1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
//! An [`embedded-hal`] driver for the world's lousiest humidity/temperature
//! sensors, the ubiquitous DHT11 (as seen in every beginners' Arduino kit and
//! high-school science fair project ever) and its slightly more expensive
//! cousin, the DHT22/AM2302.
//!
//! [`embedded-hal`]: https://crates.io/crates/embedded-hal
#![no_std]
use core::marker::PhantomData;
use embedded_hal::{blocking::delay, digital::v2 as digital};
pub mod kind;
use self::kind::DhtKind;

/// A DHT11 sensor.
///
/// These things are literally everywhere — you've definitely seen one and
/// probably own several.
///
/// A DHT11 is a small, blue rectangle 15.5mm x 12mm on its face and 5.5mm wide.
/// The DHT11 has a 1Hz sampling rate, meaning it can be read up to once every
/// second. It supposedly works with 3.3V to 5V power and IO voltage — sometimes
/// they have been known to not work when supplied 3.3v. It needs a 10 KOhm pullup
/// resistor across the VCC and DATA pins, which most sellers will stick in the
/// bag with it.
///
/// The DHT11 works between 20-80% relative humidity with 5% accuracy, and 0-50C
/// with +- 2C accuracy. Which is to say...it's not a very good sensor. The
/// primary advantage is that it is dirt cheap and about as common, which is why
/// they can be found in every beginner's  electronics kit.
pub type Dht11<P, T> = Dht<P, T, kind::Dht11>;

/// A DHT22 (or AM2302, its wired variant) sensor.
///
/// This is the "luxury" version of the DHT series — DigiKey sells them for $10,
/// which is twice as expensive as the DHT11. The extra $5 gets you relative
/// humidity readings from 0-100% with 2-5% accuracy, and temperature readings
/// from -40-80C with += 0.5C accuracy. This means that unless you actually
/// don't care about measuring things, it's worth _significantly_ more than
/// buying two DHT11s. However, it has an 0.5Hz sampling rate, meaning it can
/// only be read once every two seconds. This is fine, because the numbers it
/// gives you are actually meaningful, unlike the blue piece of garbage.
///
/// It has a white housing and is a bit larger than the DHT11, so all your
/// friends will instantly be able to tell you're a big spender. It also needs
/// 3.3V to 5V. The AM2302 is exactly the same sensor, but with 3 2cm leads
/// rather than pins, and a fancy hole in the case so you can screw it onto
/// something. Whether or not this is worth another $5 is up to you, but it does
/// have the advantage of not having to remember which of the 4 pins these
/// things have "goes nowhere and does nothing".
///
/// Unlike the DHT11, these often (but not always!) have a 10K pullup resistor
/// inside the housing. Unfortunately, there's no real way to tell whether or
/// not you're one of the lucky ones, so you should probably add one anyway.
/// Welcome to the wonderful world of cheap electronics components from China!
pub type Dht22<P, T> = Dht<P, T, kind::Dht22>;

/// A generic DHT-series sensor.
///
/// Currently, this supports the DHT11 and DHT22/AM2302.
#[derive(Debug)]
pub struct Dht<P, T, K> {
    pin: P,
    timer: T,
    _kind: PhantomData<K>,
}

/// A DHT sensor combined temperature and relative humidity reading.
#[derive(Debug, Clone)]
pub struct Reading<K> {
    rh_integral: u8,
    rh_decimal: u8,
    t_integral: u8,
    t_decimal: u8,
    _kind: PhantomData<fn(K)>,
}

#[derive(Eq, PartialEq, Debug)]
pub struct Error<I>(ErrorKind<I>);

#[derive(Eq, PartialEq, Debug)]
enum ErrorKind<I> {
    Io(I),
    Checksum { expected: u8, actual: u8 },
    Timeout,
}

#[derive(Copy, Clone, Debug)]
struct Pulse {
    lo: u8,
    hi: u8,
}

impl<P, T, K, E> Dht<P, T, K>
where
    P: digital::InputPin<Error = E> + digital::OutputPin<Error = E>,
    K: DhtKind,
{
    /// Returns a new DHT sensor.
    pub fn new(pin: P, timer: T) -> Self {
        Self {
            pin,
            timer,
            _kind: PhantomData,
        }
    }
}
impl<P, T, K, E> Dht<P, T, K>
where
    P: digital::InputPin<Error = E> + digital::OutputPin<Error = E>,
    T: delay::DelayUs<u16> + delay::DelayMs<u16>,
    K: DhtKind,
{
    #[inline(always)] // timing-critical
    fn read_pulse_us(&mut self, high: bool) -> Result<u8, ErrorKind<E>> {
        for len in 0..=core::u8::MAX {
            if self.pin.is_high()? != high {
                return Ok(len);
            }
            self.timer.delay_us(1);
        }
        Err(ErrorKind::Timeout)
    }

    fn start_signal_blocking(&mut self) -> Result<(), ErrorKind<E>> {
        // set pin high for 1 ms to pull up.
        self.pin.set_high()?;
        self.timer.delay_ms(1);

