1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
//! A priority queue implemented with a *d*-ary heap.
//!
//! Insertion and popping the largest element have *O*(log(*n*)) time complexity.
//! Checking the largest element is *O*(1). Converting a vector to a *d*-ary heap
//! can be done in-place, and has *O*(*n*) complexity. A *d*-ary heap can also be
//! converted to a sorted vector in-place, allowing it to be used for an *O*(*n* * log(*n*))
//! in-place heapsort.
//!
//! # Comparison to standard library
//!
//! The standard library contains a 2-ary heap
//! ([`std::collections::BinaryHeap`][std]). The [`BinaryHeap`] of this crate
//! aims to be a drop-in replacement, both in API and in performance. Cargo
//! features are used in place of unstable Rust features. The advantage of this
//! crate over the standard library lies in the possibility of easily changing
//! the arity of the heap, which can increase performance.
//!
//! The standard library binary heap can contain up to [`isize::MAX`] elements;
//! this is the same for the binary heap of this crate, but other heaps in this
//! crate can hold less elements. In the general case, the maximum number of
//! elements is ([`usize::MAX`] - 1) / *d* for an arity of *d*. On 64-bit systems
//! this should generally not be a concern when using reasonable arities. On
//! 32-bit systems this may be a concern when using very large heaps with a
//! relatively high arity.
//!
//! [std]: https://doc.rust-lang.org/std/collections/struct.BinaryHeap.html
//!
//! # Comparison of different arities *d*
//!
//! The arity *d* is defined as the maximum number of children each node can
//! have. A higher number means the heap has less layers, but may require more
//! work per layer because there are more children present. This generally makes
//! methods adding elements to the heap such as [`push`] faster, and methods
//! removing them such as [`pop`] slower. However, due to higher cache locality
//! for higher *d*, the drop in [`pop`] performance is often diminished. If you're
//! unsure what value of *d* to choose, the [`QuaternaryHeap`] with *d* = 4 is
//! usually a good start, but benchmarking is necessary to determine the best
//! value of *d*.
//!
//! [`push`]: struct.DaryHeap.html#method.push
//! [`pop`]: struct.DaryHeap.html#method.pop
//!
//! # Usage
//!
//! Rust type interference cannot infer the desired heap arity (value of *d*)
//! automatically when using [`DaryHeap`] directly. It is therefore more
//! ergonomic to  use one of the type aliases to select the desired arity:
//!
//! | Name               | Arity   |
//! |--------------------|---------|
//! | [`BinaryHeap`]     | *d* = 2 |
//! | [`TernaryHeap`]    | *d* = 3 |
//! | [`QuaternaryHeap`] | *d* = 4 |
//! | [`QuinaryHeap`]    | *d* = 5 |
//! | [`SenaryHeap`]     | *d* = 6 |
//! | [`SeptenaryHeap`]  | *d* = 7 |
//! | [`OctonaryHeap`]   | *d* = 8 |
//!
//! The difference in ergonomics illustrated in the following:
//!
//! ```
//! use dary_heap::{DaryHeap, TernaryHeap};
//!
//! // Type parameter T can be inferred, but arity cannot
//! let mut heap1 = DaryHeap::<_, 3>::new();
//! heap1.push(42);
//!
//! // Type alias removes need for explicit type
//! let mut heap2 = TernaryHeap::new();
//! heap2.push(42);
//! ```
//!
//! If a different arity is desired, you can use the former or a define a type
//! alias yourself. It should be noted that *d* > 8 is rarely beneficial.
//!
//! ## Validity of arities in *d*-ary heaps
//!
//! Only arities of two or greater are useful in *d*-ary heap, and are therefore
//! the only ones implemented by default. Lower arities are only possible if you
//! put in the effort to implement them yourself. An arity of one is possible,
//! but yields a heap where every element has one child. This essentially makes
//! it a sorted vector with poor performance. Regarding an arity of zero: this
//! is not statically prevented, but constructing a [`DaryHeap`] with it and
//! using it may (and probably will) result in a runtime panic.
//!
//! [`DaryHeap`]: struct.DaryHeap.html
//! [`BinaryHeap`]: type.BinaryHeap.html
//! [`TernaryHeap`]: type.TernaryHeap.html
//! [`QuaternaryHeap`]: type.QuaternaryHeap.html
//! [`QuinaryHeap`]: type.QuinaryHeap.html
//! [`SenaryHeap`]: type.SenaryHeap.html
//! [`SeptenaryHeap`]: type.SeptenaryHeap.html
//! [`OctonaryHeap`]: type.OctonaryHeap.html
//!
//! # Examples
//!
//! This is a larger example that implements [Dijkstra's algorithm][dijkstra]
//! to solve the [shortest path problem][sssp] on a [directed graph][dir_graph].
//! It shows how to use [`DaryHeap`] with custom types.
//!
//! [dijkstra]: https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm
//! [sssp]: https://en.wikipedia.org/wiki/Shortest_path_problem
//! [dir_graph]: https://en.wikipedia.org/wiki/Directed_graph
//!
//! ```
//! use std::cmp::Ordering;
//! use dary_heap::TernaryHeap;
//!
//! #[derive(Copy, Clone, Eq, PartialEq)]
//! struct State {
//!     cost: usize,
//!     position: usize,
//! }
//!
//! // The priority queue depends on `Ord`.
//! // Explicitly implement the trait so the queue becomes a min-heap
//! // instead of a max-heap.
//! impl Ord for State {
//!     fn cmp(&self, other: &Self) -> Ordering {
//!         // Notice that the we flip the ordering on costs.
//!         // In case of a tie we compare positions - this step is necessary
//!         // to make implementations of `PartialEq` and `Ord` consistent.
//!         other.cost.cmp(&self.cost)
//!             .then_with(|| self.position.cmp(&other.position))
//!     }
//! }
//!
//! // `PartialOrd` needs to be implemented as well.
//! impl PartialOrd for State {
//!     fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
//!         Some(self.cmp(other))
//!     }
//! }
//!
//! // Each node is represented as a `usize`, for a shorter implementation.
//! struct Edge {
//!     node: usize,
//!     cost: usize,
//! }
//!
//! // Dijkstra's shortest path algorithm.
//!
//! // Start at `start` and use `dist` to track the current shortest distance
//! // to each node. This implementation isn't memory-efficient as it may leave duplicate
//! // nodes in the queue. It also uses `usize::MAX` as a sentinel value,
//! // for a simpler implementation.
//! fn shortest_path(adj_list: &Vec<Vec<Edge>>, start: usize, goal: usize) -> Option<usize> {
//!     // dist[node] = current shortest distance from `start` to `node`
//!     let mut dist: Vec<_> = (0..adj_list.len()).map(|_| usize::MAX).collect();
//!
//!     let mut heap = TernaryHeap::new();
//!
//!     // We're at `start`, with a zero cost
//!     dist[start] = 0;
//!     heap.push(State { cost: 0, position: start });
//!
//!     // Examine the frontier with lower cost nodes first (min-heap)
//!     while let Some(State { cost, position }) = heap.pop() {
//!         // Alternatively we could have continued to find all shortest paths
//!         if position == goal { return Some(cost); }
//!
//!         // Important as we may have already found a better way
//!         if cost > dist[position] { continue; }
//!
//!         // For each node we can reach, see if we can find a way with
//!         // a lower cost going through this node
//!         for edge in &adj_list[position] {
//!             let next = State { cost: cost + edge.cost, position: edge.node };
//!
//!             // If so, add it to the frontier and continue
//!             if next.cost < dist[next.position] {
//!                 heap.push(next);
//!                 // Relaxation, we have now found a better way
//!                 dist[next.position] = next.cost;
//!             }
//!         }
//!     }
//!
//!     // Goal not reachable
//!     None
//! }
//!
//! fn main() {
//!     // This is the directed graph we're going to use.
//!     // The node numbers correspond to the different states,
//!     // and the edge weights symbolize the cost of moving
//!     // from one node to another.
//!     // Note that the edges are one-way.
//!     //
//!     //                  7
//!     //          +-----------------+
//!     //          |                 |
//!     //          v   1        2    |  2
//!     //          0 -----> 1 -----> 3 ---> 4
//!     //          |        ^        ^      ^
//!     //          |        | 1      |      |
//!     //          |        |        | 3    | 1
//!     //          +------> 2 -------+      |
//!     //           10      |               |
//!     //                   +---------------+
//!     //
//!     // The graph is represented as an adjacency list where each index,
//!     // corresponding to a node value, has a list of outgoing edges.
//!     // Chosen for its efficiency.
//!     let graph = vec![
//!         // Node 0
//!         vec![Edge { node: 2, cost: 10 },
//!              Edge { node: 1, cost: 1 }],
//!         // Node 1
//!         vec![Edge { node: 3, cost: 2 }],
//!         // Node 2
//!         vec![Edge { node: 1, cost: 1 },
//!              Edge { node: 3, cost: 3 },
//!              Edge { node: 4, cost: 1 }],
//!         // Node 3
//!         vec![Edge { node: 0, cost: 7 },
//!              Edge { node: 4, cost: 2 }],
//!         // Node 4
//!         vec![]];
//!
//!     assert_eq!(shortest_path(&graph, 0, 1), Some(1));
//!     assert_eq!(shortest_path(&graph, 0, 3), Some(3));
//!     assert_eq!(shortest_path(&graph, 3, 0), Some(7));
//!     assert_eq!(shortest_path(&graph, 0, 4), Some(5));
//!     assert_eq!(shortest_path(&graph, 4, 0), None);
//! }
//! ```

