1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
/*!
# Deku: Declarative binary reading and writing

Deriving a struct or enum with `DekuRead` and `DekuWrite` provides bit-level,
symmetric, serialization/deserialization implementations.

This allows the developer to focus on building and maintaining how the data is
represented and manipulated and not on redundant, error-prone, parsing/writing code.

This approach is especially useful when dealing with binary structures such as
TLVs or network protocols.

Under the hood, it makes use of the [bitvec](https://crates.io/crates/bitvec)
crate as the "Reader" and “Writer”

For documentation and examples on available `#deku[()]` attributes and features,
see [attributes list](attributes/index.html)

For more examples, see the
[examples folder](https://github.com/sharksforarms/deku/tree/master/examples)!

## no_std

For use in `no_std` environments, `alloc` is the single feature which is required on deku.

# Example

Let's read big-endian data into a struct, with fields containing different sizes,
modify a value, and write it back

```rust
use deku::prelude::*;

#[derive(Debug, PartialEq, DekuRead, DekuWrite)]
#[deku(endian = "big")]
struct DekuTest {
    #[deku(bits = "4")]
    field_a: u8,
    #[deku(bits = "4")]
    field_b: u8,
    field_c: u16,
}

let data: Vec<u8> = vec![0b0110_1001, 0xBE, 0xEF];
let (_rest, mut val) = DekuTest::from_bytes((data.as_ref(), 0)).unwrap();
assert_eq!(DekuTest {
    field_a: 0b0110,
    field_b: 0b1001,
    field_c: 0xBEEF,
}, val);

val.field_c = 0xC0FE;

let data_out = val.to_bytes().unwrap();
assert_eq!(vec![0b0110_1001, 0xC0, 0xFE], data_out);
```

# Composing

Deku structs/enums can be composed as long as they implement DekuRead / DekuWrite traits

```rust
use deku::prelude::*;

#[derive(Debug, PartialEq, DekuRead, DekuWrite)]
struct DekuTest {
    header: DekuHeader,
    data: DekuData,
}

#[derive(Debug, PartialEq, DekuRead, DekuWrite)]
struct DekuHeader(u8);

#[derive(Debug, PartialEq, DekuRead, DekuWrite)]
struct DekuData(u16);

let data: Vec<u8> = vec![0xAA, 0xEF, 0xBE];
let (_rest, mut val) = DekuTest::from_bytes((data.as_ref(), 0)).unwrap();
assert_eq!(DekuTest {
    header: DekuHeader(0xAA),
    data: DekuData(0xBEEF),
}, val);

let data_out = val.to_bytes().unwrap();
assert_eq!(data, data_out);
```

# Vec

Vec<T> can be used in combination with the [count](attributes/index.html#count)
attribute (T must implement DekuRead/DekuWrite)

If the length of Vec changes, the original field specified in `count` will not get updated.
Calling `.update()` can be used to "update" the field!

```rust
use deku::prelude::*;

#[derive(Debug, PartialEq, DekuRead, DekuWrite)]
struct DekuTest {
    #[deku(update = "self.data.len()")]
    count: u8,
    #[deku(count = "count")]
    data: Vec<u8>,
}

let data: Vec<u8> = vec![0x02, 0xBE, 0xEF, 0xFF, 0xFF];
let (_rest, mut val) = DekuTest::from_bytes((data.as_ref(), 0)).unwrap();
assert_eq!(DekuTest {
    count: 0x02,
    data: vec![0xBE, 0xEF]
}, val);

let data_out = val.to_bytes().unwrap();
assert_eq!(vec![0x02, 0xBE, 0xEF], data_out);

// Pushing an element to data
val.data.push(0xAA);

assert_eq!(DekuTest {
    count: 0x02, // Note: this value has not changed
    data: vec![0xBE, 0xEF, 0xAA]
}, val);

let data_out = val.to_bytes().unwrap();
// Note: `count` is still 0x02 while 3 bytes got written
assert_eq!(vec![0x02, 0xBE, 0xEF, 0xAA], data_out);

// Use `update` to update `count`
val.update().unwrap();

assert_eq!(DekuTest {
    count: 0x03,
    data: vec![0xBE, 0xEF, 0xAA]
}, val);

```

# Enums

As enums can have multiple variants, each variant must have a way to match on
the incoming data.

First the "type" is read using the `type`, then is matched against the
variants given `id`. What happens after is the same as structs!

This is implemented with the [id](/attributes/index.html#id) and
[type](attributes/index.html#type) attributes.

