1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
//! Deku is a data-to-struct serialization/deserialization library supporting bit level granularity,
//! Makes use of the [bitvec](https://crates.io/crates/bitvec) crate as the "Reader" and “Writer”

use bitvec::prelude::*;
pub use deku_derive::*;
pub mod error;
pub mod prelude;
use crate::error::DekuError;

pub trait BitsReader {
    fn read(
        input: &BitSlice<Msb0, u8>,
        input_is_le: bool,
        bit_size: Option<usize>,
    ) -> Result<(&BitSlice<Msb0, u8>, Self), DekuError>
    where
        Self: Sized;
}

pub trait BitsReaderItems {
    fn read(
        input: &BitSlice<Msb0, u8>,
        input_is_le: bool,
        bit_size: Option<usize>,
        count: usize,
    ) -> Result<(&BitSlice<Msb0, u8>, Self), DekuError>
    where
        Self: Sized;
}

pub trait BitsWriter {
    fn write(self, output_is_le: bool, bit_size: Option<usize>) -> BitVec<Msb0, u8>;
}

macro_rules! ImplDekuTraits {
    ($typ:ty) => {
        impl BitsReader for $typ {
            fn read(
                input: &BitSlice<Msb0, u8>,
                input_is_le: bool,
                bit_size: Option<usize>,
            ) -> Result<(&BitSlice<Msb0, u8>, Self), DekuError> {
                let max_type_bits: usize = std::mem::size_of::<$typ>() * 8;

                let bit_size = match bit_size {
                    None => max_type_bits,
                    Some(s) if s > max_type_bits => {
                        return Err(DekuError::Parse(format!(
                            "too much data: container of {} cannot hold {}",
                            max_type_bits, s
                        )))
                    }
                    Some(s) => s,
                };
                if input.len() < bit_size {
                    return Err(DekuError::Parse(format!(
                        "not enough data: expected {} got {}",
                        bit_size,
                        input.len()
                    )));
                }

                let (bit_slice, rest) = input.split_at(bit_size);

                // Create a new BitVec from the slice
                // We need to do this because it could be split accross byte boundaries
                // i.e. BitSlice<Msb0, u8> [00, 1100].load_le() == 48
                // vs BitSlice<Msb0, u8> [001100].load_le() == 12
                let mut bits: BitVec<Msb0, u8> = BitVec::new();
                for b in bit_slice {
                    bits.push(*b);
                }

                let value = if input_is_le {
                    bits.load_le()
                } else {
                    bits.load_be()
                };

                Ok((rest, value))
            }
        }

        impl BitsWriter for $typ {
            fn write(self, output_is_le: bool, bit_size: Option<usize>) -> BitVec<Msb0, u8> {
                let res = if output_is_le {
                    self.to_le_bytes()
                } else {
                    self.to_be_bytes()
                };

                let mut res_bits: BitVec<Msb0, u8> = res.to_vec().into();

                // Truncate to fit in bit_size bits
                if let Some(max_bits) = bit_size {
                    if res_bits.len() > max_bits {
                        res_bits = res_bits.split_off(res_bits.len() - max_bits);
                    }
                }

                res_bits
            }
        }
    };
}

impl<T: BitsReader> BitsReaderItems for Vec<T> {
    fn read(
        input: &BitSlice<Msb0, u8>,
        input_is_le: bool,
        bit_size: Option<usize>,
        count: usize,
    ) -> Result<(&BitSlice<Msb0, u8>, Self), DekuError>
    where
        Self: Sized,
    {
        let mut res = Vec::with_capacity(count);
        let mut rest = input;
        for _i in 0..count {
            let (new_rest, val) = <T>::read(rest, input_is_le, bit_size)?;
            res.push(val);
            rest = new_rest;
        }

