1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
//! This modules contains an assortment of types required for interpreting DICOM data elements.
//! It comprises a variety of basic data types, such as the DICOM attribute tag, the
//! element header, and element composite types.

use crate::value::{
    CastValueError, ConvertValueError, DataSetSequence, DicomDate, DicomDateTime, DicomTime,
    InMemFragment, PrimitiveValue, Value, C,
};
use num_traits::NumCast;
use snafu::{ensure, Backtrace, Snafu};
use std::borrow::Cow;
use std::cmp::Ordering;
use std::fmt;
use std::str::{from_utf8, FromStr};

/// Error type for issues constructing a sequence item header.
#[derive(Debug, Snafu)]
#[non_exhaustive]
pub enum SequenceItemHeaderError {
    /// Unexpected header tag.
    /// Only Item (0xFFFE, 0xE000),
    /// Item Delimiter (0xFFFE, 0xE00D),
    /// or Sequence Delimiter (0xFFFE, 0xE0DD)
    /// are admitted.
    #[snafu(display("Unexpected tag {}", tag))]
    UnexpectedTag { tag: Tag, backtrace: Backtrace },
    /// Unexpected delimiter value length.
    /// Must be zero for item delimiters.
    #[snafu(display("Unexpected delimiter length {}", len))]
    UnexpectedDelimiterLength { len: Length, backtrace: Backtrace },
}

type Result<T, E = SequenceItemHeaderError> = std::result::Result<T, E>;

/// Trait for any DICOM entity (element or item) which may have a length.
pub trait HasLength {
    /// Retrieve the value data's length as specified by the data element or
    /// item, in bytes.
    ///
    /// It is named `length` to make it distinct from the conventional method
    /// signature `len(&self) -> usize` for the number of elements of a
    /// collection.
    ///
    /// According to the standard, the concrete value size may be undefined,
    /// which can be the case for sequence elements or specific primitive
    /// values.
    fn length(&self) -> Length;

    /// Check whether the value is empty (0 length).
    fn is_empty(&self) -> bool {
        self.length() == Length(0)
    }
}

/// A trait for a data type containing a DICOM header.
#[allow(clippy::len_without_is_empty)]
pub trait Header: HasLength {
    /// Retrieve the element's tag as a `(group, element)` tuple.
    fn tag(&self) -> Tag;

    /// Check whether this is the header of an item.
    fn is_item(&self) -> bool {
        self.tag() == Tag(0xFFFE, 0xE000)
    }

    /// Check whether this is the header of an item delimiter.
    fn is_item_delimiter(&self) -> bool {
        self.tag() == Tag(0xFFFE, 0xE00D)
    }

    /// Check whether this is the header of a sequence delimiter.
    fn is_sequence_delimiter(&self) -> bool {
        self.tag() == Tag(0xFFFE, 0xE0DD)
    }

    /// Check whether this is the header of an encapsulated pixel data.
    fn is_encapsulated_pixeldata(&self) -> bool {
        self.tag() == Tag(0x7FE0, 0x0010) && self.length().is_undefined()
    }
}

/// Stub type representing a non-existing DICOM object.
///
/// This type implements [`HasLength`], but cannot be instantiated.
/// This makes it so that [`Value<EmptyObject>`] is sure to be either
/// a primitive value,
/// a pixel data fragment sequence,
/// or a sequence with no items.
#[derive(Debug, Copy, Clone, Eq, Hash, PartialEq, Ord, PartialOrd)]
pub enum EmptyObject {}

impl HasLength for EmptyObject {
    fn length(&self) -> Length {
        unreachable!()
    }
}

/// A data type that represents and owns a DICOM data element.
///
/// This type is capable of representing any data element fully in memory,
/// whether it be a primitive value,
/// a nested data set (where `I` is the object type for data set items),
/// or an encapsulated pixel data sequence (each item of type `P`).
/// The type parameter `I` should usually implement [`HasLength`],
/// whereas `P` should usually implement `AsRef<[u8]>`.
#[derive(Debug, PartialEq, Clone)]
pub struct DataElement<I = EmptyObject, P = InMemFragment> {
    header: DataElementHeader,
    value: Value<I, P>,
}

/// A data type that represents and owns a DICOM data element
/// containing a primitive value.
#[derive(Debug, PartialEq, Clone)]
pub struct PrimitiveDataElement {
    header: DataElementHeader,
    value: PrimitiveValue,
}

impl PrimitiveDataElement {
    /// Main constructor for a primitive data element.
    pub fn new(header: DataElementHeader, value: PrimitiveValue) -> Self {
        PrimitiveDataElement { header, value }
    }
}

impl<I, P> From<PrimitiveDataElement> for DataElement<I, P> {
    fn from(o: PrimitiveDataElement) -> Self {
        DataElement {
            header: o.header,
            value: o.value.into(),
        }
    }
}

/// A data type that represents a DICOM data element with
/// a borrowed value.
#[derive(Debug, PartialEq, Clone)]
pub struct DataElementRef<'v, I: 'v, P: 'v> {
    header: DataElementHeader,
    value: &'v Value<I, P>,
}

/// A data type that represents a DICOM data element with
/// a borrowed primitive value.
#[derive(Debug, PartialEq, Clone)]
pub struct PrimitiveDataElementRef<'v> {
    header: DataElementHeader,
    value: &'v PrimitiveValue,
}

impl<'a> PrimitiveDataElementRef<'a> {
    /// Main constructor for a primitive data element reference.
    pub fn new(header: DataElementHeader, value: &'a PrimitiveValue) -> Self {
        PrimitiveDataElementRef { header, value }
    }
}
impl<I, P> HasLength for DataElement<I, P> {
    #[inline]
    fn length(&self) -> Length {
        self.header.length()
    }
}

impl<I, P> Header for DataElement<I, P> {
    #[inline]
    fn tag(&self) -> Tag {
        self.header.tag()
    }
}

impl<I, P> HasLength for &DataElement<I, P> {
    #[inline]
    fn length(&self) -> Length {
        (**self).length()
    }
}

impl<'a, I, P> Header for &'a DataElement<I, P> {
    #[inline]
    fn tag(&self) -> Tag {
        (**self).tag()
    }
}

impl<'v, I, P> HasLength for DataElementRef<'v, I, P> {
    #[inline]
    fn length(&self) -> Length {
        self.header.length()
    }
}

impl<'v, I, P> Header for DataElementRef<'v, I, P> {
    #[inline]
    fn tag(&self) -> Tag {
        self.header.tag()
    }
}

impl<I, P> DataElement<I, P> {
    /// Create an empty data element.
    pub fn empty(tag: Tag, vr: VR) -> Self {
        DataElement {
            header: DataElementHeader {
                tag,
                vr,
                len: Length(0),
            },
            value: if vr == VR::SQ {
                DataSetSequence::empty().into()
            } else {
                PrimitiveValue::Empty.into()
            },
        }
    }