#![no_std]
#![cfg_attr(
    feature = "unstable_nightly",
    feature(
        exact_size_is_empty,
        extend_one,
        inplace_iteration,
        min_specialization,
        trusted_len
    )
)]
#![cfg_attr(docsrs, feature(doc_cfg))]
#![allow(clippy::needless_doctest_main)]

extern crate alloc;

use core::fmt;
use core::iter::{FromIterator, FusedIterator};
use core::mem::{size_of, swap, ManuallyDrop};
use core::num::NonZeroUsize;
use core::ops::{Deref, DerefMut};
use core::ptr;
use core::slice;

#[cfg(feature = "extra")]
use alloc::collections::TryReserveError;
use alloc::{vec, vec::Vec};

/// A binary heap (*d* = 2).
pub type BinaryHeap<T> = DaryHeap<T, 2>;

/// A ternary heap (*d* = 3).
pub type TernaryHeap<T> = DaryHeap<T, 3>;

/// A quaternary heap (*d* = 4).
pub type QuaternaryHeap<T> = DaryHeap<T, 4>;

/// A quinary heap (*d* = 5).
pub type QuinaryHeap<T> = DaryHeap<T, 5>;

/// A senary heap (*d* = 6).
pub type SenaryHeap<T> = DaryHeap<T, 6>;

/// A septenary heap (*d* = 7).
pub type SeptenaryHeap<T> = DaryHeap<T, 7>;

/// An octonary heap (*d* = 8).
pub type OctonaryHeap<T> = DaryHeap<T, 8>;

