1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
/*!
# Deku: Declarative binary reading and writing

Deriving a struct or enum with `DekuRead` and `DekuWrite` provides bit-level, symmetric, serialization/deserialization implementations.

This allows the developer to focus on building and maintaining how the data is represented and manipulated and not on redundant, error-prone, parsing/writing code.

This approach is especially useful when dealing with binary structures such as TLVs or network protocols.

Under the hood, it makes use of the [bitvec](https://crates.io/crates/bitvec) crate as the "Reader" and “Writer”

For documentation and examples on available `#deku[()]` attributes and features, see [attributes list](attributes/index.html)

For more examples, see the [examples folder](https://github.com/sharksforarms/deku/tree/master/examples)!

## no_std

For use in `no_std` environments, `alloc` is the single feature which is required on deku.

# Simple Example

Let's read big-endian data into a struct, with fields containing different sizes, modify a value, and write it back

```rust
use deku::prelude::*;

#[derive(Debug, PartialEq, DekuRead, DekuWrite)]
#[deku(endian = "big")]
struct DekuTest {
    #[deku(bits = "4")]
    field_a: u8,
    #[deku(bits = "4")]
    field_b: u8,
    field_c: u16,
}

let data: Vec<u8> = vec![0b0110_1001, 0xBE, 0xEF];
let (_rest, mut val) = DekuTest::from_bytes((data.as_ref(), 0)).unwrap();
assert_eq!(DekuTest {
    field_a: 0b0110,
    field_b: 0b1001,
    field_c: 0xBEEF,
}, val);

val.field_c = 0xC0FE;

let data_out = val.to_bytes().unwrap();
assert_eq!(vec![0b0110_1001, 0xC0, 0xFE], data_out);
```

# Composing

Deku structs/enums can be composed as long as they implement BitsReader / BitsWriter! (Which DekuRead/DekuWrite implement)

```rust
use deku::prelude::*;

#[derive(Debug, PartialEq, DekuRead, DekuWrite)]
struct DekuTest {
    header: DekuHeader,
    data: DekuData,
}

#[derive(Debug, PartialEq, DekuRead, DekuWrite)]
struct DekuHeader(u8);

#[derive(Debug, PartialEq, DekuRead, DekuWrite)]
struct DekuData(u16);

let data: Vec<u8> = vec![0xAA, 0xEF, 0xBE];
let (_rest, mut val) = DekuTest::from_bytes((data.as_ref(), 0)).unwrap();
assert_eq!(DekuTest {
    header: DekuHeader(0xAA),
    data: DekuData(0xBEEF),
}, val);

let data_out = val.to_bytes().unwrap();
assert_eq!(data, data_out);
```

# Vec

Vec<T> can be used in combination with the [len](attributes/index.html#len) attribute (T must implement BitsReader/BitsWriter)

If the length of Vec changes, the original field specified in `len` will not get updated.
Calling `.update()` can be used to "update" the field!

```rust
use deku::prelude::*;

#[derive(Debug, PartialEq, DekuRead, DekuWrite)]
struct DekuTest {
    count: u8,
    #[deku(len = "count")]
    data: Vec<u8>,
}

let data: Vec<u8> = vec![0x02, 0xBE, 0xEF, 0xFF, 0xFF];
let (_rest, mut val) = DekuTest::from_bytes((data.as_ref(), 0)).unwrap();
assert_eq!(DekuTest {
    count: 0x02,
    data: vec![0xBE, 0xEF]
}, val);

let data_out = val.to_bytes().unwrap();
assert_eq!(vec![0x02, 0xBE, 0xEF], data_out);

// Pushing an element to data
val.data.push(0xAA);

assert_eq!(DekuTest {
    count: 0x02, // Note: this value has not changed
    data: vec![0xBE, 0xEF, 0xAA]
}, val);

let data_out = val.to_bytes().unwrap();
// Note: `count` is still 0x02 while 3 bytes got written
assert_eq!(vec![0x02, 0xBE, 0xEF, 0xAA], data_out);

// Use `update` to update `count`
val.update().unwrap();

assert_eq!(DekuTest {
    count: 0x03,
    data: vec![0xBE, 0xEF, 0xAA]
}, val);

```

# Enums

As enums can have multiple variants, each variant must have a way to match on the incoming data.