    /// Retrieve the element header.
    pub fn header(&self) -> &DataElementHeader {
        &self.header
    }

    /// Retrieve the value representation, which may be unknown or not
    /// applicable.
    pub fn vr(&self) -> VR {
        self.header.vr()
    }

    /// Retrieve the data value.
    pub fn value(&self) -> &Value<I, P> {
        &self.value
    }

    /// Move the data value out of the element, discarding the rest. If the
    /// value is a sequence, its lifetime may still be bound to its original
    /// source.
    pub fn into_value(self) -> Value<I, P> {
        self.value
    }

    /// Split the constituent parts of this element into a tuple.
    /// If the value is a sequence,
    /// its lifetime may still be bound to the original source.
    pub fn into_parts(self) -> (DataElementHeader, Value<I, P>) {
        (self.header, self.value)
    }

    /// Obtain a temporary mutable reference to the value,
    /// so that mutations can be applied within.
    ///
    /// Once updated, the header is automatically updated
    /// based on this set of rules:
    ///
    /// - if the value is a data set sequence,
    ///   the VR is set to `SQ` and the length is reset to undefined;
    /// - if the value is a pixel data fragment sequence,
    ///   the VR is set to `OB` and the lenght is reset to undefined;
    /// - if the value is primitive,
    ///   the length is recalculated, leaving the VR as is.
    ///
    /// If these rules do not result in a valid element,
    /// consider reconstructing the data element instead.
    pub fn update_value(&mut self, mut f: impl FnMut(&mut Value<I, P>)) {
        f(&mut self.value);
        match &mut self.value {
            Value::Primitive(v) => {
                let byte_len = v.calculate_byte_len();
                self.header.len = Length(byte_len as u32);
            }
            Value::Sequence(_) => {
                self.header.vr = VR::SQ;
                self.header.len = Length::UNDEFINED;
            }
            Value::PixelSequence(_) => {
                self.header.vr = VR::OB;
                self.header.len = Length::UNDEFINED;
            }
        }
    }
}

impl<I, P> DataElement<I, P>
where
    I: HasLength,
{
    /// Create a data element from the given parts,
    /// where the length is inferred from the value's byte length.
    ///
    /// If the value is textual,
    /// the byte length of that value encoded in UTF-8 is assumed.
    /// If you already have a length in this context,
    /// prefer calling `new_with_len` instead.
    ///
    /// This method will not check whether the value representation is
    /// compatible with the given value.
    pub fn new<T>(tag: Tag, vr: VR, value: T) -> Self
    where
        T: Into<Value<I, P>>,
    {
        let value = value.into();
        DataElement {
            header: DataElementHeader {
                tag,
                vr,
                len: value.length(),
            },
            value,
        }
    }

    /// Create a primitive data element from the given parts.
    ///
    /// This method will not check
    /// whether the length accurately represents the given value's byte length,
    /// nor whether the value representation is compatible with the value.
    pub fn new_with_len<T>(tag: Tag, vr: VR, length: Length, value: T) -> Self
    where
        T: Into<Value<I, P>>,
    {
        let value = value.into();
        DataElement {
            header: DataElementHeader {
                tag,
                vr,
                len: length,
            },
            value,
        }
    }

    /// Retrieve the element's value as a single clean string,
    /// with no trailing whitespace.
    ///
    /// Returns an error if the value is not primitive.
    pub fn to_str(&self) -> Result<Cow<str>, ConvertValueError> {
        self.value.to_str()
    }

    /// Retrieve the element's value as a single raw string,
    /// with trailing whitespace kept.
    ///
    /// Returns an error if the value is not primitive.
    pub fn to_raw_str(&self) -> Result<Cow<str>, ConvertValueError> {
        self.value.to_raw_str()
    }

    /// Convert the full primitive value into raw bytes.
    ///
    /// String values already encoded with the `Str` and `Strs` variants
    /// are provided in UTF-8.
    ///
    /// Returns an error if the value is not primitive.
    pub fn to_bytes(&self) -> Result<Cow<[u8]>, ConvertValueError> {
        self.value.to_bytes()
    }

    /// Convert the full value of the data element into a sequence of strings.
    ///
    /// If the value is a primitive, it will be converted into
    /// a vector of strings as described in [`PrimitiveValue::to_multi_str`].
    ///
    /// Returns an error if the value is not primitive.
    ///
    /// [`PrimitiveValue::to_multi_str`]: ../enum.PrimitiveValue.html#to_multi_str
    pub fn to_multi_str(&self) -> Result<Cow<[String]>, CastValueError> {
        self.value().to_multi_str()
    }

    /// Retrieve and convert the value of the data element into an integer.
    ///
    /// If the value is a primitive,
    /// it will be converted into an integer
    /// as described in [`PrimitiveValue::to_int`].
    ///
    /// Returns an error if the value is not primitive.
    ///
    /// [`PrimitiveValue::to_int`]: ../enum.PrimitiveValue.html#to_int
    pub fn to_int<T>(&self) -> Result<T, ConvertValueError>
    where
        T: Clone,
        T: NumCast,
        T: FromStr<Err = std::num::ParseIntError>,
    {
        self.value().to_int()
    }