/// A priority queue implemented with a *d*-ary heap.
///
/// This will be a max-heap.
///
/// It is a logic error for an item to be modified in such a way that the
/// item's ordering relative to any other item, as determined by the [`Ord`]
/// trait, changes while it is in the heap. This is normally only possible
/// through interior mutability, global state, I/O, or unsafe code. The
/// behavior resulting from such a logic error is not specified, but will
/// be encapsulated to the `DaryHeap` that observed the logic error and not
/// result in undefined behavior. This could include panics, incorrect results,
/// aborts, memory leaks, and non-termination.
///
/// As long as no elements change their relative order while being in the heap
/// as described above, the API of `DaryHeap` guarantees that the heap
/// invariant remains intact i.e. its methods all behave as documented. For
/// example if a method is documented as iterating in sorted order, that's
/// guaranteed to work as long as elements in the heap have not changed order,
/// even in the presence of closures getting unwinded out of, iterators getting
/// leaked, and similar foolishness.
///
///
/// # Usage
///
/// Rust type interference cannot infer the desired heap arity (value of *d*)
/// automatically. Therefore, it is generally more ergonomic to use one of the
/// [type aliases] instead of `DaryHeap` directly. See the [crate-level
/// documentation][usage] for more information.
///
/// [type aliases]: index.html#types
/// [usage]: index.html#usage
///
/// # Comparison to standard library
///
/// For a comparison with [`std::collections::BinaryHeap`][std], see the [crate-level
/// documentation][comparison].
///
/// [std]: https://doc.rust-lang.org/std/collections/struct.BinaryHeap.html
/// [comparison]: index.html#comparison-to-standard-library
///
/// # Examples
///
/// ```
/// use dary_heap::BinaryHeap;
///
/// // Type inference lets us omit an explicit type signature (which
/// // would be `BinaryHeap<i32>` in this example).
/// let mut heap = BinaryHeap::new();
///
/// // We can use peek to look at the next item in the heap. In this case,
/// // there's no items in there yet so we get None.
/// assert_eq!(heap.peek(), None);
///
/// // Let's add some scores...
/// heap.push(1);
/// heap.push(5);
/// heap.push(2);
///
/// // Now peek shows the most important item in the heap.
/// assert_eq!(heap.peek(), Some(&5));
///
/// // We can check the length of a heap.
/// assert_eq!(heap.len(), 3);
///
/// // We can iterate over the items in the heap, although they are returned in
/// // a random order.
/// for x in &heap {
///     println!("{x}");
/// }
///
/// // If we instead pop these scores, they should come back in order.
/// assert_eq!(heap.pop(), Some(5));
/// assert_eq!(heap.pop(), Some(2));
/// assert_eq!(heap.pop(), Some(1));
/// assert_eq!(heap.pop(), None);
///
/// // We can clear the heap of any remaining items.
/// heap.clear();
///
/// // The heap should now be empty.
/// assert!(heap.is_empty())
/// ```
///
/// A `DaryHeap` with a known list of items can be initialized from an array:
///
/// ```
/// use dary_heap::QuaternaryHeap;
///
/// let heap = QuaternaryHeap::from([1, 5, 2]);
/// ```
///
/// ## Min-heap
///
/// Either [`core::cmp::Reverse`] or a custom [`Ord`] implementation can be used to
/// make `DaryHeap` a min-heap. This makes `heap.pop()` return the smallest
/// value instead of the greatest one.
///
/// ```
/// use dary_heap::TernaryHeap;
/// use std::cmp::Reverse;
///
/// let mut heap = TernaryHeap::new();
///
/// // Wrap values in `Reverse`
/// heap.push(Reverse(1));
/// heap.push(Reverse(5));
/// heap.push(Reverse(2));
///
/// // If we pop these scores now, they should come back in the reverse order.
/// assert_eq!(heap.pop(), Some(Reverse(1)));
/// assert_eq!(heap.pop(), Some(Reverse(2)));
/// assert_eq!(heap.pop(), Some(Reverse(5)));
/// assert_eq!(heap.pop(), None);
/// ```
///
/// # Time complexity
///
/// | [push]  | [pop]         | [peek]/[peek\_mut] |
/// |---------|---------------|--------------------|
/// | *O*(1)~ | *O*(log(*n*)) | *O*(1)             |
///
/// The value for `push` is an expected cost; the method documentation gives a
/// more detailed analysis.
///
/// [`core::cmp::Reverse`]: core::cmp::Reverse
/// [`Cell`]: core::cell::Cell
/// [`RefCell`]: core::cell::RefCell
/// [push]: DaryHeap::push
/// [pop]: DaryHeap::pop
/// [peek]: DaryHeap::peek
/// [peek\_mut]: DaryHeap::peek_mut
pub struct DaryHeap<T, const D: usize> {
    data: Vec<T>,
}

#[cfg(feature = "serde")]
mod serde_impl {
    use super::{DaryHeap, Vec};
    use serde::{Deserialize, Deserializer, Serialize, Serializer};

    impl<T: Serialize, const D: usize> Serialize for DaryHeap<T, D> {
        fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
        where
            S: Serializer,
        {
            self.data.serialize(serializer)
        }
    }

    impl<'de, T: Ord + Deserialize<'de>, const A: usize> Deserialize<'de> for DaryHeap<T, A> {
        fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
        where
            D: Deserializer<'de>,
        {
            Vec::deserialize(deserializer).map(Into::into)
        }

        fn deserialize_in_place<D>(deserializer: D, place: &mut Self) -> Result<(), D::Error>
        where
            D: Deserializer<'de>,
        {
            place.data.clear();
            let result = Vec::deserialize_in_place(deserializer, &mut place.data);
            place.rebuild();
            result
        }
    }
}