Example:

```rust
use deku::prelude::*;

#[derive(Debug, PartialEq, DekuRead, DekuWrite)]
#[deku(type = "u8")]
enum DekuTest {
    #[deku(id = "0x01")]
    VariantA,
    #[deku(id = "0x02")]
    VariantB(u16),
}

let data: Vec<u8> = vec![0x01, 0x02, 0xEF, 0xBE];

let (rest, val) = DekuTest::from_bytes((data.as_ref(), 0)).unwrap();
assert_eq!(DekuTest::VariantA , val);

let (rest, val) = DekuTest::from_bytes(rest).unwrap();
assert_eq!(DekuTest::VariantB(0xBEEF) , val);
```

# Context

Child parsers can get access to the parent's parsed values using the `ctx` attribute

For more information see [ctx attribute](attributes/index.html#ctx)

Example:

```rust
use deku::prelude::*;

#[derive(DekuRead, DekuWrite)]
#[deku(ctx = "a: u8")]
struct Subtype {
    #[deku(map = "|b: u8| -> Result<_, DekuError> { Ok(b + a) }")]
    b: u8
}

#[derive(DekuRead, DekuWrite)]
struct Root {
    a: u8,
    #[deku(ctx = "*a")] // `a` is a reference
    sub: Subtype
}

let data: Vec<u8> = vec![0x01, 0x02];

let (rest, value) = Root::from_bytes((&data[..], 0)).unwrap();
assert_eq!(value.a, 0x01);
assert_eq!(value.sub.b, 0x01 + 0x02)
```

*/
#![cfg_attr(not(feature = "std"), no_std)]

#[cfg(feature = "alloc")]
extern crate alloc;

#[cfg(feature = "alloc")]
use alloc::{format, vec::Vec};

#[cfg(feature = "std")]
use std::net::{IpAddr, Ipv4Addr, Ipv6Addr};

use crate::ctx::{BitSize, Count, Endian};
use bitvec::prelude::*;
use core::convert::TryInto;
pub use deku_derive::*;

pub mod attributes;
pub mod ctx;
pub mod error;
pub mod prelude;
mod slice_impls;

use crate::error::DekuError;

/// "Reader" trait: read bits and construct type
pub trait DekuRead<Ctx = ()> {
    /// Read bits and construct type
    /// * **input** - Input as bits
    /// * **ctx** - A context required by context-sensitive reading. A unit type `()` means no context
    /// needed.
    fn read(input: &BitSlice<Msb0, u8>, ctx: Ctx) -> Result<(&BitSlice<Msb0, u8>, Self), DekuError>
    where
        Self: Sized;
}

/// "Reader" trait: implemented on DekuRead struct and enum containers. A `container` is a type which
/// doesn't need any context information.
pub trait DekuContainerRead: DekuRead<()> {
    /// Read bytes and construct type
    /// * **input** - Input as a tuple of (bytes, bit_offset)
    ///
    /// Returns a tuple of the remaining data as (bytes, bit_offset) and a constructed value
    fn from_bytes(input: (&[u8], usize)) -> Result<((&[u8], usize), Self), DekuError>
    where
        Self: Sized;
}

/// "Writer" trait: write from type to bits
pub trait DekuWrite<Ctx = ()> {
    /// Write type to bits
    /// * **ctx** - A context required by context-sensitive reading. A unit type `()` means no context
    /// needed.
    fn write(&self, output: &mut BitVec<Msb0, u8>, ctx: Ctx) -> Result<(), DekuError>;
}

/// "Writer" trait: implemented on DekuWrite struct and enum containers. A `container` is a type which
/// doesn't need any context information.
pub trait DekuContainerWrite: DekuWrite<()> {
    /// Write struct/enum to Vec<u8>
    fn to_bytes(&self) -> Result<Vec<u8>, DekuError>;

    /// Write struct/enum to BitVec
    fn to_bits(&self) -> Result<BitVec<Msb0, u8>, DekuError>;
}

/// "Updater" trait: apply mutations to a type
pub trait DekuUpdate {
    /// Apply updates
    fn update(&mut self) -> Result<(), DekuError>;
}

macro_rules! ImplDekuTraits {
    ($typ:ty) => {
        impl DekuRead<(Endian, BitSize)> for $typ {
            fn read(
                input: &BitSlice<Msb0, u8>,
                (endian, bit_size): (Endian, BitSize),
            ) -> Result<(&BitSlice<Msb0, u8>, Self), DekuError> {
                let max_type_bits: usize = BitSize::of::<$typ>().into();
                let bit_size: usize = bit_size.into();

                let input_is_le = endian.is_le();

                if bit_size > max_type_bits {
                    return Err(DekuError::Parse(format!(
                        "too much data: container of {} bits cannot hold {} bits",
                        max_type_bits, bit_size
                    )));
                }

                if input.len() < bit_size {
                    return Err(DekuError::Parse(format!(
                        "not enough data: expected {} bits got {} bits",
                        bit_size,
                        input.len()
                    )));
                }

                let (bit_slice, rest) = input.split_at(bit_size);

                let pad = 8 * ((bit_slice.len() + 7) / 8) - bit_slice.len();

                let value = if pad == 0 && bit_slice.len() == max_type_bits {
                    // if everything is aligned, just read the value

                    let bytes: &[u8] = bit_slice.as_slice();