    /// Retrieve and convert the value of the data element
    /// into a sequence of integers.
    ///
    /// If the value is a primitive, it will be converted into
    /// a vector of integers as described in [PrimitiveValue::to_multi_int].
    ///
    /// [PrimitiveValue::to_multi_int]: ../enum.PrimitiveValue.html#to_multi_int
    pub fn to_multi_int<T>(&self) -> Result<Vec<T>, ConvertValueError>
    where
        T: Clone,
        T: NumCast,
        T: FromStr<Err = std::num::ParseIntError>,
    {
        self.value().to_multi_int()
    }

    /// Retrieve and convert the value of the data element
    /// into a single-precision floating point number.
    ///
    /// If the value is a primitive, it will be converted into
    /// a number as described in [`PrimitiveValue::to_float32`].
    ///
    /// Returns an error if the value is not primitive.
    ///
    /// [`PrimitiveValue::to_float32`]: ../enum.PrimitiveValue.html#to_float32
    pub fn to_float32(&self) -> Result<f32, ConvertValueError> {
        self.value().to_float32()
    }

    /// Retrieve and convert the value of the data element
    /// into a sequence of single-precision floating point numbers.
    ///
    /// If the value is a primitive, it will be converted into
    /// a vector of numbers as described in [`PrimitiveValue::to_multi_float32`].
    ///
    /// Returns an error if the value is not primitive.
    ///
    /// [`PrimitiveValue::to_multi_float32`]: ../enum.PrimitiveValue.html#to_multi_float32
    pub fn to_multi_float32(&self) -> Result<Vec<f32>, ConvertValueError> {
        self.value().to_multi_float32()
    }

    /// Retrieve and convert the value of the data element
    /// into a double-precision floating point number.
    ///
    /// If the value is a primitive, it will be converted into
    /// a number as described in [`PrimitiveValue::to_float64`].
    ///
    /// Returns an error if the value is not primitive.
    ///
    /// [`PrimitiveValue::to_float64`]: ../enum.PrimitiveValue.html#to_float64
    pub fn to_float64(&self) -> Result<f64, ConvertValueError> {
        self.value().to_float64()
    }

    /// Retrieve and convert the value of the data element
    /// into a sequence of double-precision floating point numbers.
    ///
    /// If the value is a primitive, it will be converted into
    /// a vector of numbers as described in [`PrimitiveValue::to_multi_float64`].
    ///
    /// Returns an error if the value is not primitive.
    ///
    /// [`PrimitiveValue::to_multi_float64`]: ../enum.PrimitiveValue.html#to_multi_float64
    pub fn to_multi_float64(&self) -> Result<Vec<f64>, ConvertValueError> {
        self.value().to_multi_float64()
    }

    /// Retrieve and convert the primitive value into a date.
    ///
    /// If the value is a primitive, it will be converted into
    /// a `DicomDate` as described in [`PrimitiveValue::to_date`].
    ///
    /// Returns an error if the value is not primitive.
    ///
    pub fn to_date(&self) -> Result<DicomDate, ConvertValueError> {
        self.value().to_date()
    }

    /// Retrieve and convert the primitive value into a sequence of dates.
    ///
    /// If the value is a primitive, it will be converted into
    /// a vector of `DicomDate` as described in [`PrimitiveValue::to_multi_date`].
    ///
    /// Returns an error if the value is not primitive.
    ///
    pub fn to_multi_date(&self) -> Result<Vec<DicomDate>, ConvertValueError> {
        self.value().to_multi_date()
    }

    /// Retrieve and convert the primitive value into a time.
    ///
    /// If the value is a primitive, it will be converted into
    /// a `DicomTime` as described in [`PrimitiveValue::to_time`].
    ///
    /// Returns an error if the value is not primitive.
    ///
    pub fn to_time(&self) -> Result<DicomTime, ConvertValueError> {
        self.value().to_time()
    }

    /// Retrieve and convert the primitive value into a sequence of times.
    ///
    /// If the value is a primitive, it will be converted into
    /// a vector of `DicomTime` as described in [`PrimitiveValue::to_multi_time`].
    ///
    /// Returns an error if the value is not primitive.
    ///
    pub fn to_multi_time(&self) -> Result<Vec<DicomTime>, ConvertValueError> {
        self.value().to_multi_time()
    }

    /// Retrieve and convert the primitive value into a date-time.
    ///
    /// If the value is a primitive, it will be converted into
    /// a `DicomDateTime` as described in [`PrimitiveValue::to_datetime`].
    ///
    /// Returns an error if the value is not primitive.
    ///
    pub fn to_datetime(&self) -> Result<DicomDateTime, ConvertValueError> {
        self.value().to_datetime()
    }

    /// Retrieve and convert the primitive value into a sequence of date-times.
    ///
    /// If the value is a primitive, it will be converted into
    /// a vector of `DicomDateTime` as described in [`PrimitiveValue::to_multi_datetime`].
    ///
    /// Returns an error if the value is not primitive.
    ///
    pub fn to_multi_datetime(&self) -> Result<Vec<DicomDateTime>, ConvertValueError> {
        self.value().to_multi_datetime()
    }

    /// Retrieve the items stored in a sequence value.
    ///
    /// Returns `None` if the underlying value is not a data set sequence.
    pub fn items(&self) -> Option<&[I]> {
        self.value().items()
    }

    /// Gets a mutable reference to the items of a sequence value.
    ///
    /// The header's recorded length is automatically reset to undefined,
    /// in order to prevent inconsistencies.
    ///
    /// Returns `None` if the underlying value is not a data set sequence.
    pub fn items_mut(&mut self) -> Option<&mut C<I>> {
        self.header.len = Length::UNDEFINED;
        self.value.items_mut()
    }

    /// Retrieve the fragments stored in a pixel data sequence value.
    ///
    /// Returns `None` if the value is not a pixel data sequence.
    pub fn fragments(&self) -> Option<&[P]> {
        self.value().fragments()
    }