First the "type" is read using the `id_type`, then is matched against the variants given `id`. What happens after is the same as structs!

This is implemented with the [id](/attributes/index.html#id) and [id_type](attributes/index.html#id_type) attributes.

Example:

```rust
use deku::prelude::*;

#[derive(Debug, PartialEq, DekuRead, DekuWrite)]
#[deku(id_type = "u8")]
enum DekuTest {
    #[deku(id = "0x01")]
    VariantA,
    #[deku(id = "0x02")]
    VariantB(u16),
}

let data: Vec<u8> = vec![0x01, 0x02, 0xEF, 0xBE];

let (rest, val) = DekuTest::from_bytes((data.as_ref(), 0)).unwrap();
assert_eq!(DekuTest::VariantA , val);

let (rest, val) = DekuTest::from_bytes(rest).unwrap();
assert_eq!(DekuTest::VariantB(0xBEEF) , val);
```

*/
#![cfg_attr(not(feature = "std"), no_std)]

#[cfg(feature = "alloc")]
extern crate alloc;

#[cfg(feature = "alloc")]
use alloc::{format, vec::Vec};

use bitvec::prelude::*;
pub use deku_derive::*;
pub mod attributes;
pub mod error;
pub mod prelude;
use crate::error::DekuError;

/// "Reader" trait: read bits and construct type
pub trait BitsReader {
    /// Read bits and construct type
    /// * **input** - Input as bits
    /// * **input_is_le** - `true` if input is to be interpreted as little endian,
    /// false otherwise (controlled via `endian` deku attribute)
    /// * **bit_size** - `Some` if `bits` or `bytes` deku attributes provided,
    /// `None` otherwise
    /// * **count** - Number of elements to read for container, Some if `len` attribute
    /// is provided, else None
    fn read(
        input: &BitSlice<Msb0, u8>,
        input_is_le: bool,
        bit_size: Option<usize>,
        count: Option<usize>,
    ) -> Result<(&BitSlice<Msb0, u8>, Self), DekuError>
    where
        Self: Sized;
}

/// "Writer" trait: write from type to bits
pub trait BitsWriter {
    /// Write type to bits
    /// * **output_is_le** - `true` if output is to be interpreted as little endian,
    /// false otherwise (controlled via `endian` deku attribute)
    /// * **bit_size** - `Some` if `bits` or `bytes` deku attributes provided,
    /// `None` otherwise
    fn write(
        &self,
        output_is_le: bool,
        bit_size: Option<usize>,
    ) -> Result<BitVec<Msb0, u8>, DekuError>;
}

macro_rules! ImplDekuTraits {
    ($typ:ty) => {
        impl BitsReader for $typ {
            fn read(
                input: &BitSlice<Msb0, u8>,
                input_is_le: bool,
                bit_size: Option<usize>,
                count: Option<usize>,
            ) -> Result<(&BitSlice<Msb0, u8>, Self), DekuError> {
                assert!(count.is_none(), "Dev error: `count` should always be None");

                let max_type_bits: usize = core::mem::size_of::<$typ>() * 8;

                let bit_size = match bit_size {
                    None => max_type_bits,
                    Some(s) if s > max_type_bits => {
                        return Err(DekuError::Parse(format!(
                            "too much data: container of {} cannot hold {}",
                            max_type_bits, s
                        )))
                    }
                    Some(s) => s,
                };
                if input.len() < bit_size {
                    return Err(DekuError::Parse(format!(
                        "not enough data: expected {} got {}",
                        bit_size,
                        input.len()
                    )));
                }

                let (bit_slice, rest) = input.split_at(bit_size);

                // Create a new BitVec from the slice
                // We need to do this because it could be split across byte boundaries
                // i.e. BitSlice<Msb0, u8> [00, 1100].load_le() == 48
                // vs BitSlice<Msb0, u8> [001100].load_le() == 12
                let mut bits: BitVec<Msb0, u8> = BitVec::new();
                for b in bit_slice {
                    bits.push(*b);
                }

                let value = if input_is_le {
                    bits.load_le()
                } else {
                    bits.load_be()
                };

