
#[derive(Debug, Clone, Copy, Default)]
pub struct SmallInt;
#[doc(hidden)]
pub type Int2 = SmallInt;
#[doc(hidden)]
pub type Smallint = SmallInt;

/// The integer SQL type.
///
/// ### [`ToSql`](trait.ToSql.html) impls
///
/// - [`i32`][i32]
///
/// ### [`FromSql`](trait.FromSql.html) impls
///
/// - [`i32`][i32]
///
/// [i32]: https://doc.rust-lang.org/nightly/std/primitive.i32.html
#[derive(Debug, Clone, Copy, Default)]
pub struct Integer;
#[doc(hidden)]
pub type Int4 = Integer;

/// The big integer SQL type.
///
/// ### [`ToSql`](trait.ToSql.html) impls
///
/// - [`i64`][i64]
///
/// ### [`FromSql`](trait.FromSql.html) impls
///
/// - [`i64`][i64]
///
/// [i64]: https://doc.rust-lang.org/nightly/std/primitive.i64.html
#[derive(Debug, Clone, Copy, Default)]
pub struct BigInt;
#[doc(hidden)]
pub type Int8 = BigInt;
#[doc(hidden)]
pub type Bigint = BigInt;

/// The float SQL type.
///
/// ### [`ToSql`](trait.ToSql.html) impls
///
/// - [`f32`][f32]
///
/// ### [`FromSql`](trait.FromSql.html) impls
///
/// - [`f32`][f32]
///
/// [f32]: https://doc.rust-lang.org/nightly/std/primitive.f32.html
#[derive(Debug, Clone, Copy, Default)]
pub struct Float;
#[doc(hidden)]
pub type Float4 = Float;

/// The double precision float SQL type.
///
/// ### [`ToSql`](trait.ToSql.html) impls
///
/// - [`f64`][f64]
///
/// ### [`FromSql`](trait.FromSql.html) impls
///
/// - [`f64`][f64]
///
/// [f64]: https://doc.rust-lang.org/nightly/std/primitive.f64.html
#[derive(Debug, Clone, Copy, Default)]
pub struct Double;
#[doc(hidden)]
pub type Float8 = Double;

/// The arbitrary precision numeric SQL type.
///
/// This type is only supported on PostgreSQL and MySQL.
/// On SQLite, [`Double`](struct.Double.html) should be used instead.
///
/// ### [`ToSql`](trait.ToSql.html) impls
///
/// - [`bigdecimal::BigDecimal`] with `feature = ["numeric"]`
///
/// ### [`FromSql`](trait.FromSql.html) impls
///
/// - [`bigdecimal::BigDecimal`] with `feature = ["numeric"]`
///
/// [`bigdecimal::BigDecimal`]: /bigdecimal/struct.BigDecimal.html
#[derive(Debug, Clone, Copy, Default)]
pub struct Numeric;

/// Alias for `Numeric`
pub type Decimal = Numeric;

#[cfg(not(feature = "postgres"))]
impl NotNull for Numeric {}

#[cfg(not(feature = "postgres"))]
impl SingleValue for Numeric {}

/// The text SQL type.
///
/// On all backends strings must be valid UTF-8.
/// On PostgreSQL strings must not include nul bytes.
///
/// Schema inference will treat all variants of `TEXT` as this type (e.g.
/// `VARCHAR`, `MEDIUMTEXT`, etc).
///
/// ### [`ToSql`](trait.ToSql.html) impls
///
/// - [`String`][String]
/// - [`&str`][str]
///
/// ### [`FromSql`](trait.FromSql.html) impls
///
/// - [`String`][String]
///
/// [String]: https://doc.rust-lang.org/nightly/std/string/struct.String.html
/// [str]: https://doc.rust-lang.org/nightly/std/primitive.str.html
#[derive(Debug, Clone, Copy, Default)]
pub struct Text;