/// Structure wrapping a mutable reference to the greatest item on a
/// `DaryHeap`.
///
/// This `struct` is created by the [`peek_mut`] method on [`DaryHeap`]. See
/// its documentation for more.
///
/// [`peek_mut`]: DaryHeap::peek_mut
pub struct PeekMut<'a, T: 'a + Ord, const D: usize> {
    heap: &'a mut DaryHeap<T, D>,
    // If a set_len + sift_down are required, this is Some. If a &mut T has not
    // yet been exposed to peek_mut()'s caller, it's None.
    original_len: Option<NonZeroUsize>,
}

impl<T: Ord + fmt::Debug, const D: usize> fmt::Debug for PeekMut<'_, T, D> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        f.debug_tuple("PeekMut").field(&self.heap.data[0]).finish()
    }
}

impl<T: Ord, const D: usize> Drop for PeekMut<'_, T, D> {
    fn drop(&mut self) {
        if let Some(original_len) = self.original_len {
            // SAFETY: That's how many elements were in the Vec at the time of
            // the PeekMut::deref_mut call, and therefore also at the time of
            // the BinaryHeap::peek_mut call. Since the PeekMut did not end up
            // getting leaked, we are now undoing the leak amplification that
            // the DerefMut prepared for.
            unsafe { self.heap.data.set_len(original_len.get()) };

            // SAFETY: PeekMut is only instantiated for non-empty heaps.
            unsafe { self.heap.sift_down(0) };
        }
    }
}

impl<T: Ord, const D: usize> Deref for PeekMut<'_, T, D> {
    type Target = T;
    fn deref(&self) -> &T {
        debug_assert!(!self.heap.is_empty());
        // SAFE: PeekMut is only instantiated for non-empty heaps
        unsafe { self.heap.data.get_unchecked(0) }
    }
}

impl<T: Ord, const D: usize> DerefMut for PeekMut<'_, T, D> {
    fn deref_mut(&mut self) -> &mut T {
        debug_assert!(!self.heap.is_empty());

        let len = self.heap.len();
        if len > 1 {
            // Here we preemptively leak all the rest of the underlying vector
            // after the currently max element. If the caller mutates the &mut T
            // we're about to give them, and then leaks the PeekMut, all these
            // elements will remain leaked. If they don't leak the PeekMut, then
            // either Drop or PeekMut::pop will un-leak the vector elements.
            //
            // This is technique is described throughout several other places in
            // the standard library as "leak amplification".
            unsafe {
                // SAFETY: len > 1 so len != 0.
                self.original_len = Some(NonZeroUsize::new_unchecked(len));
                // SAFETY: len > 1 so all this does for now is leak elements,
                // which is safe.
                self.heap.data.set_len(1);
            }
        }

        // SAFE: PeekMut is only instantiated for non-empty heaps
        unsafe { self.heap.data.get_unchecked_mut(0) }
    }
}

impl<'a, T: Ord, const D: usize> PeekMut<'a, T, D> {
    /// Removes the peeked value from the heap and returns it.
    pub fn pop(mut this: PeekMut<'a, T, D>) -> T {
        if let Some(original_len) = this.original_len.take() {
            // SAFETY: This is how many elements were in the Vec at the time of
            // the BinaryHeap::peek_mut call.
            unsafe { this.heap.data.set_len(original_len.get()) };

            // Unlike in Drop, here we don't also need to do a sift_down even if
            // the caller could've mutated the element. It is removed from the
            // heap on the next line and pop() is not sensitive to its value.
        }
        this.heap.pop().unwrap()
    }
}

impl<T: Clone, const D: usize> Clone for DaryHeap<T, D> {
    fn clone(&self) -> Self {
        DaryHeap {
            data: self.data.clone(),
        }
    }

    fn clone_from(&mut self, source: &Self) {
        self.data.clone_from(&source.data);
    }
}

impl<T: Ord, const D: usize> Default for DaryHeap<T, D> {
    /// Creates an empty `DaryHeap<T, D>`.
    #[inline]
    fn default() -> DaryHeap<T, D> {
        DaryHeap::new()
    }
}

impl<T: fmt::Debug, const D: usize> fmt::Debug for DaryHeap<T, D> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        f.debug_list().entries(self.iter()).finish()
    }
}

struct RebuildOnDrop<'a, T: Ord, const D: usize> {
    heap: &'a mut DaryHeap<T, D>,
    rebuild_from: usize,
}

impl<'a, T: Ord, const D: usize> Drop for RebuildOnDrop<'a, T, D> {
    fn drop(&mut self) {
        self.heap.rebuild_tail(self.rebuild_from);
    }
}

impl<T: Ord, const D: usize> DaryHeap<T, D> {
    /// Creates an empty `DaryHeap` as a max-heap.
    ///
    /// # Examples
    ///
    /// Basic usage:
    ///
    /// ```
    /// use dary_heap::QuaternaryHeap;
    /// let mut heap = QuaternaryHeap::new();
    /// heap.push(4);
    /// ```
    #[must_use]
    pub fn new() -> DaryHeap<T, D> {
        DaryHeap { data: vec![] }
    }

    /// Creates an empty `DaryHeap` with at least the specific capacity.
    ///
    /// The *d*-ary heap will be able to hold at least `capacity` elements without
    /// reallocating. This method is allowed to allocate for more elements than
    /// `capacity`. If `capacity` is 0, the *d*-ary heap will not allocate.
    ///
    /// # Examples
    ///
    /// Basic usage:
    ///
    /// ```
    /// use dary_heap::QuaternaryHeap;
    /// let mut heap = QuaternaryHeap::with_capacity(10);
    /// heap.push(4);
    /// ```
    #[must_use]
    pub fn with_capacity(capacity: usize) -> DaryHeap<T, D> {
        DaryHeap {
            data: Vec::with_capacity(capacity),
        }
    }