    /// Obtain a mutable reference to the fragments
    /// stored in a pixel data sequence value.
    ///
    /// The header's recorded length is automatically reset to undefined,
    /// in order to prevent inconsistencies.
    ///
    /// Returns `None` if the value is not a pixel data sequence.
    pub fn fragments_mut(&mut self) -> Option<&mut C<P>> {
        self.header.len = Length::UNDEFINED;
        self.value.fragments_mut()
    }

    /// Obtain a reference to the encapsulated pixel data's basic offset table.
    ///
    /// Returns `None` if the underlying value is not a pixel data sequence.
    pub fn offset_table(&self) -> Option<&[u32]> {
        self.value().offset_table()
    }
}

impl<'v, I, P> DataElementRef<'v, I, P>
where
    I: HasLength,
{
    /// Create a data element from the given parts. This method will not check
    /// whether the value representation is compatible with the value. Caution
    /// is advised.
    pub fn new(tag: Tag, vr: VR, value: &'v Value<I, P>) -> Self {
        DataElementRef {
            header: DataElementHeader {
                tag,
                vr,
                len: value.length(),
            },
            value,
        }
    }

    /// Retrieves the element's value representation, which can be unknown.
    pub fn vr(&self) -> VR {
        self.header.vr()
    }

    /// Retrieves the DICOM value.
    pub fn value(&self) -> &Value<I, P> {
        self.value
    }
}

/// Macro for implementing getters to single and multi-values,
/// by delegating to `Value`.
///
/// Should be placed inside `DataElement`'s impl block.
macro_rules! impl_primitive_getters {
    ($name_single: ident, $name_multi: ident, $variant: ident, $ret: ty) => {
        /// Get a single value of the requested type.
        ///
        /// If it contains multiple values,
        /// only the first one is returned.
        /// An error is returned if the variant is not compatible.
        pub fn $name_single(&self) -> Result<$ret, CastValueError> {
            self.value().$name_single()
        }

        /// Get a sequence of values of the requested type without copying.
        ///
        /// An error is returned if the variant is not compatible.
        pub fn $name_multi(&self) -> Result<&[$ret], CastValueError> {
            self.value().$name_multi()
        }
    };
}

impl<I, P> DataElement<I, P> {
    /// Get a single string value.
    ///
    /// If it contains multiple strings,
    /// only the first one is returned.
    ///
    /// An error is returned if the variant is not compatible.
    ///
    /// To enable conversions of other variants to a textual representation,
    /// see [`to_str()`] instead.
    ///
    /// [`to_str()`]: #method.to_str
    pub fn string(&self) -> Result<&str, CastValueError> {
        self.value().string()
    }

    /// Get the inner sequence of string values
    /// if the variant is either `Str` or `Strs`.
    ///
    /// An error is returned if the variant is not compatible.
    ///
    /// To enable conversions of other variants to a textual representation,
    /// see [`to_str()`] instead.
    ///
    /// [`to_str()`]: #method.to_str
    pub fn strings(&self) -> Result<&[String], CastValueError> {
        self.value().strings()
    }

    impl_primitive_getters!(date, dates, Date, DicomDate);
    impl_primitive_getters!(time, times, Time, DicomTime);
    impl_primitive_getters!(datetime, datetimes, DateTime, DicomDateTime);
    impl_primitive_getters!(uint8, uint8_slice, U8, u8);
    impl_primitive_getters!(uint16, uint16_slice, U16, u16);
    impl_primitive_getters!(int16, int16_slice, I16, i16);
    impl_primitive_getters!(uint32, uint32_slice, U32, u32);
    impl_primitive_getters!(int32, int32_slice, I32, i32);
    impl_primitive_getters!(int64, int64_slice, I64, i64);
    impl_primitive_getters!(uint64, uint64_slice, U64, u64);
    impl_primitive_getters!(float32, float32_slice, F32, f32);
    impl_primitive_getters!(float64, float64_slice, F64, f64);
}

/// A data structure for a data element header, containing
/// a tag, value representation and specified length.
#[derive(Debug, PartialEq, Clone, Copy)]
pub struct DataElementHeader {
    /// DICOM tag
    pub tag: Tag,
    /// Value Representation
    pub vr: VR,
    /// Element length
    pub len: Length,
}

impl HasLength for DataElementHeader {
    #[inline]
    fn length(&self) -> Length {
        self.len
    }
}

impl Header for DataElementHeader {
    #[inline]
    fn tag(&self) -> Tag {
        self.tag
    }
}

impl DataElementHeader {
    /// Create a new data element header with the given properties.
    /// This is just a trivial constructor.
    #[inline]
    pub fn new<T: Into<Tag>>(tag: T, vr: VR, len: Length) -> DataElementHeader {
        DataElementHeader {
            tag: tag.into(),
            vr,
            len,
        }
    }

    /// Retrieve the element's value representation, which can be unknown.
    #[inline]
    pub fn vr(&self) -> VR {
        self.vr
    }

    /// Check whether the header suggests the value to be a sequence value:
    /// if the value representation is SQ or the length is undefined.
    #[inline]
    pub fn is_non_primitive(&self) -> bool {
        self.vr == VR::SQ || self.length().is_undefined()
    }
}

impl From<SequenceItemHeader> for DataElementHeader {
    fn from(value: SequenceItemHeader) -> DataElementHeader {
        DataElementHeader {
            tag: value.tag(),
            vr: VR::UN,
            len: value.length(),
        }
    }
}