/// The SQL `VARCHAR` type
///
/// This type is generally interchangeable with `TEXT`, so Diesel has this as an
/// alias rather than a separate type (Diesel does not currently support
/// implicit coercions).
///
/// One notable exception to this is with arrays on PG. `TEXT[]` cannot be
/// coerced to `VARCHAR[]`.  It is recommended that you always use `TEXT[]` if
/// you need a string array on PG.
pub type VarChar = Text;
#[doc(hidden)]
pub type Varchar = VarChar;
#[doc(hidden)]
pub type Char = Text;
#[doc(hidden)]
pub type Tinytext = Text;
#[doc(hidden)]
pub type Mediumtext = Text;
#[doc(hidden)]
pub type Longtext = Text;

/// The binary SQL type.
///
/// Schema inference will treat all variants of `BLOB` as this type (e.g.
/// `VARBINARY`, `MEDIUMBLOB`, etc).
///
/// ### [`ToSql`](trait.ToSql.html) impls
///
/// - [`Vec<u8>`][Vec]
/// - [`&[u8]`][slice]
///
/// ### [`FromSql`](trait.FromSql.html) impls
///
/// - [`Vec<u8>`][Vec]
///
/// [Vec]: https://doc.rust-lang.org/nightly/std/vec/struct.Vec.html
/// [slice]: https://doc.rust-lang.org/nightly/std/primitive.slice.html
#[derive(Debug, Clone, Copy, Default)]
pub struct Binary;

#[doc(hidden)]
pub type Tinyblob = Binary;
#[doc(hidden)]
pub type Blob = Binary;
#[doc(hidden)]
pub type Mediumblob = Binary;
#[doc(hidden)]
pub type Longblob = Binary;
#[doc(hidden)]
pub type Varbinary = Binary;
#[doc(hidden)]
pub type Bit = Binary;

/// The date SQL type.
///
/// ### [`ToSql`](trait.ToSql.html) impls
///
/// - [`chrono::NaiveDate`][NaiveDate] with `feature = "chrono"`
///
/// ### [`FromSql`](trait.FromSql.html) impls
///
/// - [`chrono::NaiveDate`][NaiveDate] with `feature = "chrono"`
///
/// [NaiveDate]: /chrono/naive/date/struct.NaiveDate.html
#[derive(Debug, Clone, Copy, Default)]
pub struct Date;

/// The interval SQL type.
///
/// This type is currently only implemented for PostgreSQL.
///
/// ### [`ToSql`](trait.ToSql.html) impls
///
/// - [`PgInterval`] which can be constructed using [`IntervalDsl`]
///
/// ### [`FromSql`](trait.FromSql.html) impls
///
/// - [`PgInterval`] which can be constructed using [`IntervalDsl`]
///
/// [`PgInterval`]: ../pg/data_types/struct.PgInterval.html
/// [`IntervalDsl`]: ../pg/expression/extensions/trait.IntervalDsl.html
#[derive(Debug, Clone, Copy, Default)]
pub struct Interval;

#[cfg(not(feature = "postgres"))]
impl NotNull for Interval {} // FIXME: Interval should not be in this file

/// The time SQL type.
///
/// ### [`ToSql`](trait.ToSql.html) impls
///
/// - [`chrono::NaiveTime`][NaiveTime] with `feature = "chrono"`
///
/// ### [`FromSql`](trait.FromSql.html) impls
///
/// - [`chrono::NaiveTime`][NaiveTime] with `feature = "chrono"`
///
/// [NaiveTime]: /chrono/naive/time/struct.NaiveTime.html
#[derive(Debug, Clone, Copy, Default)]
pub struct Time;

/// The timestamp SQL type.
///
/// ### [`ToSql`](trait.ToSql.html) impls
///
/// - [`std::time::SystemTime`][SystemTime] (PG only)
/// - [`chrono::NaiveDateTime`][NaiveDateTime] with `feature = "chrono"`
/// - [`time::Timespec`][Timespec] with `feature = "deprecated-time"` (PG only)
///
/// ### [`FromSql`](trait.FromSql.html) impls
///
/// - [`std::time::SystemTime`][SystemTime] (PG only)
/// - [`chrono::NaiveDateTime`][NaiveDateTime] with `feature = "chrono"`
/// - [`time::Timespec`][Timespec] with `feature = "deprecated-time"` (PG only)
///
/// [SystemTime]: https://doc.rust-lang.org/nightly/std/time/struct.SystemTime.html
/// [NaiveDateTime]: /chrono/naive/datetime/struct.NaiveDateTime.html
/// [Timespec]: /time/struct.Timespec.html
#[derive(Debug, Clone, Copy, Default)]
pub struct Timestamp;