    /// Returns a mutable reference to the greatest item in the *d*-ary heap, or
    /// `None` if it is empty.
    ///
    /// Note: If the `PeekMut` value is leaked, some heap elements might get
    /// leaked along with it, but the remaining elements will remain a valid
    /// heap.
    ///
    /// # Examples
    ///
    /// Basic usage:
    ///
    /// ```
    /// use dary_heap::TernaryHeap;
    /// let mut heap = TernaryHeap::new();
    /// assert!(heap.peek_mut().is_none());
    ///
    /// heap.push(1);
    /// heap.push(5);
    /// heap.push(2);
    /// {
    ///     let mut val = heap.peek_mut().unwrap();
    ///     *val = 0;
    /// }
    /// assert_eq!(heap.peek(), Some(&2));
    /// ```
    ///
    /// # Time complexity
    ///
    /// If the item is modified then the worst case time complexity is *O*(log(*n*)),
    /// otherwise it's *O*(1).
    pub fn peek_mut(&mut self) -> Option<PeekMut<'_, T, D>> {
        if self.is_empty() {
            None
        } else {
            Some(PeekMut {
                heap: self,
                original_len: None,
            })
        }
    }

    /// Removes the greatest item from the *d*-ary heap and returns it, or `None` if it
    /// is empty.
    ///
    /// # Examples
    ///
    /// Basic usage:
    ///
    /// ```
    /// use dary_heap::BinaryHeap;
    /// let mut heap = BinaryHeap::from([1, 3]);
    ///
    /// assert_eq!(heap.pop(), Some(3));
    /// assert_eq!(heap.pop(), Some(1));
    /// assert_eq!(heap.pop(), None);
    /// ```
    ///
    /// # Time complexity
    ///
    /// The worst case cost of `pop` on a heap containing *n* elements is *O*(log(*n*)).
    pub fn pop(&mut self) -> Option<T> {
        self.data.pop().map(|mut item| {
            if !self.is_empty() {
                swap(&mut item, &mut self.data[0]);
                // SAFETY: !self.is_empty() means that self.len() > 0
                unsafe { self.sift_down_to_bottom(0) };
            }
            item
        })
    }

    /// Pushes an item onto the *d*-ary heap.
    ///
    /// # Examples
    ///
    /// Basic usage:
    ///
    /// ```
    /// use dary_heap::QuaternaryHeap;
    /// let mut heap = QuaternaryHeap::new();
    /// heap.push(3);
    /// heap.push(5);
    /// heap.push(1);
    ///
    /// assert_eq!(heap.len(), 3);
    /// assert_eq!(heap.peek(), Some(&5));
    /// ```
    ///
    /// # Time complexity
    ///
    /// The expected cost of `push`, averaged over every possible ordering of
    /// the elements being pushed, and over a sufficiently large number of
    /// pushes, is *O*(1). This is the most meaningful cost metric when pushing
    /// elements that are *not* already in any sorted pattern.
    ///
    /// The time complexity degrades if elements are pushed in predominantly
    /// ascending order. In the worst case, elements are pushed in ascending
    /// sorted order and the amortized cost per push is *O*(log(*n*)) against a heap
    /// containing *n* elements.
    ///
    /// The worst case cost of a *single* call to `push` is *O*(*n*). The worst case
    /// occurs when capacity is exhausted and needs a resize. The resize cost
    /// has been amortized in the previous figures.
    pub fn push(&mut self, item: T) {
        let old_len = self.len();
        self.data.push(item);
        // SAFETY: Since we pushed a new item it means that
        //  old_len = self.len() - 1 < self.len()
        unsafe { self.sift_up(0, old_len) };
    }

    /// Consumes the `DaryHeap` and returns a vector in sorted
    /// (ascending) order.
    ///
    /// # Examples
    ///
    /// Basic usage:
    ///
    /// ```
    /// use dary_heap::OctonaryHeap;
    ///
    /// let mut heap = OctonaryHeap::from([1, 2, 4, 5, 7]);
    /// heap.push(6);
    /// heap.push(3);
    ///
    /// let vec = heap.into_sorted_vec();
    /// assert_eq!(vec, [1, 2, 3, 4, 5, 6, 7]);
    /// ```
    #[must_use = "`self` will be dropped if the result is not used"]
    pub fn into_sorted_vec(mut self) -> Vec<T> {
        let mut end = self.len();
        while end > 1 {
            end -= 1;
            // SAFETY: `end` goes from `self.len() - 1` to 1 (both included),
            //  so it's always a valid index to access.
            //  It is safe to access index 0 (i.e. `ptr`), because
            //  1 <= end < self.len(), which means self.len() >= 2.
            unsafe {
                let ptr = self.data.as_mut_ptr();
                ptr::swap(ptr, ptr.add(end));
            }
            // SAFETY: `end` goes from `self.len() - 1` to 1 (both included) so:
            //  0 < 1 <= end <= self.len() - 1 < self.len()
            //  Which means 0 < end and end < self.len().
            unsafe { self.sift_down_range(0, end) };
        }
        self.into_vec()
    }

    // The implementations of sift_up and sift_down use unsafe blocks in
    // order to move an element out of the vector (leaving behind a
    // hole), shift along the others and move the removed element back into the
    // vector at the final location of the hole.
    // The `Hole` type is used to represent this, and make sure
    // the hole is filled back at the end of its scope, even on panic.
    // Using a hole reduces the constant factor compared to using swaps,
    // which involves twice as many moves.