/// Data type for describing a sequence item data element.
/// If the element represents an item, it will also contain
/// the specified length.
#[derive(Debug, PartialEq, Clone, Copy)]
pub enum SequenceItemHeader {
    /// The cursor contains an item.
    Item {
        /// the length of the item in bytes (can be 0xFFFFFFFF if undefined)
        len: Length,
    },
    /// The cursor read an item delimiter.
    /// The element ends here and should not be read any further.
    ItemDelimiter,
    /// The cursor read a sequence delimiter.
    /// The element ends here and should not be read any further.
    SequenceDelimiter,
}

impl SequenceItemHeader {
    /// Create a sequence item header using the element's raw properties.
    /// An error can be raised if the given properties do not relate to a
    /// sequence item, a sequence item delimiter or a sequence delimiter.
    pub fn new<T: Into<Tag>>(tag: T, len: Length) -> Result<SequenceItemHeader> {
        match tag.into() {
            Tag(0xFFFE, 0xE000) => {
                // item
                Ok(SequenceItemHeader::Item { len })
            }
            Tag(0xFFFE, 0xE00D) => {
                // item delimiter
                // delimiters should not have a positive length
                if len != Length(0) {
                    UnexpectedDelimiterLengthSnafu { len }.fail()
                } else {
                    Ok(SequenceItemHeader::ItemDelimiter)
                }
            }
            Tag(0xFFFE, 0xE0DD) => {
                // sequence delimiter
                Ok(SequenceItemHeader::SequenceDelimiter)
            }
            tag => UnexpectedTagSnafu { tag }.fail(),
        }
    }
}

impl HasLength for SequenceItemHeader {
    #[inline]
    fn length(&self) -> Length {
        match *self {
            SequenceItemHeader::Item { len } => len,
            SequenceItemHeader::ItemDelimiter | SequenceItemHeader::SequenceDelimiter => Length(0),
        }
    }
}
impl Header for SequenceItemHeader {
    #[inline]
    fn tag(&self) -> Tag {
        match *self {
            SequenceItemHeader::Item { .. } => Tag(0xFFFE, 0xE000),
            SequenceItemHeader::ItemDelimiter => Tag(0xFFFE, 0xE00D),
            SequenceItemHeader::SequenceDelimiter => Tag(0xFFFE, 0xE0DD),
        }
    }
}

/// An enum type for a DICOM value representation.
#[derive(Debug, Eq, PartialEq, Hash, Copy, Clone, Ord, PartialOrd)]
pub enum VR {
    /// Application Entity
    AE,
    /// Age String
    AS,
    /// Attribute Tag
    AT,
    /// Code String
    CS,
    /// Date
    DA,
    /// Decimal String
    DS,
    /// Date Time
    DT,
    /// Floating Point Single
    FL,
    /// Floating Point Double
    FD,
    /// Integer String
    IS,
    /// Long String
    LO,
    /// Long Text
    LT,
    /// Other Byte
    OB,
    /// Other Double
    OD,
    /// Other Float
    OF,
    /// Other Long
    OL,
    /// Other Very Long
    OV,
    /// Other Word
    OW,
    /// Person Name
    PN,
    /// Short String
    SH,
    /// Signed Long
    SL,
    /// Sequence of Items
    SQ,
    /// Signed Short
    SS,
    /// Short Text
    ST,
    /// Signed Very Long
    SV,
    /// Time
    TM,
    /// Unlimited Characters
    UC,
    /// Unique Identifier (UID)
    UI,
    /// Unsigned Long
    UL,
    /// Unknown
    UN,
    /// Universal Resource Identifier or Universal Resource Locator (URI/URL)
    UR,
    /// Unsigned Short
    US,
    /// Unlimited Text
    UT,
    /// Unsigned Very Long
    UV,
}

impl VR {
    /// Obtain the value representation corresponding to the given two bytes.
    /// Each byte should represent an alphabetic character in upper case.
    pub fn from_binary(chars: [u8; 2]) -> Option<Self> {
        from_utf8(chars.as_ref())
            .ok()
            .and_then(|s| VR::from_str(s).ok())
    }

    /// Retrieve a string representation of this VR.
    pub fn to_string(self) -> &'static str {
        use VR::*;
        match self {
            AE => "AE",
            AS => "AS",
            AT => "AT",
            CS => "CS",
            DA => "DA",
            DS => "DS",
            DT => "DT",
            FL => "FL",
            FD => "FD",
            IS => "IS",
            LO => "LO",
            LT => "LT",
            OB => "OB",
            OD => "OD",
            OF => "OF",
            OL => "OL",
            OV => "OV",
            OW => "OW",
            PN => "PN",
            SH => "SH",
            SL => "SL",
            SQ => "SQ",
            SS => "SS",
            ST => "ST",
            SV => "SV",
            TM => "TM",
            UC => "UC",
            UI => "UI",
            UL => "UL",
            UN => "UN",
            UR => "UR",
            US => "US",
            UT => "UT",
            UV => "UV",
        }
    }

    /// Retrieve a copy of this VR's byte representation.
    /// The function returns two alphabetic characters in upper case.
    pub fn to_bytes(self) -> [u8; 2] {
        let bytes = self.to_string().as_bytes();
        [bytes[0], bytes[1]]
    }
}

/// Obtain the value representation corresponding to the given string.
/// The string should hold exactly two UTF-8 encoded alphabetic characters
/// in upper case, otherwise no match is made.
impl FromStr for VR {
    type Err = &'static str;

    fn from_str(string: &str) -> std::result::Result<Self, Self::Err> {
        use VR::*;
        match string {
            "AE" => Ok(AE),
            "AS" => Ok(AS),
            "AT" => Ok(AT),
            "CS" => Ok(CS),
            "DA" => Ok(DA),
            "DS" => Ok(DS),
            "DT" => Ok(DT),
            "FL" => Ok(FL),
            "FD" => Ok(FD),
            "IS" => Ok(IS),
            "LO" => Ok(LO),
            "LT" => Ok(LT),
            "OB" => Ok(OB),
            "OD" => Ok(OD),
            "OF" => Ok(OF),
            "OL" => Ok(OL),
            "OV" => Ok(OV),
            "OW" => Ok(OW),
            "PN" => Ok(PN),
            "SH" => Ok(SH),
            "SL" => Ok(SL),
            "SQ" => Ok(SQ),
            "SS" => Ok(SS),
            "ST" => Ok(ST),
            "SV" => Ok(SV),
            "TM" => Ok(TM),
            "UC" => Ok(UC),
            "UI" => Ok(UI),
            "UL" => Ok(UL),
            "UN" => Ok(UN),
            "UR" => Ok(UR),
            "US" => Ok(US),
            "UT" => Ok(UT),
            "UV" => Ok(UV),
            _ => Err("no such value representation"),
        }
    }
}

impl fmt::Display for VR {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        f.write_str(VR::to_string(*self))
    }
}