/// The nullable SQL type.
///
/// This wraps another SQL type to indicate that it can be null.
/// By default all values are assumed to be `NOT NULL`.
///
/// ### [`ToSql`](trait.ToSql.html) impls
///
/// - Any `T` which implements `ToSql<ST>`
/// - `Option<T>` for any `T` which implements `ToSql<ST>`
///
/// ### [`FromSql`](trait.FromSql.html) impls
///
/// - `Option<T>` for any `T` which implements `FromSql<ST>`
#[derive(Debug, Clone, Copy, Default)]
pub struct Nullable<ST: NotNull>(ST);

#[cfg(feature = "postgres")]
pub use pg::types::sql_types::*;

#[cfg(feature = "mysql")]
pub use mysql::types::*;

/// Indicates that a SQL type exists for a backend.
pub trait HasSqlType<ST>: TypeMetadata {
    /// Fetch the metadata for the given type
    ///
    /// This method may use `lookup` to do dynamic runtime lookup. Implementors
    /// of this method should not do dynamic lookup unless absolutely necessary
    fn metadata(lookup: &Self::MetadataLookup) -> Self::TypeMetadata;

    /// Fetch the metadata for a tuple representing an entire row
    ///
    /// The default implementation of this method simply calls `Self::metadata`.
    /// You generally should not need to override this method.
    ///
    /// However, if you are writing an implementation of `HasSqlType` that
    /// simply delegates to an inner type (for example, `Nullable` does this),
    /// then you should ensure that you delegate this method as well.
    fn row_metadata(out: &mut Vec<Self::TypeMetadata>, lookup: &Self::MetadataLookup) {
        out.push(Self::metadata(lookup))
    }
}

/// A marker trait indicating that a SQL type is not null.
///
/// All SQL types must implement this trait.
pub trait NotNull {}

/// Converts a type which may or may not be nullable into its nullable
/// representation.
pub trait IntoNullable {
    /// The nullable representation of this type.
    ///
    /// For all types except `Nullable`, this will be `Nullable<Self>`.
    type Nullable;
}

impl<T: NotNull> IntoNullable for T {
    type Nullable = Nullable<T>;
}

impl<T: NotNull> IntoNullable for Nullable<T> {
    type Nullable = Nullable<T>;
}

/// A marker trait indicating that a SQL type represents a single value, as
/// opposed to a list of values.
///
/// This trait should generally be implemented for all SQL types with the
/// exception of Rust tuples. If a column could have this as its type, this
/// trait should be implemented.
pub trait SingleValue {}

impl<T: NotNull + SingleValue> SingleValue for Nullable<T> {}

/// Deserialize a single field of a given SQL type.
///
/// When possible, implementations of this trait should prefer to use an
/// existing implementation, rather than reading from `bytes`. (For example, if
/// you are implementing this for an enum which is represented as an integer in
/// the database, prefer `i32::from_sql(bytes)` over reading from `bytes`
/// directly)
///
/// ### Backend specific details
///
/// - For PostgreSQL, the bytes will be sent using the binary protocol, not text.
/// - For SQLite, the actual type of `DB::RawValue` is private API. All
///   implementations of this trait must be written in terms of an existing
///   primitive.
/// - For MySQL, the value of `bytes` will depend on the return value of
///   `type_metadata` for the given SQL type. See [`MysqlType`] for details.
/// - For third party backends, consult that backend's documentation.
///
/// [`MysqlType`]: ../mysql/enum.MysqlType.html
pub trait FromSql<A, DB: Backend + HasSqlType<A>>: Sized {
    /// See the trait documentation.
    fn from_sql(bytes: Option<&DB::RawValue>) -> Result<Self, Box<Error + Send + Sync>>;
}