                    // Read value
                    if input_is_le {
                        <$typ>::from_le_bytes(bytes.try_into()?)
                    } else {
                        <$typ>::from_be_bytes(bytes.try_into()?)
                    }
                } else {
                    // Create a new BitVec from the slice and pad un-aligned chunks
                    // i.e. [10010110, 1110] -> [10010110, 00001110]
                    let bits: BitVec<Msb0, u8> = {
                        let mut bits = BitVec::with_capacity(bit_slice.len() + pad);

                        // Copy bits to new BitVec
                        for b in bit_slice {
                            bits.push(*b);
                        }

                        // Force align
                        //i.e. [1110, 10010110] -> [11101001, 0110]
                        bits.force_align();

                        // Some padding to next byte
                        if input_is_le {
                            let ins_index = bits.len() - (8 - pad);
                            for _ in 0..pad {
                                bits.insert(ins_index, false);
                            }
                        } else {
                            for _ in 0..pad {
                                bits.insert(0, false);
                            }
                        }

                        // Pad up-to size of type
                        for _ in 0..(max_type_bits - bits.len()) {
                            if input_is_le {
                                bits.push(false);
                            } else {
                                bits.insert(0, false);
                            }
                        }

                        bits
                    };

                    let bytes: &[u8] = bits.as_slice();

                    // Read value
                    if input_is_le {
                        <$typ>::from_le_bytes(bytes.try_into()?)
                    } else {
                        <$typ>::from_be_bytes(bytes.try_into()?)
                    }
                };

                Ok((rest, value))
            }
        }

        // Only have `endian`, set `bit_size` to `BitSize::of::<Type>()`
        impl DekuRead<Endian> for $typ {
            fn read(
                input: &BitSlice<Msb0, u8>,
                endian: Endian,
            ) -> Result<(&BitSlice<Msb0, u8>, Self), DekuError> {
                let max_type_bits = BitSize::of::<$typ>();

                <$typ>::read(input, (endian, max_type_bits))
            }
        }

        // Only have `bit_size`, set `endian` to `Endian::default`.
        impl DekuRead<BitSize> for $typ {
            fn read(
                input: &BitSlice<Msb0, u8>,
                bit_size: BitSize,
            ) -> Result<(&BitSlice<Msb0, u8>, Self), DekuError> {
                let endian = Endian::default();

                <$typ>::read(input, (endian, bit_size))
            }
        }

        impl DekuRead for $typ {
            fn read(
                input: &BitSlice<Msb0, u8>,
                _: (),
            ) -> Result<(&BitSlice<Msb0, u8>, Self), DekuError> {
                <$typ>::read(input, Endian::default())
            }
        }

        impl DekuWrite<(Endian, BitSize)> for $typ {
            fn write(
                &self,
                output: &mut BitVec<Msb0, u8>,
                (endian, bit_size): (Endian, BitSize),
            ) -> Result<(), DekuError> {
                let input = match endian {
                    Endian::Little => self.to_le_bytes(),
                    Endian::Big => self.to_be_bytes(),
                };

                let bit_size: usize = bit_size.into();

                let input_bits = input.view_bits::<Msb0>();

                if bit_size > input_bits.len() {
                    return Err(DekuError::InvalidParam(format!(
                        "bit size {} is larger then input {}",
                        bit_size,
                        input_bits.len()
                    )));
                }

                if matches!(endian, Endian::Little) {
                    // Example read 10 bits u32 [0xAB, 0b11_000000]
                    // => [10101011, 00000011, 00000000, 00000000]
                    let mut remaining_bits = bit_size;
                    for chunk in input_bits.chunks(8) {
                        if chunk.len() > remaining_bits {
                            let bits = &chunk[chunk.len() - remaining_bits..];
                            for b in bits {
                                output.push(*b);
                            }
                            // https://github.com/myrrlyn/bitvec/issues/62
                            // output.extend_from_slice(chunk[chunk.len() - remaining_bits..]);
                            break;
                        } else {
                            for b in chunk {
                                output.push(*b);
                            }
                            // https://github.com/myrrlyn/bitvec/issues/62
                            // output.extend_from_slice(chunk)
                        }
                        remaining_bits -= chunk.len();
                    }
                } else {
                    // Example read 10 bits u32 [0xAB, 0b11_000000]
                    // => [00000000, 00000000, 00000010, 10101111]
                    let bits = &input_bits[input_bits.len() - bit_size..];
                    for b in bits {
                        output.push(*b);
                    }
                    // https://github.com/myrrlyn/bitvec/issues/62
                    // output.extend_from_slice(input_bits[input_bits.len() - bit_size..]);
                }
                Ok(())
            }
        }