/// Idiomatic alias for a tag's group number.
pub type GroupNumber = u16;
/// Idiomatic alias for a tag's element number.
pub type ElementNumber = u16;

/// The data type for DICOM data element tags.
///
/// Tags are composed by a (group, element) pair of 16-bit unsigned integers.
/// Aside from writing a struct expression,
/// a `Tag` may also be built by converting a `(u16, u16)` or a `[u16; 2]`.
///
/// In its text form,
/// DICOM tags are printed by [`Display`][display] in the form `(GGGG,EEEE)`,
/// where the group and element parts are in uppercase hexadecimal.
/// Moreover, its [`FromStr`] implementation
/// support converting strings in the following text formats into DICOM tags:
///
/// - `(GGGG,EEEE)`
/// - `GGGG,EEEE`
/// - `GGGGEEEE`
///
/// [display]: std::fmt::Display
///
/// # Example
///
/// ```
/// # use dicom_core::Tag;
/// let tag: Tag = "(0010,1005)".parse()?;
/// assert_eq!(tag, Tag(0x0010, 0x1005));
/// # Ok::<_, dicom_core::header::ParseTagError>(())
/// ```
#[derive(PartialEq, Eq, Hash, PartialOrd, Ord, Clone, Copy)]
pub struct Tag(pub GroupNumber, pub ElementNumber);

impl Tag {
    /// Getter for the tag's group value.
    #[inline]
    pub fn group(self) -> GroupNumber {
        self.0
    }

    /// Getter for the tag's element value.
    #[inline]
    pub fn element(self) -> ElementNumber {
        self.1
    }
}

impl fmt::Debug for Tag {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "Tag({:#06X?}, {:#06X?})", self.0, self.1)
    }
}

impl fmt::Display for Tag {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "({:04X},{:04X})", self.0, self.1)
    }
}

impl From<(u16, u16)> for Tag {
    #[inline]
    fn from(value: (u16, u16)) -> Tag {
        Tag(value.0, value.1)
    }
}

impl From<[u16; 2]> for Tag {
    #[inline]
    fn from(value: [u16; 2]) -> Tag {
        Tag(value[0], value[1])
    }
}

/// Could not parse DICOM tag
#[derive(Debug, Copy, Clone, Eq, Hash, PartialEq, Snafu)]
pub enum ParseTagError {
    /// expected tag start '('
    Start,
    /// expected tag part separator ','
    Separator,
    /// expected tag end ')'
    End,
    /// unexpected length
    Length,
    /// Illegal character for hexadecimal number
    Number,
}

/// This parser implementation for DICOM tags
/// accepts strictly one of the following formats:
/// - `ggggeeee`
/// - or `gggg,eeee`
/// - or `(gggg,eeee)`
///
/// where `gggg` and `eeee` are the characters representing
/// the group part an the element part in hexadecimal,
/// with four characters each.
/// Whitespace is not excluded automatically,
/// and may need to be removed before-parse
/// depending on the context.
/// Lowercase and uppercase characters are allowed.
impl FromStr for Tag {
    type Err = ParseTagError;

    fn from_str(s: &str) -> Result<Self, Self::Err> {
        match s.len() {
            11 => {
                // (gggg,eeee)
                ensure!(s.starts_with('('), StartSnafu);

                let (num_g, rest) = parse_tag_part(&s[1..])?;

                ensure!(rest.starts_with(','), SeparatorSnafu);

                let (num_e, rest) = parse_tag_part(&rest[1..])?;

                ensure!(rest == ")", EndSnafu);

                Ok(Tag(num_g, num_e))
            }
            9 => {
                // gggg,eeee
                let (num_g, rest) = parse_tag_part(s)?;

                ensure!(rest.starts_with(','), SeparatorSnafu);

                let (num_e, _) = parse_tag_part(&rest[1..])?;

                Ok(Tag(num_g, num_e))
            }
            8 => {
                // ggggeeee
                let (g, e) = s.split_at(4);
                let (num_g, _) = parse_tag_part(g)?;
                let (num_e, _) = parse_tag_part(e)?;

                Ok(Tag(num_g, num_e))
            }
            _ => Err(ParseTagError::Length),
        }
    }
}

fn parse_tag_part(s: &str) -> Result<(u16, &str), ParseTagError> {
    ensure!(s.is_char_boundary(4), NumberSnafu);

    let (num, rest) = s.split_at(4);
    ensure!(num.chars().all(|c| c.is_ascii_hexdigit()), NumberSnafu);

    let num = u16::from_str_radix(num, 16).expect("failed to parse tag part");
    Ok((num, rest))
}

/// A type for representing data set content length, in bytes.
/// An internal value of `0xFFFF_FFFF` represents an undefined
/// (unspecified) length, which would have to be determined
/// with a traversal based on the content's encoding.
///
/// This also means that numeric comparisons and arithmetic
/// do not function the same way as primitive number types:
///
/// Two length of undefined length are not equal.
///
/// ```
/// # use dicom_core::Length;
/// assert_ne!(Length::UNDEFINED, Length::UNDEFINED);
/// ```
///
/// Any addition or substraction with at least one undefined
/// length results in an undefined length.
///
/// ```
/// # use dicom_core::Length;
/// assert!((Length::defined(64) + Length::UNDEFINED).is_undefined());
/// assert!((Length::UNDEFINED + 8).is_undefined());
/// ```
///
/// Comparing between at least one undefined length is always `false`.
///
/// ```
/// # use dicom_core::Length;
/// assert!(Length::defined(16) < Length::defined(64));
/// assert!(!(Length::UNDEFINED < Length::defined(64)));
/// assert!(!(Length::UNDEFINED > Length::defined(64)));
///
/// assert!(!(Length::UNDEFINED < Length::UNDEFINED));
/// assert!(!(Length::UNDEFINED > Length::UNDEFINED));
/// assert!(!(Length::UNDEFINED <= Length::UNDEFINED));
/// assert!(!(Length::UNDEFINED >= Length::UNDEFINED));
/// ```
///
#[derive(Clone, Copy)]
pub struct Length(pub u32);

const UNDEFINED_LEN: u32 = 0xFFFF_FFFF;

impl Length {
    /// A length that is undefined.
    pub const UNDEFINED: Self = Length(UNDEFINED_LEN);