/// Deserialize one or more fields.
///
/// All types which implement `FromSql` should also implement this trait. This
/// trait differs from `FromSql` in that it is also implemented by tuples.
///
/// In the future, we hope to be able to provide a blanket impl of this trait
/// for all types which implement `FromSql`. However, as of Diesel 1.0, such an
/// impl would conflict with our impl for tuples.
pub trait FromSqlRow<A, DB: Backend + HasSqlType<A>>: Sized {
    /// The number of fields that this type will consume. Must be equal to
    /// the number of times you would call `row.take()` in `build_from_row`
    const FIELDS_NEEDED: usize = 1;

    /// See the trait documentation.
    fn build_from_row<T: Row<DB>>(row: &mut T) -> Result<Self, Box<Error + Send + Sync>>;
}

// Reasons we can't write this:
//
// impl<T, ST, DB> FromSqlRow<ST, DB> for T
// where
//     DB: Backend + HasSqlType<ST>,
//     T: FromSql<ST, DB>,
// {
//     fn build_from_row<T: Row<DB>>(row: &mut T) -> Result<Self, Box<Error + Send + Sync>> {
//         Self::from_sql(row.take())
//     }
// }
//
// (this is mostly here so @sgrif has a better reference every time he thinks
// he's somehow had a breakthrough on solving this problem):
//
// - It conflicts with our impl for tuples, because `DB` is a bare type
//   parameter, it could in theory be a local type for some other impl.
//   - This is fixed by replacing our impl with 3 impls, where `DB` is changed
//     concrete backends. This would mean that any third party crates adding new
//     backends would need to add the tuple impls, which sucks but is fine.
// - It conflicts with our impl for `Option`
//   - So we could in theory fix this by both splitting the generic impl into
//     backend specific impls, and removing the `FromSql` impls. In theory there
//     is no reason that it needs to implement `FromSql`, since everything
//     requires `FromSqlRow`, but it really feels like it should.
//   - Specialization might also fix this one. The impl isn't quite a strict
//     subset (the `FromSql` impl has `T: FromSql`, and the `FromSqlRow` impl
//     has `T: FromSqlRow`), but if `FromSql` implies `FromSqlRow`,
//     specialization might consdier that a subset?
// - I don't know that we really need it. `#[derive(FromSqlRow)]` is probably
//   good enough. That won't improve our own codebase, since 99% of our
//   `FromSqlRow` impls are for types from another crate, but it's almost
//   certainly good enough for user types.
//   - Still, it really feels like `FromSql` *should* be able to imply both
//   `FromSqlRow` and `Queryable`

#[derive(Debug, Copy, Clone, PartialEq, Eq)]
/// Tiny enum to make the return type of `ToSql` more descriptive
pub enum IsNull {
    /// No data was written, as this type is null
    Yes,
    /// The value is not null
    ///
    /// This does not necessarily mean that any data was written to the buffer.
    /// For example, an empty string has no data to be sent over the wire, but
    /// also is not null.
    No,
}

/// Wraps a buffer to be written by `ToSql` with additional backend specific
/// utilities.
#[derive(Clone, Copy)]
pub struct ToSqlOutput<'a, T, DB>
where
    DB: TypeMetadata,
    DB::MetadataLookup: 'a,
{
    out: T,
    metadata_lookup: &'a DB::MetadataLookup,
}

impl<'a, T, DB: TypeMetadata> ToSqlOutput<'a, T, DB> {
    /// Construct a new `ToSqlOutput`
    pub fn new(out: T, metadata_lookup: &'a DB::MetadataLookup) -> Self {
        ToSqlOutput {
            out,
            metadata_lookup,
        }
    }

    /// Create a new `ToSqlOutput` with the given buffer
    pub fn with_buffer<U>(&self, new_out: U) -> ToSqlOutput<'a, U, DB> {
        ToSqlOutput {
            out: new_out,
            metadata_lookup: self.metadata_lookup,
        }
    }