        // Only have `endian`, return all input
        impl DekuWrite<Endian> for $typ {
            fn write(
                &self,
                output: &mut BitVec<Msb0, u8>,
                endian: Endian,
            ) -> Result<(), DekuError> {
                let input = match endian {
                    Endian::Little => self.to_le_bytes(),
                    Endian::Big => self.to_be_bytes(),
                };
                output.extend_from_bitslice(input.view_bits());
                Ok(())
            }
        }

        // Only have `bit_size`, set `endian` to `Endian::default`.
        impl DekuWrite<BitSize> for $typ {
            fn write(
                &self,
                output: &mut BitVec<Msb0, u8>,
                bit_size: BitSize,
            ) -> Result<(), DekuError> {
                <$typ>::write(self, output, (Endian::default(), bit_size))
            }
        }

        impl DekuWrite for $typ {
            fn write(&self, output: &mut BitVec<Msb0, u8>, _: ()) -> Result<(), DekuError> {
                <$typ>::write(self, output, Endian::default())
            }
        }
    };
}

impl<T: DekuRead<Ctx>, Ctx: Copy> DekuRead<(Count, Ctx)> for Vec<T> {
    /// Read the specified number of `T`s from input.
    /// * `count` - the number of `T`s you want to read.
    /// * `inner_ctx` - The context required by `T`. It will be passed to every `T`s when constructing.
    /// # Examples
    /// ```rust
    /// # use deku::ctx::*;
    /// # use deku::DekuRead;
    /// # use bitvec::view::BitView;
    /// let input = vec![1u8, 2, 3, 4];
    /// let (rest, v) = Vec::<u32>::read(input.view_bits(), (1.into(), Endian::Little)).unwrap();
    /// assert!(rest.is_empty());
    /// assert_eq!(v, vec![0x04030201])
    /// ```
    fn read(
        input: &BitSlice<Msb0, u8>,
        (count, inner_ctx): (Count, Ctx),
    ) -> Result<(&BitSlice<Msb0, u8>, Self), DekuError>
    where
        Self: Sized,
    {
        let count: usize = count.into();

        let mut res = Vec::with_capacity(count);
        let mut rest = input;
        for _i in 0..count {
            let (new_rest, val) = <T>::read(rest, inner_ctx)?;
            res.push(val);
            rest = new_rest;
        }

        Ok((rest, res))
    }
}

impl<T: DekuRead> DekuRead<Count> for Vec<T> {
    /// Read the specified number of `T`s from input for types which don't require context.
    fn read(
        input: &BitSlice<Msb0, u8>,
        count: Count,
    ) -> Result<(&BitSlice<Msb0, u8>, Self), DekuError>
    where
        Self: Sized,
    {
        Vec::read(input, (count, ()))
    }
}

impl<T: DekuWrite<Ctx>, Ctx: Copy> DekuWrite<Ctx> for Vec<T> {
    /// Write all `T`s in a `Vec` to bits.
    /// * **inner_ctx** - The context required by `T`.
    /// # Examples
    /// ```rust
    /// # use deku::{ctx::Endian, DekuWrite, prelude::{Lsb0, Msb0}};
    /// # use bitvec::bitvec;
    /// let data = vec![1u8];
    /// let mut output = bitvec![Msb0, u8;];
    /// data.write(&mut output, Endian::Big).unwrap();
    /// assert_eq!(output, bitvec![0, 0, 0, 0, 0, 0, 0, 1])
    /// ```
    fn write(&self, output: &mut BitVec<Msb0, u8>, inner_ctx: Ctx) -> Result<(), DekuError> {
        for v in self {
            v.write(output, inner_ctx)?;
        }
        Ok(())
    }
}

impl<T: DekuRead<Ctx>, Ctx: Copy> DekuRead<Ctx> for Option<T> {
    /// Read a T from input and store as Some(T)
    /// * `inner_ctx` - The context required by `T`. It will be passed to every `T`s when constructing.
    /// # Examples
    /// ```rust
    /// # use deku::ctx::*;
    /// # use deku::DekuRead;
    /// # use bitvec::view::BitView;
    /// let input = vec![1u8, 2, 3, 4];
    /// let (rest, v) = Option::<u32>::read(input.view_bits(), Endian::Little).unwrap();
    /// assert!(rest.is_empty());
    /// assert_eq!(v, Some(0x04030201))
    /// ```
    fn read(
        input: &BitSlice<Msb0, u8>,
        inner_ctx: Ctx,
    ) -> Result<(&BitSlice<Msb0, u8>, Self), DekuError>
    where
        Self: Sized,
    {
        let (rest, val) = <T>::read(input, inner_ctx)?;
        Ok((rest, Some(val)))
    }
}

impl<T: DekuWrite<Ctx>, Ctx: Copy> DekuWrite<Ctx> for Option<T> {
    /// Write T if Some
    /// * **inner_ctx** - The context required by `T`.
    /// # Examples
    /// ```rust
    /// # use deku::{ctx::Endian, DekuWrite, prelude::{Lsb0, Msb0}};
    /// # use bitvec::bitvec;
    /// let data = Some(1u8);
    /// let mut output = bitvec![Msb0, u8;];
    /// data.write(&mut output, Endian::Big).unwrap();
    /// assert_eq!(output, bitvec![0, 0, 0, 0, 0, 0, 0, 1])
    /// ```
    fn write(&self, output: &mut BitVec<Msb0, u8>, inner_ctx: Ctx) -> Result<(), DekuError> {
        if let Some(v) = self {
            v.write(output, inner_ctx)
        } else {
            Ok(())
        }
    }
}