    /// Create a new length value from its internal representation.
    /// This is equivalent to `Length(len)`.
    #[inline]
    pub fn new(len: u32) -> Self {
        Length(len)
    }

    /// Create a new length value with the given number of bytes.
    ///
    /// # Panic
    ///
    /// This function will panic if `len` represents an undefined length.
    #[inline]
    pub fn defined(len: u32) -> Self {
        assert_ne!(len, UNDEFINED_LEN);
        Length(len)
    }
}

impl From<u32> for Length {
    #[inline]
    fn from(o: u32) -> Self {
        Length(o)
    }
}

impl PartialEq<Length> for Length {
    fn eq(&self, rhs: &Length) -> bool {
        match (self.0, rhs.0) {
            (UNDEFINED_LEN, _) | (_, UNDEFINED_LEN) => false,
            (l1, l2) => l1 == l2,
        }
    }
}

impl PartialOrd<Length> for Length {
    fn partial_cmp(&self, rhs: &Length) -> Option<Ordering> {
        match (self.0, rhs.0) {
            (UNDEFINED_LEN, _) | (_, UNDEFINED_LEN) => None,
            (l1, l2) => Some(l1.cmp(&l2)),
        }
    }
}

impl std::ops::Add<Length> for Length {
    type Output = Self;

    fn add(self, rhs: Length) -> Self::Output {
        match (self.0, rhs.0) {
            (UNDEFINED_LEN, _) | (_, UNDEFINED_LEN) => Length::UNDEFINED,
            (l1, l2) => {
                let o = l1 + l2;
                debug_assert!(
                    o != UNDEFINED_LEN,
                    "integer overflow (0xFFFF_FFFF reserved for undefined length)"
                );
                Length(o)
            }
        }
    }
}

impl std::ops::Add<i32> for Length {
    type Output = Self;

    fn add(self, rhs: i32) -> Self::Output {
        match self.0 {
            UNDEFINED_LEN => Length::UNDEFINED,
            len => {
                let o = (len as i32 + rhs) as u32;
                debug_assert!(
                    o != UNDEFINED_LEN,
                    "integer overflow (0xFFFF_FFFF reserved for undefined length)"
                );

                Length(o)
            }
        }
    }
}

impl std::ops::Sub<Length> for Length {
    type Output = Self;

    fn sub(self, rhs: Length) -> Self::Output {
        let mut o = self;
        o -= rhs;
        o
    }
}

impl std::ops::SubAssign<Length> for Length {
    fn sub_assign(&mut self, rhs: Length) {
        match (self.0, rhs.0) {
            (UNDEFINED_LEN, _) | (_, UNDEFINED_LEN) => (), // no-op
            (_, l2) => {
                self.0 -= l2;
                debug_assert!(
                    self.0 != UNDEFINED_LEN,
                    "integer overflow (0xFFFF_FFFF reserved for undefined length)"
                );
            }
        }
    }
}

impl std::ops::Sub<i32> for Length {
    type Output = Self;

    fn sub(self, rhs: i32) -> Self::Output {
        let mut o = self;
        o -= rhs;
        o
    }
}

impl std::ops::SubAssign<i32> for Length {
    fn sub_assign(&mut self, rhs: i32) {
        match self.0 {
            UNDEFINED_LEN => (), // no-op
            len => {
                self.0 = (len as i32 - rhs) as u32;
                debug_assert!(
                    self.0 != UNDEFINED_LEN,
                    "integer overflow (0xFFFF_FFFF reserved for undefined length)"
                );
            }
        }
    }
}

impl Length {
    /// Check whether this length is undefined (unknown).
    #[inline]
    pub fn is_undefined(self) -> bool {
        self.0 == UNDEFINED_LEN
    }

    /// Check whether this length is well defined (not undefined).
    #[inline]
    pub fn is_defined(self) -> bool {
        !self.is_undefined()
    }

    /// Fetch the concrete length value, if available.
    /// Returns `None` if it represents an undefined length.
    #[inline]
    pub fn get(self) -> Option<u32> {
        match self.0 {
            UNDEFINED_LEN => None,
            v => Some(v),
        }
    }

    /// Check whether the length is equally specified as another length.
    /// Unlike the implemented `PartialEq`, two undefined lengths are
    /// considered equivalent by this method.
    #[inline]
    pub fn inner_eq(self, other: Length) -> bool {
        self.0 == other.0
    }
}

impl fmt::Debug for Length {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        match self.0 {
            UNDEFINED_LEN => f.write_str("Length(Undefined)"),
            l => f.debug_tuple("Length").field(&l).finish(),
        }
    }
}

impl fmt::Display for Length {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        match self.0 {
            UNDEFINED_LEN => f.write_str("U/L"),
            l => write!(f, "{}", &l),
        }
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use crate::{dicom_value, value::PixelFragmentSequence, DicomValue};

    #[test]
    fn to_clean_string() {
        let p = dicom_value!(U16, [256, 0, 16]);
        let val = DicomValue::new(p);
        let element = DataElement::new(Tag(0x0028, 0x3002), VR::US, val);
        assert_eq!(element.to_str().unwrap(), "256\\0\\16",);
    }

    #[test]
    fn tag_from_u16_pair() {
        let t = Tag::from((0x0010u16, 0x0020u16));
        assert_eq!(0x0010u16, t.group());
        assert_eq!(0x0020u16, t.element());
    }

    #[test]
    fn tag_from_u16_array() {
        let t = Tag::from([0x0010u16, 0x0020u16]);
        assert_eq!(0x0010u16, t.group());
        assert_eq!(0x0020u16, t.element());
    }