    /// Return the raw buffer this type is wrapping
    pub fn into_inner(self) -> T {
        self.out
    }

    /// Returns the backend's mechanism for dynamically looking up type
    /// metadata at runtime, if relevant for the given backend.
    pub fn metadata_lookup(&self) -> &'a DB::MetadataLookup {
        self.metadata_lookup
    }
}

#[cfg(test)]
impl<DB: TypeMetadata> ToSqlOutput<'static, Vec<u8>, DB> {
    /// Returns a `ToSqlOutput` suitable for testing `ToSql` implementations.
    /// Unsafe to use for testing types which perform dynamic metadata lookup.
    pub fn test() -> Self {
        use std::mem;
        #[cfg_attr(feature = "clippy", allow(invalid_ref))]
        Self::new(Vec::new(), unsafe { mem::uninitialized() })
    }
}

impl<'a, T: Write, DB: TypeMetadata> Write for ToSqlOutput<'a, T, DB> {
    fn write(&mut self, buf: &[u8]) -> io::Result<usize> {
        self.out.write(buf)
    }

    fn flush(&mut self) -> io::Result<()> {
        self.out.flush()
    }

    fn write_all(&mut self, buf: &[u8]) -> io::Result<()> {
        self.out.write_all(buf)
    }

    fn write_fmt(&mut self, fmt: fmt::Arguments) -> io::Result<()> {
        self.out.write_fmt(fmt)
    }
}

impl<'a, T, DB: TypeMetadata> Deref for ToSqlOutput<'a, T, DB> {
    type Target = T;

    fn deref(&self) -> &Self::Target {
        &self.out
    }
}

impl<'a, T, DB: TypeMetadata> DerefMut for ToSqlOutput<'a, T, DB> {
    fn deref_mut(&mut self) -> &mut Self::Target {
        &mut self.out
    }
}

impl<'a, T, U, DB> PartialEq<U> for ToSqlOutput<'a, T, DB>
where
    DB: TypeMetadata,
    T: PartialEq<U>,
{
    fn eq(&self, rhs: &U) -> bool {
        self.out == *rhs
    }
}

impl<'a, T, DB> fmt::Debug for ToSqlOutput<'a, T, DB>
where
    T: fmt::Debug,
    DB: TypeMetadata,
{
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        self.out.fmt(f)
    }
}

/// Serializes a single value to be sent to the database.
///
/// The output is sent as a bind parameter, and the data must be written in the
/// expected format for the given backend.
///
/// When possible, implementations of this trait should prefer using an existing
/// implementation, rather than writing to `out` directly. (For example, if you
/// are implementing this for an enum, which is represented as an integer in the
/// database, you should use `i32::to_sql(x, out)` instead of writing to `out`
/// yourself.
///
/// ### Backend specific details
///
/// - For PostgreSQL, the bytes will be sent using the binary protocol, not text.
/// - For SQLite, all implementations should be written in terms of an existing
///   `ToSql` implementation.
/// - For MySQL, the expected bytes will depend on the return value of
///   `type_metadata` for the given SQL type. See [`MysqlType`] for details.
/// - For third party backends, consult that backend's documentation.
///
/// [`MysqlType`]: ../mysql/enum.MysqlType.html
pub trait ToSql<A, DB: Backend + HasSqlType<A>>: fmt::Debug {
    /// See the trait documentation.
    fn to_sql<W: Write>(
        &self,
        out: &mut ToSqlOutput<W, DB>,
    ) -> Result<IsNull, Box<Error + Send + Sync>>;
}

impl<'a, A, T, DB> ToSql<A, DB> for &'a T
where
    DB: Backend + HasSqlType<A>,
    T: ToSql<A, DB> + ?Sized,
{
    fn to_sql<W: Write>(
        &self,
        out: &mut ToSqlOutput<W, DB>,
    ) -> Result<IsNull, Box<Error + Send + Sync>> {
        (*self).to_sql(out)
    }
}