1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
use num_complex::Complex;
use num_traits::Float;
use std::slice::from_raw_parts_mut;

use {Operation, Plan, Transform};

impl<T> Transform<T> for [T]
where
    T: Float,
{
    fn transform(&mut self, plan: &Plan<T>) {
        let n = self.len();
        assert!(n == plan.n);
        let h = n >> 1;
        if h == 0 {
            return;
        }
        let data = unsafe { from_raw_parts_mut(self.as_mut_ptr() as *mut _, h) };
        match plan.operation {
            Operation::Forward => {
                data.transform(plan);
                compose(data, h, &plan.factors, false);
            }
            Operation::Backward | Operation::Inverse => {
                compose(data, h, &plan.factors, true);
                data.transform(plan);
            }
        }
    }
}

impl<T> Transform<T> for Vec<T>
where
    T: Float,
{
    #[inline(always)]
    fn transform(&mut self, plan: &Plan<T>) {
        Transform::transform(&mut self[..], plan)
    }
}

/// Unpack the result produced by the forward transform applied to real data.
///
/// The function decodes the result of an application of `Transform::transform`
/// with `Operation::Forward` to real data. See the top-level description of the
/// crate for further details.
pub fn unpack<T>(data: &[T]) -> Vec<Complex<T>>
where
    T: Float,
{
    let n = data.len();
    assert!(n.is_power_of_two());
    let h = n >> 1;
    let mut result = Vec::with_capacity(n);
    unsafe { result.set_len(n) };
    result[0] = data[0].into();
    if h == 0 {
        return result;
    }
    for i in 1..h {
        result[i] = Complex::new(data[2 * i], data[2 * i + 1]);
    }
    result[h] = data[1].into();
    for i in (h + 1)..n {
        result[i] = result[n - i].conj();
    }
    result
}

#[inline(always)]
fn compose<T>(data: &mut [Complex<T>], n: usize, factors: &[Complex<T>], inverse: bool)
where
    T: Float,
{
    let one = T::one();
    let half = (one + one).recip();
    let h = n >> 1;
    data[0] = Complex::new(data[0].re + data[0].im, data[0].re - data[0].im);
    if inverse {
        data[0] = data[0].scale(half);
    }
    if h == 0 {
        return;
    }
    let m = factors.len();
    let sign: Complex<T> = if inverse { Complex::i() } else { -Complex::i() };
    for i in 1..h {
        let j = n - i;
        let part1 = data[i] + data[j].conj();
        let part2 = data[i] - data[j].conj();
        let product = sign * factors[m - j] * part2;
        data[i] = (part1 + product).scale(half);
        data[j] = (part1 - product).scale(half).conj();
    }
    data[h] = data[h].conj();
}

#[cfg(test)]
mod tests {
    use c64;

    #[test]
    fn unpack() {
        let data = (0..4).map(|i| (i + 1) as f64).collect::<Vec<_>>();
        assert!(
            super::unpack(&data)
                == vec![
                    c64::new(1.0, 0.0),
                    c64::new(3.0, 4.0),
                    c64::new(2.0, 0.0),
                    c64::new(3.0, -4.0),
                ]
        );

        let data = (0..8).map(|i| (i + 1) as f64).collect::<Vec<_>>();
        assert!(
            super::unpack(&data)
                == vec![
                    c64::new(1.0, 0.0),
                    c64::new(3.0, 4.0),
                    c64::new(5.0, 6.0),
                    c64::new(7.0, 8.0),
                    c64::new(2.0, 0.0),
                    c64::new(7.0, -8.0),
                    c64::new(5.0, -6.0),
                    c64::new(3.0, -4.0),
                ]
        );
    }
}