    /// Ensure good order between tags
    #[test]
    fn tag_ord() {
        assert_eq!(
            Tag(0x0010, 0x0020).cmp(&Tag(0x0010, 0x0020)),
            Ordering::Equal
        );

        assert_eq!(
            Tag(0x0010, 0x0020).cmp(&Tag(0x0010, 0x0024)),
            Ordering::Less
        );
        assert_eq!(
            Tag(0x0010, 0x0020).cmp(&Tag(0x0020, 0x0010)),
            Ordering::Less
        );
        assert_eq!(
            Tag(0x0010, 0x0020).cmp(&Tag(0x0020, 0x0024)),
            Ordering::Less
        );
        assert_eq!(
            Tag(0x0010, 0x0000).cmp(&Tag(0x0320, 0x0010)),
            Ordering::Less
        );

        assert_eq!(
            Tag(0x0010, 0x0020).cmp(&Tag(0x0010, 0x0010)),
            Ordering::Greater
        );
        assert_eq!(
            Tag(0x0012, 0x0020).cmp(&Tag(0x0010, 0x0024)),
            Ordering::Greater
        );
        assert_eq!(
            Tag(0x0012, 0x0020).cmp(&Tag(0x0010, 0x0010)),
            Ordering::Greater
        );
        assert_eq!(
            Tag(0x0012, 0x0020).cmp(&Tag(0x0012, 0x0010)),
            Ordering::Greater
        );
    }

    #[test]
    fn get_date_value() {
        let data_element: DataElement<_, _> = DataElement::new(
            Tag(0x0010, 0x0030),
            VR::DA,
            Value::new(PrimitiveValue::from("19941012")),
        );

        assert_eq!(
            data_element.to_date().unwrap(),
            DicomDate::from_ymd(1994, 10, 12).unwrap(),
        );
    }

    #[test]
    fn create_data_element_from_primitive() {
        let data_element: DataElement<EmptyObject, [u8; 0]> = DataElement::new(
            Tag(0x0028, 0x3002),
            VR::US,
            crate::dicom_value!(U16, [256, 0, 16]),
        );

        assert_eq!(data_element.uint16_slice().unwrap(), &[256, 0, 16]);
    }

    #[test]
    fn parse_tag() {
        // without parens nor comma separator
        let tag: Tag = "00280004".parse().unwrap();
        assert_eq!(tag, Tag(0x0028, 0x0004));
        // lowercase
        let tag: Tag = "7fe00001".parse().unwrap();
        assert_eq!(tag, Tag(0x7FE0, 0x0001));
        // uppercase
        let tag: Tag = "7FE00001".parse().unwrap();
        assert_eq!(tag, Tag(0x7FE0, 0x0001));

        // with parens, lowercase
        let tag: Tag = "(7fe0,0010)".parse().unwrap();
        assert_eq!(tag, Tag(0x7FE0, 0x0010));
        let tag: Tag = "(003a,001a)".parse().unwrap();
        assert_eq!(tag, Tag(0x003A, 0x001A));

        // with parens, uppercase
        let tag: Tag = "(7FE0,0010)".parse().unwrap();
        assert_eq!(tag, Tag(0x7FE0, 0x0010));
        let tag: Tag = "(003A,001A)".parse().unwrap();
        assert_eq!(tag, Tag(0x003A, 0x001A));

        // with parens, mixed case
        let tag: Tag = "(003a,001A)".parse().unwrap();
        assert_eq!(tag, Tag(0x003A, 0x001A));

        // without parens
        let tag: Tag = "7fe0,0010".parse().unwrap();
        assert_eq!(tag, Tag(0x7FE0, 0x0010));
        let tag: Tag = "003a,001a".parse().unwrap();
        assert_eq!(tag, Tag(0x003A, 0x001A));

        // error case: unsupported number forms
        let r: Result<Tag, _> = "+03a,0001".parse();
        assert_eq!(r, Err(ParseTagError::Number));
        // error case: bad start
        let r: Result<Tag, _> = "[baad,0123)".parse();
        assert_eq!(r, Err(ParseTagError::Start));
        // error case: bad end
        let r: Result<Tag, _> = "(baad,0123]".parse();
        assert_eq!(r, Err(ParseTagError::End));
        // error case: not enough characters
        let r: Result<Tag, _> = "(3a,1a)".parse();
        assert_eq!(r, Err(ParseTagError::Length));
        // error case: bad characters
        let r: Result<Tag, _> = "g00d,baad".parse();
        assert_eq!(r, Err(ParseTagError::Number));
        // error case: missing comma
        let r: Result<Tag, _> = "(baad&0123)".parse();
        assert_eq!(r, Err(ParseTagError::Separator));
        // error case: comma in the wrong place
        let r: Result<Tag, _> = "123,45678".parse();
        assert_eq!(r, Err(ParseTagError::Number));
        // error case: comma in the wrong place
        let r: Result<Tag, _> = "abcde,f01".parse();
        assert_eq!(r, Err(ParseTagError::Separator));
        // error case: comma instead of hex digit
        let r: Result<Tag, _> = "1234567,".parse();
        assert_eq!(r, Err(ParseTagError::Number));
    }

    #[test]
    fn test_update_value() {
        // can update a string value
        let mut e: DataElement<EmptyObject, InMemFragment> =
            DataElement::new(Tag(0x0010, 0x0010), VR::PN, "Doe^John");
        assert_eq!(e.length(), Length(8));
        e.update_value(|e| {
            *e = "Smith^John".into();
        });
        assert_eq!(e.length(), Length(10));

        // can update a pixel sequence
        let mut e: DataElement<EmptyObject, InMemFragment> = DataElement::new_with_len(
            Tag(0x7FE0, 0x0010),
            VR::OB,
            Length(0),
            PixelFragmentSequence::new_fragments(vec![]),
        );
        assert_eq!(e.length(), Length(0));

        e.update_value(|v| {
            let fragments = v.fragments_mut().unwrap();
            fragments.push(vec![0x00; 256]);
            fragments.push(vec![0x55; 256]);
            fragments.push(vec![0xCC; 256]);
        });

        assert!(e.length().is_undefined());
        assert_eq!(e.fragments().map(|f| f.len()), Some(3));
    }
}