ImplDekuTraits!(u8);
ImplDekuTraits!(u16);
ImplDekuTraits!(u32);
ImplDekuTraits!(u64);
ImplDekuTraits!(u128);
ImplDekuTraits!(usize);
ImplDekuTraits!(i8);
ImplDekuTraits!(i16);
ImplDekuTraits!(i32);
ImplDekuTraits!(i64);
ImplDekuTraits!(i128);
ImplDekuTraits!(isize);
ImplDekuTraits!(f32);
ImplDekuTraits!(f64);

#[cfg(feature = "std")]
impl<Ctx> DekuRead<Ctx> for Ipv4Addr
where
    u32: DekuRead<Ctx>,
{
    fn read(input: &BitSlice<Msb0, u8>, ctx: Ctx) -> Result<(&BitSlice<Msb0, u8>, Self), DekuError>
    where
        Self: Sized,
    {
        let (rest, ip) = u32::read(input, ctx)?;
        Ok((rest, ip.into()))
    }
}

#[cfg(feature = "std")]
impl<Ctx> DekuWrite<Ctx> for Ipv4Addr
where
    u32: DekuWrite<Ctx>,
{
    fn write(&self, output: &mut BitVec<Msb0, u8>, ctx: Ctx) -> Result<(), DekuError> {
        let ip: u32 = (*self).into();
        ip.write(output, ctx)
    }
}

#[cfg(feature = "std")]
impl<Ctx> DekuRead<Ctx> for Ipv6Addr
where
    u128: DekuRead<Ctx>,
{
    fn read(input: &BitSlice<Msb0, u8>, ctx: Ctx) -> Result<(&BitSlice<Msb0, u8>, Self), DekuError>
    where
        Self: Sized,
    {
        let (rest, ip) = u128::read(input, ctx)?;
        Ok((rest, ip.into()))
    }
}

#[cfg(feature = "std")]
impl<Ctx> DekuWrite<Ctx> for Ipv6Addr
where
    u128: DekuWrite<Ctx>,
{
    fn write(&self, output: &mut BitVec<Msb0, u8>, ctx: Ctx) -> Result<(), DekuError> {
        let ip: u128 = (*self).into();
        ip.write(output, ctx)
    }
}

#[cfg(feature = "std")]
impl<Ctx> DekuWrite<Ctx> for IpAddr
where
    Ipv6Addr: DekuWrite<Ctx>,
    Ipv4Addr: DekuWrite<Ctx>,
{
    fn write(&self, output: &mut BitVec<Msb0, u8>, ctx: Ctx) -> Result<(), DekuError> {
        match self {
            IpAddr::V4(ipv4) => ipv4.write(output, ctx),
            IpAddr::V6(ipv6) => ipv6.write(output, ctx),
        }
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    use rstest::rstest;

    static ENDIAN: Endian = Endian::new();

    macro_rules! TestPrimitive {
        ($test_name:ident, $typ:ty, $input:expr, $expected:expr) => {
            #[test]
            fn $test_name() {
                let input = $input;
                let bit_slice = input.view_bits::<Msb0>();
                let (_rest, res_read) = <$typ>::read(bit_slice, ENDIAN).unwrap();
                assert_eq!($expected, res_read);

                let mut res_write = bitvec![Msb0, u8;];
                res_read.write(&mut res_write, ENDIAN).unwrap();
                assert_eq!(input, res_write.into_vec());
            }
        };
    }