                Ok((rest, value))
            }
        }

        impl BitsWriter for $typ {
            fn write(
                &self,
                output_is_le: bool,
                bit_size: Option<usize>,
            ) -> Result<BitVec<Msb0, u8>, DekuError> {
                let input = if output_is_le {
                    self.to_le_bytes()
                } else {
                    self.to_be_bytes()
                };

                let input_bits: BitVec<Msb0, u8> = input.to_vec().into();

                let res_bits: BitVec<Msb0, u8> = {
                    if let Some(bit_size) = bit_size {
                        if bit_size > input_bits.len() {
                            return Err(DekuError::InvalidParam(format!(
                                "bit size {} is larger then input {}",
                                bit_size,
                                input_bits.len()
                            )));
                        }

                        if output_is_le {
                            // Example read 10 bits u32 [0xAB, 0b11_000000]
                            // => [10101011, 00000011, 00000000, 00000000]
                            let mut res_bits = BitVec::<Msb0, u8>::with_capacity(bit_size);
                            let mut remaining_bits = bit_size;
                            for chunk in input_bits.chunks(8) {
                                if chunk.len() > remaining_bits {
                                    let bits = &chunk[chunk.len() - remaining_bits..];
                                    for b in bits {
                                        res_bits.push(*b);
                                    }
                                    // https://github.com/myrrlyn/bitvec/issues/62
                                    // res_bits.extend_from_slice(chunk[chunk.len() - remaining_bits..]);
                                    break;
                                } else {
                                    for b in chunk {
                                        res_bits.push(*b);
                                    }
                                    // https://github.com/myrrlyn/bitvec/issues/62
                                    // res_bits.extend_from_slice(chunk)
                                }
                                remaining_bits -= chunk.len();
                            }

                            res_bits
                        } else {
                            // Example read 10 bits u32 [0xAB, 0b11_000000]
                            // => [00000000, 00000000, 00000010, 10101111]
                            input_bits[input_bits.len() - bit_size..].into()
                        }
                    } else {
                        input_bits
                    }
                };

                Ok(res_bits)
            }
        }
    };
}

impl<T: BitsReader> BitsReader for Vec<T> {
    fn read(
        input: &BitSlice<Msb0, u8>,
        input_is_le: bool,
        bit_size: Option<usize>,
        count: Option<usize>,
    ) -> Result<(&BitSlice<Msb0, u8>, Self), DekuError>
    where
        Self: Sized,
    {
        let count = count.expect("Dev error: `count` should always be Some");

        let mut res = Vec::with_capacity(count);
        let mut rest = input;
        for _i in 0..count {
            let (new_rest, val) = <T>::read(rest, input_is_le, bit_size, None)?;
            res.push(val);
            rest = new_rest;
        }

        Ok((rest, res))
    }
}

impl<T: BitsWriter> BitsWriter for Vec<T> {
    fn write(
        &self,
        output_is_le: bool,
        bit_size: Option<usize>,
    ) -> Result<BitVec<Msb0, u8>, DekuError> {
        let mut acc = BitVec::new();

        for v in self {
            let r = v.write(output_is_le, bit_size)?;
            acc.extend(r);
        }

        Ok(acc)
    }
}

ImplDekuTraits!(u8);
ImplDekuTraits!(u16);
ImplDekuTraits!(u32);
ImplDekuTraits!(u64);
// ImplDekuTraits!(u128);
ImplDekuTraits!(usize);

#[cfg(test)]
mod tests {
    use super::*;

    use rstest::rstest;

    #[cfg(target_endian = "little")]
    static IS_LE: bool = true;

    #[cfg(target_endian = "big")]
    static IS_LE: bool = false;

    #[rstest(input,input_is_le,bit_size,count,expected,expected_rest,
        case::normal([0xDD, 0xCC, 0xBB, 0xAA].as_ref(), IS_LE, Some(32), None, 0xAABB_CCDD, bits![Msb0, u8;]),
        case::normal_offset([0b1001_0110, 0b1110_0000, 0xCC, 0xDD ].as_ref(), IS_LE, Some(12), None, 0b1110_1001_0110, bits![Msb0, u8; 0,0,0,0, 1,1,0,0,1,1,0,0, 1,1,0,1,1,1,0,1]),