        // send start signal
        self.pin.set_low()?;
        self.timer.delay_us(K::START_DELAY_US);
        // end start signal
        self.pin.set_high()?;
        self.timer.delay_us(40);

        // Wait for an ~80ms low pulse, followed by an ~80ms high pulse.
        self.read_pulse_us(false)?;
        self.read_pulse_us(true)?;

        Ok(())
    }

    /// Read from the DHT sensor using blocking delays.
    ///
    /// Note that this is timing-critical, and should be run with interrupts disabled.
    pub fn read_blocking(&mut self) -> Result<Reading<K>, Error<E>> {
        self.start_signal_blocking().map_err(ErrorKind::from)?;

        // The sensor will now send us 40 bits of data. For each bit, the sensor
        // will assert the line low for 50 microseconds as a delimiter, and then
        // will assert the line high for a variable-length pulse to encode the
        // bit. If the high pulse is 70 us long, then the bit is 1, and if it is
        // 28 us, then the bit is a 0.
        //
        // Because timing is sloppy, we will read each bit by comparing the
        // length of the initial low pulse with the length of the following high
        // pulse. If it was longer than the 50us low pulse, then it's closer to
        // 70us, and if it was shorter, than it is closer to 28 us.
        let mut pulses = [Pulse { lo: 0, hi: 0 }; 40];

        // Read each bit from the sensor now. We'll convert the raw pulses into
        // bytes in a subsequent step, to avoid doing that work in the
        // timing-critical loop.
        for pulse in &mut pulses[..] {
            pulse.lo = self.read_pulse_us(false)?;
            pulse.hi = self.read_pulse_us(true)?;
        }
        Ok(Reading::from_pulses(&pulses)?)
    }
}

impl<K: DhtKind> Reading<K> {
    fn from_pulses<E>(pulses: &[Pulse; 40]) -> Result<Self, ErrorKind<E>> {
        let mut bytes = [0u8; 5];
        // The last byte sent by the sensor is a checksum, which should be the
        // low byte of the 16-bit sum of the first four data bytes.
        let mut chksum: u16 = 0;
        for (i, pulses) in pulses.chunks(8).enumerate() {
            let byte = &mut bytes[i];
            // If the high pulse is longer than the leading low pulse, the bit
            // is a 1, otherwise, it's a 0.
            for Pulse { lo, hi } in pulses {
                *byte <<= 1;
                if hi > lo {
                    *byte |= 1;
                }
            }
            // If this isn't the last byte, then add it to the checksum.
            if i < 4 {
                chksum += i as u16;
            }
        }

        // Does the checksum match?
        let expected = bytes[4];
        let actual = chksum as u8;
        if actual != expected {
            return Err(ErrorKind::Checksum { actual, expected });
        }

        Ok(Self {
            rh_integral: bytes[0],
            rh_decimal: bytes[1],
            t_integral: bytes[2],
            t_decimal: bytes[3],
            _kind: PhantomData,
        })
    }

    /// Returns the temperature in Celcius.
    pub fn temp_celcius(self) -> f32 {
        K::temp_celcius(self.t_integral, self.t_decimal)
    }

    /// Returns the temperature in Fahrenheit.
    pub fn temp_fahrenheit(self) -> f32 {
        celcius_to_fahrenheit(self.temp_celcius())
    }

    /// Returns the temperature in Fahrenheit.
    pub fn humidity_percent(self) -> f32 {
        K::humidity_percent(self.rh_integral, self.rh_decimal)
    }
}

impl<E> From<E> for ErrorKind<E> {
    fn from(e: E) -> Self {
        ErrorKind::Io(e)
    }
}

// === impl Error ===

impl<E> From<ErrorKind<E>> for Error<E> {
    fn from(e: ErrorKind<E>) -> Self {
        Self(e)
    }
}

impl<E> Error<E> {
    /// Returns `true` if a read from the sensor timed out.
    pub fn is_timeout(&self) -> bool {
        match self.0 {
            ErrorKind::Timeout => true,
            _ => false,
        }
    }

    /// Returns `true` if an IO error occurred while reading from or writing to
    /// the sensor's data pin.
    pub fn is_io(&self) -> bool {
        match self.0 {
            ErrorKind::Io(_) => true,
            _ => false,
        }
    }

    /// Returns `true` if the reading from the sensor had a bad checksum.
    pub fn is_checksum(&self) -> bool {
        match self.0 {
            ErrorKind::Checksum { .. } => true,
            _ => false,
        }
    }

    /// If the error was caused by an underlying pin IO error, returns it.
    pub fn into_io(self) -> Option<E> {
        match self.0 {
            ErrorKind::Io(io) => Some(io),
            _ => None,
        }
    }
}

fn celcius_to_fahrenheit(c: f32) -> f32 {
    c * 1.8 + 32.0
}