        Ok((rest, res))
    }
}

impl<T: BitsWriter> BitsWriter for Vec<T> {
    fn write(self, output_is_le: bool, bit_size: Option<usize>) -> BitVec<Msb0, u8> {
        let mut acc = BitVec::new();

        for v in self {
            let r = v.write(output_is_le, bit_size);
            acc.extend(r);
        }

        acc
    }
}

ImplDekuTraits!(u8);
ImplDekuTraits!(u16);
ImplDekuTraits!(u32);
ImplDekuTraits!(u64);
// ImplDekuTraits!(u128);
ImplDekuTraits!(usize);

#[cfg(test)]
mod tests {
    use super::*;

    use rstest::rstest;

    #[cfg(target_endian = "little")]
    static IS_LE: bool = true;

    #[cfg(target_endian = "big")]
    static IS_LE: bool = false;

    #[rstest(input,input_is_le,bit_size,expected,expected_rest,
        case::normal([0xDD, 0xCC, 0xBB, 0xAA].as_ref(), IS_LE, Some(32), 0xAABBCCDD, bits![Msb0, u8;]),
        case::normal_offset([0b1001_0110, 0b1110_0000, 0xCC, 0xDD ].as_ref(), IS_LE, Some(12), 0b1110_1001_0110, bits![Msb0, u8; 0,0,0,0, 1,1,0,0,1,1,0,0, 1,1,0,1,1,1,0,1]),

        // TODO: Better error message for these
        #[should_panic(expected="Parse(\"not enough data: expected 32 got 0\")")]
        case::not_enough_data([].as_ref(), IS_LE, Some(32), 0xFF, bits![Msb0, u8;]),
        #[should_panic(expected="Parse(\"not enough data: expected 32 got 16\")")]
        case::not_enough_data([0xAA, 0xBB].as_ref(), IS_LE, Some(32), 0xFF, bits![Msb0, u8;]),
        #[should_panic(expected="Parse(\"too much data: container of 32 cannot hold 64\")")]
        case::too_much_data([0xAA, 0xBB, 0xCC, 0xDD, 0xAA, 0xBB, 0xCC, 0xDD].as_ref(), IS_LE, Some(64), 0xFF, bits![Msb0, u8;]),
    )]
    fn test_bit_read(
        input: &[u8],
        input_is_le: bool,
        bit_size: Option<usize>,
        expected: u32,
        expected_rest: &BitSlice<Msb0, u8>,
    ) {
        let bit_slice = input.bits::<Msb0>();

        let (rest, res_read) = u32::read(bit_slice, input_is_le, bit_size).unwrap();
        assert_eq!(expected, res_read);
        assert_eq!(expected_rest, rest);
    }

    #[rstest(input,output_is_le,bit_size,expected,
        case::normal(0xDDCCBBAA, IS_LE, None, vec![0xAA, 0xBB, 0xCC, 0xDD]),
    )]
    fn test_bit_write(input: u32, output_is_le: bool, bit_size: Option<usize>, expected: Vec<u8>) {
        let res_write = input.write(output_is_le, bit_size).into_vec();
        assert_eq!(expected, res_write);
    }

    #[rstest(input,is_le,bit_size,expected,expected_rest,expected_write,
        case::normal([0xDD, 0xCC, 0xBB, 0xAA].as_ref(), IS_LE, Some(32), 0xAABBCCDD, bits![Msb0, u8;], vec![0xDD, 0xCC, 0xBB, 0xAA]),
    )]
    fn test_bit_read_write(
        input: &[u8],
        is_le: bool,
        bit_size: Option<usize>,
        expected: u32,
        expected_rest: &BitSlice<Msb0, u8>,
        expected_write: Vec<u8>,
    ) {
        let bit_slice = input.bits::<Msb0>();

        let (rest, res_read) = u32::read(bit_slice, is_le, bit_size).unwrap();
        assert_eq!(expected, res_read);
        assert_eq!(expected_rest, rest);

        let res_write = res_read.write(is_le, bit_size).into_vec();
        assert_eq!(expected_write, res_write);