        #[should_panic(expected="Parse(\"not enough data: expected 32 got 0\")")]
        case::not_enough_data([].as_ref(), IS_LE, Some(32), None, 0xFF, bits![Msb0, u8;]),
        #[should_panic(expected="Parse(\"not enough data: expected 32 got 16\")")]
        case::not_enough_data([0xAA, 0xBB].as_ref(), IS_LE, Some(32), None, 0xFF, bits![Msb0, u8;]),
        #[should_panic(expected="Parse(\"too much data: container of 32 cannot hold 64\")")]
        case::too_much_data([0xAA, 0xBB, 0xCC, 0xDD, 0xAA, 0xBB, 0xCC, 0xDD].as_ref(), IS_LE, Some(64), None, 0xFF, bits![Msb0, u8;]),
        #[should_panic(expected="Dev error: `count` should always be None")]
        case::dev_err_count_some([].as_ref(), IS_LE, Some(64), Some(1), 0xFF, bits![Msb0, u8;]),
    )]
    fn test_bit_read(
        input: &[u8],
        input_is_le: bool,
        bit_size: Option<usize>,
        count: Option<usize>,
        expected: u32,
        expected_rest: &BitSlice<Msb0, u8>,
    ) {
        let bit_slice = input.bits::<Msb0>();

        let (rest, res_read) = u32::read(bit_slice, input_is_le, bit_size, count).unwrap();
        assert_eq!(expected, res_read);
        assert_eq!(expected_rest, rest);
    }

    #[rstest(input,output_is_le,bit_size,expected,
        case::normal_le(0xDDCC_BBAA, IS_LE, None, vec![0xAA, 0xBB, 0xCC, 0xDD]),
        case::normal_be(0xDDCC_BBAA, !IS_LE, None, vec![0xDD, 0xCC, 0xBB, 0xAA]),
        case::bit_size_le_smaller(0x03AB, IS_LE, Some(10), vec![0xAB, 0b11_000000]),
        case::bit_size_be_smaller(0x03AB, !IS_LE, Some(10), vec![0b11, 0xAB]),
        #[should_panic(expected = "InvalidParam(\"bit size 100 is larger then input 32\")")]
        case::bit_size_le_bigger(0x03AB, IS_LE, Some(100), vec![0xAB, 0b11_000000]),
    )]
    fn test_bit_write(input: u32, output_is_le: bool, bit_size: Option<usize>, expected: Vec<u8>) {
        let res_write = input.write(output_is_le, bit_size).unwrap().into_vec();
        assert_eq!(expected, res_write);
    }

    #[rstest(input,is_le,bit_size,expected,expected_rest,expected_write,
        case::normal([0xDD, 0xCC, 0xBB, 0xAA].as_ref(), IS_LE, Some(32), 0xAABB_CCDD, bits![Msb0, u8;], vec![0xDD, 0xCC, 0xBB, 0xAA]),
    )]
    fn test_bit_read_write(
        input: &[u8],
        is_le: bool,
        bit_size: Option<usize>,
        expected: u32,
        expected_rest: &BitSlice<Msb0, u8>,
        expected_write: Vec<u8>,
    ) {
        let bit_slice = input.bits::<Msb0>();

        let (rest, res_read) = u32::read(bit_slice, is_le, bit_size, None).unwrap();
        assert_eq!(expected, res_read);
        assert_eq!(expected_rest, rest);

        let res_write = res_read.write(is_le, bit_size).unwrap().into_vec();
        assert_eq!(expected_write, res_write);

        assert_eq!(input[..expected_write.len()].to_vec(), expected_write);
    }

    #[rstest(input,input_is_le,bit_size,count,expected,expected_rest,
        case::count_0([0xAA].as_ref(), IS_LE, Some(8), Some(0), vec![], bits![Msb0, u8; 1,0,1,0,1,0,1,0]),
        case::count_1([0xAA, 0xBB].as_ref(), IS_LE, Some(8), Some(1), vec![0xAA], bits![Msb0, u8; 1,0,1,1,1,0,1,1]),
        case::count_2([0xAA, 0xBB, 0xCC].as_ref(), IS_LE, Some(8), Some(2), vec![0xAA, 0xBB], bits![Msb0, u8; 1,1,0,0,1,1,0,0]),

        case::bits_6([0b0110_1001, 0b1110_1001].as_ref(), IS_LE, Some(6), Some(2), vec![0b00_011010, 0b00_011110], bits![Msb0, u8; 1,0,0,1]),