    TestPrimitive!(test_u8, u8, vec![0xAAu8], 0xAAu8);
    TestPrimitive!(test_u16, u16, vec![0xABu8, 0xCD], 0xCDAB);
    TestPrimitive!(test_u32, u32, vec![0xABu8, 0xCD, 0xEF, 0xBE], 0xBEEFCDAB);
    TestPrimitive!(
        test_u64,
        u64,
        vec![0xABu8, 0xCD, 0xEF, 0xBE, 0xAB, 0xCD, 0xFE, 0xC0],
        0xC0FECDABBEEFCDAB
    );
    TestPrimitive!(
        test_u128,
        u128,
        vec![
            0xABu8, 0xCD, 0xEF, 0xBE, 0xAB, 0xCD, 0xFE, 0xC0, 0xAB, 0xCD, 0xEF, 0xBE, 0xAB, 0xCD,
            0xFE, 0xC0
        ],
        0xC0FECDABBEEFCDABC0FECDABBEEFCDAB
    );
    TestPrimitive!(
        test_usize,
        usize,
        vec![0xABu8, 0xCD, 0xEF, 0xBE, 0xAB, 0xCD, 0xFE, 0xC0],
        if core::mem::size_of::<usize>() == 8 {
            0xC0FECDABBEEFCDAB
        } else {
            0xBEEFCDAB
        }
    );
    TestPrimitive!(test_i8, i8, vec![0xFBu8], -5);
    TestPrimitive!(test_i16, i16, vec![0xFDu8, 0xFE], -259);
    TestPrimitive!(test_i32, i32, vec![0x02u8, 0x3F, 0x01, 0xEF], -0x10FEC0FE);
    TestPrimitive!(
        test_i64,
        i64,
        vec![0x02u8, 0x3F, 0x01, 0xEF, 0x01, 0x3F, 0x01, 0xEF],
        -0x10FEC0FE10FEC0FE
    );
    TestPrimitive!(
        test_i128,
        i128,
        vec![
            0x02u8, 0x3F, 0x01, 0xEF, 0x01, 0x3F, 0x01, 0xEF, 0x01, 0x3F, 0x01, 0xEF, 0x01, 0x3F,
            0x01, 0xEF
        ],
        -0x10FEC0FE10FEC0FE10FEC0FE10FEC0FE
    );
    TestPrimitive!(
        test_isize,
        isize,
        vec![0x02u8, 0x3F, 0x01, 0xEF, 0x01, 0x3F, 0x01, 0xEF],
        if core::mem::size_of::<isize>() == 8 {
            -0x10FEC0FE10FEC0FE
        } else {
            -0x10FEC0FE
        }
    );
    TestPrimitive!(test_f32, f32, vec![0xA6u8, 0x9B, 0xC4, 0xBB], -0.006);
    TestPrimitive!(
        test_f64,
        f64,
        vec![0xFAu8, 0x7E, 0x6A, 0xBC, 0x74, 0x93, 0x78, 0xBF],
        -0.006
    );

    #[rstest(input, endian, bit_size, expected, expected_rest,
        case::normal([0xDD, 0xCC, 0xBB, 0xAA].as_ref(), Endian::Little, Some(32), 0xAABB_CCDD, bits![Msb0, u8;]),
        case::normal_bits_12_le([0b1001_0110, 0b1110_0000, 0xCC, 0xDD ].as_ref(), Endian::Little, Some(12), 0b1110_1001_0110, bits![Msb0, u8; 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1]),
        case::normal_bits_12_be([0b1001_0110, 0b1110_0000, 0xCC, 0xDD ].as_ref(), Endian::Big, Some(12), 0b1001_0110_1110, bits![Msb0, u8; 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1]),
        case::normal_bit_6([0b1001_0110].as_ref(), Endian::Little, Some(6), 0b1001_01, bits![Msb0, u8; 1, 0,]),
        #[should_panic(expected = "Parse(\"not enough data: expected 32 bits got 0 bits\")")]
        case::not_enough_data([].as_ref(), Endian::Little, Some(32), 0xFF, bits![Msb0, u8;]),
        #[should_panic(expected = "Parse(\"not enough data: expected 32 bits got 16 bits\")")]
        case::not_enough_data([0xAA, 0xBB].as_ref(), Endian::Little, Some(32), 0xFF, bits![Msb0, u8;]),
        #[should_panic(expected = "Parse(\"too much data: container of 32 bits cannot hold 64 bits\")")]
        case::too_much_data([0xAA, 0xBB, 0xCC, 0xDD, 0xAA, 0xBB, 0xCC, 0xDD].as_ref(), Endian::Little, Some(64), 0xFF, bits![Msb0, u8;]),
    )]
    fn test_bit_read(
        input: &[u8],
        endian: Endian,
        bit_size: Option<usize>,
        expected: u32,
        expected_rest: &BitSlice<Msb0, u8>,
    ) {
        let bit_slice = input.view_bits::<Msb0>();

        let (rest, res_read) = match bit_size {
            Some(bit_size) => u32::read(bit_slice, (endian, BitSize(bit_size))).unwrap(),
            None => u32::read(bit_slice, endian).unwrap(),
        };