    /// # Safety
    ///
    /// The caller must guarantee that `pos < self.len()`.
    unsafe fn sift_up(&mut self, start: usize, pos: usize) -> usize {
        assert_ne!(D, 0, "Arity should be greater than zero");
        // Take out the value at `pos` and create a hole.
        // SAFETY: The caller guarantees that pos < self.len()
        let mut hole = Hole::new(&mut self.data, pos);

        while hole.pos() > start {
            let parent = (hole.pos() - 1) / D;

            // SAFETY: hole.pos() > start >= 0, which means hole.pos() > 0
            //  and so hole.pos() - 1 can't underflow.
            //  This guarantees that parent < hole.pos() so
            //  it's a valid index and also != hole.pos().
            if hole.element() <= hole.get(parent) {
                break;
            }

            // SAFETY: Same as above
            hole.move_to(parent);
        }

        hole.pos()
    }

    /// Take an element at `pos` and move it down the heap,
    /// while its children are larger.
    ///
    /// # Safety
    ///
    /// The caller must guarantee that `pos < end <= self.len()`.
    unsafe fn sift_down_range(&mut self, pos: usize, end: usize) {
        assert_ne!(D, 0, "Arity should be greater than zero");
        // SAFETY: The caller guarantees that pos < end <= self.len().
        let mut hole = Hole::new(&mut self.data, pos);
        let mut child = D * hole.pos() + 1;

        // Loop invariant: child == d * hole.pos() + 1.
        while child <= end.saturating_sub(D) {
            // compare with the greatest of the d children
            // SAFETY: child < end - d + 1 < self.len() and
            //  child + d - 1 < end <= self.len(), so they're valid indexes.
            //  child + i == d * hole.pos() + 1 + i != hole.pos() for i >= 0
            child = hole.max_sibling::<D>(child);

            // if we are already in order, stop.
            // SAFETY: child is now either the old child or valid sibling
            //  We already proven that all are < self.len() and != hole.pos()
            if hole.element() >= hole.get(child) {
                return;
            }

            // SAFETY: same as above.
            hole.move_to(child);
            child = D * hole.pos() + 1;
        }

        child = hole.max_sibling_to::<D>(child, end);
        // SAFETY: && short circuit, which means that in the
        //  second condition it's already true that child < end <= self.len().
        if child < end && hole.element() < hole.get(child) {
            // SAFETY: child is already proven to be a valid index and
            //  child == d * hole.pos() + 1 != hole.pos().
            hole.move_to(child);
        }
    }

    /// # Safety
    ///
    /// The caller must guarantee that `pos < self.len()`.
    unsafe fn sift_down(&mut self, pos: usize) {
        let len = self.len();
        // SAFETY: pos < len is guaranteed by the caller and
        //  obviously len = self.len() <= self.len().
        self.sift_down_range(pos, len);
    }

    /// Take an element at `pos` and move it all the way down the heap,
    /// then sift it up to its position.
    ///
    /// Note: This is faster when the element is known to be large / should
    /// be closer to the bottom.
    ///
    /// # Safety
    ///
    /// The caller must guarantee that `pos < self.len()`.
    unsafe fn sift_down_to_bottom(&mut self, mut pos: usize) {
        assert_ne!(D, 0, "Arity should be greater than zero");
        let end = self.len();
        let start = pos;

        // SAFETY: The caller guarantees that pos < self.len().
        let mut hole = Hole::new(&mut self.data, pos);
        let mut child = D * hole.pos() + 1;

        // Loop invariant: child == d * hole.pos() + 1.
        while child <= end.saturating_sub(D) {
            // SAFETY: child < end - d + 1 < self.len() and
            //  child + d - 1 < end <= self.len(), so they're valid indexes.
            //  child + i == d * hole.pos() + 1 + i != hole.pos() for i >= 0
            child = hole.max_sibling::<D>(child);

            // SAFETY: Same as above
            hole.move_to(child);
            child = D * hole.pos() + 1;
        }

        child = hole.max_sibling_to::<D>(child, end);
        if child < end {
            // SAFETY: child < end <= self.len(), so it's a valid index
            //  and child == d * hole.pos() + i != hole.pos() for i >= 1
            hole.move_to(child);
        }
        pos = hole.pos();
        drop(hole);

        // SAFETY: pos is the position in the hole and was already proven
        //  to be a valid index.
        self.sift_up(start, pos);
    }

    /// Rebuild assuming data[0..start] is still a proper heap.
    fn rebuild_tail(&mut self, start: usize) {
        assert_ne!(D, 0, "Arity should be greater than zero");

        if start == self.len() {
            return;
        }

        let tail_len = self.len() - start;

        // The fix for this lint (usize::BITS) requires Rust 1.53.0, but the
        // MSRV is currently 1.51.0.
        #[allow(clippy::manual_bits)]
        #[inline(always)]
        fn log2_fast(x: usize) -> usize {
            8 * size_of::<usize>() - (x.leading_zeros() as usize) - 1
        }