        #[should_panic(expected="Parse(\"too much data: container of 8 cannot hold 9\")")]
        case::not_enough_data([].as_ref(), IS_LE, Some(9), Some(1), vec![], bits![Msb0, u8;]),
        #[should_panic(expected="Parse(\"too much data: container of 8 cannot hold 9\")")]
        case::not_enough_data([0xAA].as_ref(), IS_LE, Some(9), Some(1), vec![], bits![Msb0, u8;]),
        #[should_panic(expected="Parse(\"not enough data: expected 8 got 0\")")]
        case::not_enough_data([0xAA].as_ref(), IS_LE, Some(8), Some(2), vec![], bits![Msb0, u8;]),
        #[should_panic(expected="Parse(\"too much data: container of 8 cannot hold 9\")")]
        case::too_much_data([0xAA, 0xBB].as_ref(), IS_LE, Some(9), Some(1), vec![], bits![Msb0, u8;]),
        #[should_panic(expected="Dev error: `count` should always be Some")]
        case::dev_err_count_none([].as_ref(), IS_LE, Some(0), None, vec![], bits![Msb0, u8;]),
    )]
    fn test_vec_read(
        input: &[u8],
        input_is_le: bool,
        bit_size: Option<usize>,
        count: Option<usize>,
        expected: Vec<u8>,
        expected_rest: &BitSlice<Msb0, u8>,
    ) {
        let bit_slice = input.bits::<Msb0>();

        let (rest, res_read) = Vec::<u8>::read(bit_slice, input_is_le, bit_size, count).unwrap();
        assert_eq!(expected, res_read);
        assert_eq!(expected_rest, rest);
    }

    #[rstest(input,output_is_le,bit_size,expected,
        case::normal(vec![0xAABB, 0xCCDD], IS_LE, None, vec![0xBB, 0xAA, 0xDD, 0xCC]),
    )]
    fn test_vec_write(
        input: Vec<u16>,
        output_is_le: bool,
        bit_size: Option<usize>,
        expected: Vec<u8>,
    ) {
        let res_write = input.write(output_is_le, bit_size).unwrap().into_vec();
        assert_eq!(expected, res_write);
    }

    #[rstest(input,is_le,bit_size,count,expected,expected_rest,expected_write,
        case::normal_le([0xAA, 0xBB, 0xCC, 0xDD].as_ref(), IS_LE, Some(16), Some(2), vec![0xBBAA, 0xDDCC], bits![Msb0, u8;], vec![0xAA, 0xBB, 0xCC, 0xDD]),
        case::normal_be([0xAA, 0xBB, 0xCC, 0xDD].as_ref(), !IS_LE, Some(16), Some(2), vec![0xAABB, 0xCCDD], bits![Msb0, u8;], vec![0xAA, 0xBB, 0xCC, 0xDD]),
    )]
    fn test_vec_read_write(
        input: &[u8],
        is_le: bool,
        bit_size: Option<usize>,
        count: Option<usize>,
        expected: Vec<u16>,
        expected_rest: &BitSlice<Msb0, u8>,
        expected_write: Vec<u8>,
    ) {
        let bit_slice = input.bits::<Msb0>();

        let (rest, res_read) = Vec::<u16>::read(bit_slice, is_le, bit_size, count).unwrap();
        assert_eq!(expected, res_read);
        assert_eq!(expected_rest, rest);

        let res_write: Vec<u8> = res_read.write(is_le, bit_size).unwrap().into_vec();
        assert_eq!(expected_write, res_write);

        assert_eq!(input[..expected_write.len()].to_vec(), expected_write);
    }
}