        assert_eq!(expected, res_read);
        assert_eq!(expected_rest, rest);
    }

    #[rstest(input, endian, bit_size, expected,
        case::normal_le(0xDDCC_BBAA, Endian::Little, None, vec![0xAA, 0xBB, 0xCC, 0xDD]),
        case::normal_be(0xDDCC_BBAA, Endian::Big, None, vec![0xDD, 0xCC, 0xBB, 0xAA]),
        case::bit_size_le_smaller(0x03AB, Endian::Little, Some(10), vec![0xAB, 0b11_000000]),
        case::bit_size_be_smaller(0x03AB, Endian::Big, Some(10), vec![0b11_1010_10, 0b11_000000]),
        #[should_panic(expected = "InvalidParam(\"bit size 100 is larger then input 32\")")]
        case::bit_size_le_bigger(0x03AB, Endian::Little, Some(100), vec![0xAB, 0b11_000000]),
    )]
    fn test_bit_write(input: u32, endian: Endian, bit_size: Option<usize>, expected: Vec<u8>) {
        let mut res_write = bitvec![Msb0, u8;];
        match bit_size {
            Some(bit_size) => input
                .write(&mut res_write, (endian, BitSize(bit_size)))
                .unwrap(),
            None => input.write(&mut res_write, endian).unwrap(),
        };
        assert_eq!(expected, res_write.into_vec());
    }

    #[rstest(input, endian, bit_size, expected, expected_rest, expected_write,
        case::normal([0xDD, 0xCC, 0xBB, 0xAA].as_ref(), Endian::Little, Some(32), 0xAABB_CCDD, bits![Msb0, u8;], vec![0xDD, 0xCC, 0xBB, 0xAA]),
    )]
    fn test_bit_read_write(
        input: &[u8],
        endian: Endian,
        bit_size: Option<usize>,
        expected: u32,
        expected_rest: &BitSlice<Msb0, u8>,
        expected_write: Vec<u8>,
    ) {
        let bit_slice = input.view_bits::<Msb0>();

        let (rest, res_read) = match bit_size {
            Some(bit_size) => u32::read(bit_slice, (endian, BitSize(bit_size))).unwrap(),
            None => u32::read(bit_slice, endian).unwrap(),
        };
        assert_eq!(expected, res_read);
        assert_eq!(expected_rest, rest);

        let mut res_write = bitvec![Msb0, u8;];
        match bit_size {
            Some(bit_size) => res_read
                .write(&mut res_write, (endian, BitSize(bit_size)))
                .unwrap(),
            None => res_read.write(&mut res_write, endian).unwrap(),
        };

        assert_eq!(expected_write, res_write.into_vec());
    }

    #[rstest(input,endian,bit_size,count,expected,expected_rest,
        case::count_0([0xAA].as_ref(), Endian::Little, Some(8), 0, vec![], bits![Msb0, u8; 1, 0, 1, 0, 1, 0, 1, 0]),
        case::count_1([0xAA, 0xBB].as_ref(), Endian::Little, Some(8), 1, vec![0xAA], bits![Msb0, u8; 1, 0, 1, 1, 1, 0, 1, 1]),
        case::count_2([0xAA, 0xBB, 0xCC].as_ref(), Endian::Little, Some(8), 2, vec![0xAA, 0xBB], bits![Msb0, u8; 1, 1, 0, 0, 1, 1, 0, 0]),
        case::bits_6([0b0110_1001, 0b1110_1001].as_ref(), Endian::Little, Some(6), 2, vec![0b00_011010, 0b00_011110], bits![Msb0, u8; 1, 0, 0, 1]),
        #[should_panic(expected = "Parse(\"too much data: container of 8 bits cannot hold 9 bits\")")]
        case::not_enough_data([].as_ref(), Endian::Little, Some(9), 1, vec![], bits![Msb0, u8;]),
        #[should_panic(expected = "Parse(\"too much data: container of 8 bits cannot hold 9 bits\")")]
        case::not_enough_data([0xAA].as_ref(), Endian::Little, Some(9), 1, vec![], bits![Msb0, u8;]),
        #[should_panic(expected = "Parse(\"not enough data: expected 8 bits got 0 bits\")")]
        case::not_enough_data([0xAA].as_ref(), Endian::Little, Some(8), 2, vec![], bits![Msb0, u8;]),
        #[should_panic(expected = "Parse(\"too much data: container of 8 bits cannot hold 9 bits\")")]
        case::too_much_data([0xAA, 0xBB].as_ref(), Endian::Little, Some(9), 1, vec![], bits![Msb0, u8;]),
    )]
    fn test_vec_read(
        input: &[u8],
        endian: Endian,
        bit_size: Option<usize>,
        count: usize,
        expected: Vec<u8>,
        expected_rest: &BitSlice<Msb0, u8>,
    ) {
        let bit_slice = input.view_bits::<Msb0>();

        let (rest, res_read) = match bit_size {
            Some(bit_size) => {
                Vec::<u8>::read(bit_slice, (Count(count), (endian, BitSize(bit_size)))).unwrap()
            }
            None => Vec::<u8>::read(bit_slice, (Count(count), (endian))).unwrap(),
        };

        assert_eq!(expected, res_read);
        assert_eq!(expected_rest, rest);
    }

    #[rstest(input, endian, expected,
        case::normal(vec![0xAABB, 0xCCDD], Endian::Little, vec![0xBB, 0xAA, 0xDD, 0xCC]),
    )]
    fn test_vec_write(input: Vec<u16>, endian: Endian, expected: Vec<u8>) {
        let mut res_write = bitvec![Msb0, u8;];
        input.write(&mut res_write, endian).unwrap();
        assert_eq!(expected, res_write.into_vec());
    }