        // `rebuild` takes O(self.len()) operations
        // and about n * self.len() comparisons in the worst case
        // with n = d / (d - 1)
        // while repeating `sift_up` takes O(tail_len * log(start)) operations
        // and about 1 * tail_len * log(start) comparisons in the worst case,
        // assuming start >= tail_len. For larger heaps, the crossover point
        // no longer follows this reasoning and was determined empirically.
        let better_to_rebuild = if start < tail_len {
            true
        } else if self.len() <= 4096 / D {
            D * self.len() < (D - 1) * tail_len * log2_fast(start)
        } else {
            D * self.len() < (D - 1) * tail_len * 13usize.saturating_sub(D)
        };

        if better_to_rebuild {
            self.rebuild();
        } else {
            for i in start..self.len() {
                // SAFETY: The index `i` is always less than self.len().
                unsafe { self.sift_up(0, i) };
            }
        }
    }

    fn rebuild(&mut self) {
        assert_ne!(D, 0, "Arity should be greater than zero");
        if self.len() < 2 {
            return;
        }
        let mut n = (self.len() - 1) / D + 1;
        while n > 0 {
            n -= 1;
            // SAFETY: n starts from (self.len() - 1) / d + 1 and goes down to 0.
            //  The only case when !(n < self.len()) is if
            //  self.len() == 0, but it's ruled out by the loop condition.
            unsafe { self.sift_down(n) };
        }
    }

    /// Moves all the elements of `other` into `self`, leaving `other` empty.
    ///
    /// # Examples
    ///
    /// Basic usage:
    ///
    /// ```
    /// use dary_heap::OctonaryHeap;
    ///
    /// let mut a = OctonaryHeap::from([-10, 1, 2, 3, 3]);
    /// let mut b = OctonaryHeap::from([-20, 5, 43]);
    ///
    /// a.append(&mut b);
    ///
    /// assert_eq!(a.into_sorted_vec(), [-20, -10, 1, 2, 3, 3, 5, 43]);
    /// assert!(b.is_empty());
    /// ```
    pub fn append(&mut self, other: &mut Self) {
        if self.len() < other.len() {
            swap(self, other);
        }

        let start = self.data.len();

        self.data.append(&mut other.data);

        self.rebuild_tail(start);
    }

    /// Clears the *d*-ary heap, returning an iterator over the removed elements
    /// in heap order. If the iterator is dropped before being fully consumed,
    /// it drops the remaining elements in heap order.
    ///
    /// The returned iterator keeps a mutable borrow on the heap to optimize
    /// its implementation.
    ///
    /// Note:
    /// * `.drain_sorted()` is *O*(*n* \* log(*n*)); much slower than `.drain()`.
    ///   You should use the latter for most cases.
    ///
    /// # Examples
    ///
    /// Basic usage:
    ///
    /// ```
    /// use dary_heap::TernaryHeap;
    ///
    /// let mut heap = TernaryHeap::from([1, 2, 3, 4, 5]);
    /// assert_eq!(heap.len(), 5);
    ///
    /// drop(heap.drain_sorted()); // removes all elements in heap order
    /// assert_eq!(heap.len(), 0);
    /// ```
    #[inline]
    #[cfg(feature = "unstable")]
    #[cfg_attr(docsrs, doc(cfg(feature = "unstable")))]
    pub fn drain_sorted(&mut self) -> DrainSorted<'_, T, D> {
        DrainSorted { inner: self }
    }

    /// Retains only the elements specified by the predicate.
    ///
    /// In other words, remove all elements `e` for which `f(&e)` returns
    /// `false`. The elements are visited in unsorted (and unspecified) order.
    ///
    /// # Examples
    ///
    /// Basic usage:
    ///
    /// ```
    /// use dary_heap::OctonaryHeap;
    ///
    /// let mut heap = OctonaryHeap::from([-10, -5, 1, 2, 4, 13]);
    ///
    /// heap.retain(|x| x % 2 == 0); // only keep even numbers
    ///
    /// assert_eq!(heap.into_sorted_vec(), [-10, 2, 4])
    /// ```
    pub fn retain<F>(&mut self, mut f: F)
    where
        F: FnMut(&T) -> bool,
    {
        // rebuild_start will be updated to the first touched element below, and the rebuild will
        // only be done for the tail.
        let mut guard = RebuildOnDrop {
            rebuild_from: self.len(),
            heap: self,
        };
        // Split the borrow outside of the closure to appease the borrow checker
        let rebuild_from = &mut guard.rebuild_from;
        let mut i = 0;

        guard.heap.data.retain(|e| {
            let keep = f(e);
            if !keep && i < *rebuild_from {
                *rebuild_from = i;
            }
            i += 1;
            keep
        });
    }
}

impl<T, const D: usize> DaryHeap<T, D> {
    /// Returns an iterator visiting all values in the underlying vector, in
    /// arbitrary order.
    ///
    /// # Examples
    ///
    /// Basic usage:
    ///
    /// ```
    /// use dary_heap::TernaryHeap;
    /// let heap = TernaryHeap::from([1, 2, 3, 4]);
    ///
    /// // Print 1, 2, 3, 4 in arbitrary order
    /// for x in heap.iter() {
    ///     println!("{x}");
    /// }
    /// ```
    pub fn iter(&self) -> Iter<'_, T> {
        Iter {
            iter: self.data.iter(),
        }
    }

    /// Returns an iterator which retrieves elements in heap order.
    /// This method consumes the original heap.
    ///
    /// # Examples
    ///
    /// Basic usage:
    ///
    /// ```
    /// use dary_heap::QuaternaryHeap;
    /// let heap = QuaternaryHeap::from([1, 2, 3, 4, 5]);
    ///
    /// assert_eq!(heap.into_iter_sorted().take(2).collect::<Vec<_>>(), [5, 4]);
    /// ```
    #[cfg(feature = "unstable")]
    #[cfg_attr(docsrs, doc(cfg(feature = "unstable")))]
    pub fn into_iter_sorted(self) -> IntoIterSorted<T, D> {
        IntoIterSorted { inner: self }
    }