        assert_eq!(input[..expected_write.len()].to_vec(), expected_write);
    }

    #[rstest(input,input_is_le,bit_size,count,expected,expected_rest,
        case::count_0([0xAA].as_ref(), IS_LE, Some(8), 0, vec![], bits![Msb0, u8; 1,0,1,0,1,0,1,0]),
        case::count_1([0xAA, 0xBB].as_ref(), IS_LE, Some(8), 1, vec![0xAA], bits![Msb0, u8; 1,0,1,1,1,0,1,1]),
        case::count_2([0xAA, 0xBB, 0xCC].as_ref(), IS_LE, Some(8), 2, vec![0xAA, 0xBB], bits![Msb0, u8; 1,1,0,0,1,1,0,0]),

        case::bits_6([0b0110_1001, 0b1110_1001].as_ref(), IS_LE, Some(6), 2, vec![0b00_011010, 0b00_011110], bits![Msb0, u8; 1,0,0,1]),

        #[should_panic(expected="Parse(\"too much data: container of 8 cannot hold 9\")")]
        case::not_enough_data([].as_ref(), IS_LE, Some(9), 1, vec![], bits![Msb0, u8;]),
        #[should_panic(expected="Parse(\"too much data: container of 8 cannot hold 9\")")]
        case::not_enough_data([0xAA].as_ref(), IS_LE, Some(9), 1, vec![], bits![Msb0, u8;]),
        #[should_panic(expected="Parse(\"not enough data: expected 8 got 0\")")]
        case::not_enough_data([0xAA].as_ref(), IS_LE, Some(8), 2, vec![], bits![Msb0, u8;]),
        #[should_panic(expected="Parse(\"too much data: container of 8 cannot hold 9\")")]
        case::too_much_data([0xAA, 0xBB].as_ref(), IS_LE, Some(9), 1, vec![], bits![Msb0, u8;]),
    )]
    fn test_vec_read(
        input: &[u8],
        input_is_le: bool,
        bit_size: Option<usize>,
        count: usize,
        expected: Vec<u8>,
        expected_rest: &BitSlice<Msb0, u8>,
    ) {
        let bit_slice = input.bits::<Msb0>();

        let (rest, res_read) = Vec::<u8>::read(bit_slice, input_is_le, bit_size, count).unwrap();
        assert_eq!(expected, res_read);
        assert_eq!(expected_rest, rest);
    }

    #[rstest(input,output_is_le,bit_size,expected,
        case::normal(vec![0xAABB, 0xCCDD], IS_LE, None, vec![0xBB, 0xAA, 0xDD, 0xCC]),
    )]
    fn test_vec_write(
        input: Vec<u16>,
        output_is_le: bool,
        bit_size: Option<usize>,
        expected: Vec<u8>,
    ) {
        let res_write = input.write(output_is_le, bit_size).into_vec();
        assert_eq!(expected, res_write);
    }

    #[rstest(input,input_is_le,bit_size,count,expected,expected_rest,expected_write,
        case::normal([0xAA, 0xBB, 0xCC, 0xDD].as_ref(), IS_LE, Some(8), 4, vec![0xAA, 0xBB, 0xCC, 0xDD], bits![Msb0, u8;], vec![0xAA, 0xBB, 0xCC, 0xDD]),
    )]
    fn test_vec_read_write(
        input: &[u8],
        input_is_le: bool,
        bit_size: Option<usize>,
        count: usize,
        expected: Vec<u8>,
        expected_rest: &BitSlice<Msb0, u8>,
        expected_write: Vec<u8>,
    ) {
        let bit_slice = input.bits::<Msb0>();

        let (rest, res_read) = Vec::<u8>::read(bit_slice, input_is_le, bit_size, count).unwrap();
        assert_eq!(expected, res_read);
        assert_eq!(expected_rest, rest);

        let res_write: Vec<u8> = res_read.into();
        assert_eq!(expected_write, res_write);

        assert_eq!(input[..expected_write.len()].to_vec(), expected_write);
    }
}