    #[rstest(input, endian, bit_size, count, expected, expected_rest, expected_write,
        case::normal_le([0xAA, 0xBB, 0xCC, 0xDD].as_ref(), Endian::Little, Some(16), 2, vec![0xBBAA, 0xDDCC], bits![Msb0, u8;], vec![0xAA, 0xBB, 0xCC, 0xDD]),
        case::normal_be([0xAA, 0xBB, 0xCC, 0xDD].as_ref(), Endian::Big, Some(16), 2, vec![0xAABB, 0xCCDD], bits![Msb0, u8;], vec![0xAA, 0xBB, 0xCC, 0xDD]),
    )]
    fn test_vec_read_write(
        input: &[u8],
        endian: Endian,
        bit_size: Option<usize>,
        count: usize,
        expected: Vec<u16>,
        expected_rest: &BitSlice<Msb0, u8>,
        expected_write: Vec<u8>,
    ) {
        let bit_slice = input.view_bits::<Msb0>();

        // Unwrap here because all test cases are `Some`.
        let bit_size = bit_size.unwrap();

        let (rest, res_read) =
            Vec::<u16>::read(bit_slice, (Count(count), (endian, BitSize(bit_size)))).unwrap();
        assert_eq!(expected, res_read);
        assert_eq!(expected_rest, rest);

        let mut res_write = bitvec![Msb0, u8;];
        res_read
            .write(&mut res_write, (endian, BitSize(bit_size)))
            .unwrap();
        assert_eq!(expected_write, res_write.into_vec());

        assert_eq!(input[..expected_write.len()].to_vec(), expected_write);
    }

    #[rstest(input, endian, expected, expected_rest,
        case::normal_le([237, 160, 254, 145].as_ref(), Endian::Little, Ipv4Addr::new(145, 254, 160, 237), bits![Msb0, u8;]),
        case::normal_be([145, 254, 160, 237].as_ref(), Endian::Big, Ipv4Addr::new(145, 254, 160, 237), bits![Msb0, u8;]),
    )]
    fn test_ipv4(
        input: &[u8],
        endian: Endian,
        expected: Ipv4Addr,
        expected_rest: &BitSlice<Msb0, u8>,
    ) {
        let bit_slice = input.view_bits::<Msb0>();

        let (rest, res_read) = Ipv4Addr::read(bit_slice, endian).unwrap();
        assert_eq!(expected, res_read);
        assert_eq!(expected_rest, rest);

        let mut res_write = bitvec![Msb0, u8;];
        res_read.write(&mut res_write, endian).unwrap();
        assert_eq!(input.to_vec(), res_write.into_vec());
    }

    #[rstest(input, endian, expected, expected_rest,
        case::normal_le([0xFF, 0x02, 0x0A, 0xC0, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00].as_ref(), Endian::Little, Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x02ff), bits![Msb0, u8;]),
        case::normal_be([0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0xC0, 0x0A, 0x02, 0xFF].as_ref(), Endian::Big, Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x02ff), bits![Msb0, u8;]),
    )]
    fn test_ipv6(
        input: &[u8],
        endian: Endian,
        expected: Ipv6Addr,
        expected_rest: &BitSlice<Msb0, u8>,
    ) {
        let bit_slice = input.view_bits::<Msb0>();

        let (rest, res_read) = Ipv6Addr::read(bit_slice, endian).unwrap();
        assert_eq!(expected, res_read);
        assert_eq!(expected_rest, rest);

        let mut res_write = bitvec![Msb0, u8;];
        res_read.write(&mut res_write, endian).unwrap();
        assert_eq!(input.to_vec(), res_write.into_vec());
    }

    #[test]
    fn test_ip_addr_write() {
        let ip_addr = IpAddr::V4(Ipv4Addr::new(145, 254, 160, 237));
        let mut ret_write = bitvec![Msb0, u8;];
        ip_addr.write(&mut ret_write, Endian::Little).unwrap();
        assert_eq!(vec![237, 160, 254, 145], ret_write.into_vec());

        let ip_addr = IpAddr::V6(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x02ff));
        let mut ret_write = bitvec![Msb0, u8;];
        ip_addr.write(&mut ret_write, Endian::Little).unwrap();
        assert_eq!(
            vec![
                0xFF, 0x02, 0x0A, 0xC0, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
                0x00, 0x00
            ],
            ret_write.into_vec()
        );
    }
}