    /// Returns the greatest item in the *d*-ary heap, or `None` if it is empty.
    ///
    /// # Examples
    ///
    /// Basic usage:
    ///
    /// ```
    /// use dary_heap::BinaryHeap;
    /// let mut heap = BinaryHeap::new();
    /// assert_eq!(heap.peek(), None);
    ///
    /// heap.push(1);
    /// heap.push(5);
    /// heap.push(2);
    /// assert_eq!(heap.peek(), Some(&5));
    ///
    /// ```
    ///
    /// # Time complexity
    ///
    /// Cost is *O*(1) in the worst case.
    #[must_use]
    pub fn peek(&self) -> Option<&T> {
        self.data.get(0)
    }

    /// Returns the number of elements the *d*-ary heap can hold without reallocating.
    ///
    /// # Examples
    ///
    /// Basic usage:
    ///
    /// ```
    /// use dary_heap::OctonaryHeap;
    /// let mut heap = OctonaryHeap::with_capacity(100);
    /// assert!(heap.capacity() >= 100);
    /// heap.push(4);
    /// ```
    #[must_use]
    pub fn capacity(&self) -> usize {
        self.data.capacity()
    }

    /// Reserves the minimum capacity for at least `additional` elements more than
    /// the current length. Unlike [`reserve`], this will not
    /// deliberately over-allocate to speculatively avoid frequent allocations.
    /// After calling `reserve_exact`, capacity will be greater than or equal to
    /// `self.len() + additional`. Does nothing if the capacity is already
    /// sufficient.
    ///
    /// [`reserve`]: DaryHeap::reserve
    ///
    /// # Panics
    ///
    /// Panics if the new capacity overflows [`usize`].
    ///
    /// # Examples
    ///
    /// Basic usage:
    ///
    /// ```
    /// use dary_heap::OctonaryHeap;
    /// let mut heap = OctonaryHeap::new();
    /// heap.reserve_exact(100);
    /// assert!(heap.capacity() >= 100);
    /// heap.push(4);
    /// ```
    ///
    /// [`reserve`]: DaryHeap::reserve
    pub fn reserve_exact(&mut self, additional: usize) {
        self.data.reserve_exact(additional);
    }

    /// Reserves capacity for at least `additional` elements more than the
    /// current length. The allocator may reserve more space to speculatively
    /// avoid frequent allocations. After calling `reserve`,
    /// capacity will be greater than or equal to `self.len() + additional`.
    /// Does nothing if capacity is already sufficient.
    ///
    /// # Panics
    ///
    /// Panics if the new capacity overflows [`usize`].
    ///
    /// # Examples
    ///
    /// Basic usage:
    ///
    /// ```
    /// use dary_heap::BinaryHeap;
    /// let mut heap = BinaryHeap::new();
    /// heap.reserve(100);
    /// assert!(heap.capacity() >= 100);
    /// heap.push(4);
    /// ```
    pub fn reserve(&mut self, additional: usize) {
        self.data.reserve(additional);
    }

    /// Tries to reserve the minimum capacity for at least `additional` elements
    /// more than the current length. Unlike [`try_reserve`], this will not
    /// deliberately over-allocate to speculatively avoid frequent allocations.
    /// After calling `try_reserve_exact`, capacity will be greater than or
    /// equal to `self.len() + additional` if it returns `Ok(())`.
    /// Does nothing if the capacity is already sufficient.
    ///
    /// Note that the allocator may give the collection more space than it
    /// requests. Therefore, capacity can not be relied upon to be precisely
    /// minimal. Prefer [`try_reserve`] if future insertions are expected.
    ///
    /// [`try_reserve`]: DaryHeap::try_reserve
    ///
    /// # Errors
    ///
    /// If the capacity overflows, or the allocator reports a failure, then an error
    /// is returned.
    ///
    /// # Examples
    ///
    /// ```
    /// use dary_heap::BinaryHeap;
    /// use std::collections::TryReserveError;
    ///
    /// fn find_max_slow(data: &[u32]) -> Result<Option<u32>, TryReserveError> {
    ///     let mut heap = BinaryHeap::new();
    ///
    ///     // Pre-reserve the memory, exiting if we can't
    ///     heap.try_reserve_exact(data.len())?;
    ///
    ///     // Now we know this can't OOM in the middle of our complex work
    ///     heap.extend(data.iter());
    ///
    ///     Ok(heap.pop())
    /// }
    /// # find_max_slow(&[1, 2, 3]).expect("why is the test harness OOMing on 12 bytes?");
    /// ```
    #[cfg(feature = "extra")]
    #[cfg_attr(docsrs, doc(cfg(feature = "extra")))]
    pub fn try_reserve_exact(&mut self, additional: usize) -> Result<(), TryReserveError> {
        self.data.try_reserve_exact(additional)
    }

    /// Tries to reserve capacity for at least `additional` elements more than the
    /// current length. The allocator may reserve more space to speculatively
    /// avoid frequent allocations. After calling `try_reserve`, capacity will be
    /// greater than or equal to `self.len() + additional` if it returns
    /// `Ok(())`. Does nothing if capacity is already sufficient. This method
    /// preserves the contents even if an error occurs.
    ///
    /// # Errors
    ///
    /// If the capacity overflows, or the allocator reports a failure, then an error
    /// is returned.
    ///
    /// # Examples
    ///
    /// ```
    /// use dary_heap::QuaternaryHeap;
    /// use std::collections::TryReserveError;
    ///
    /// fn find_max_slow(data: &[u32]) -> Result<Option<u32>, TryReserveError> {
    ///     let mut heap = QuaternaryHeap::new();
    ///
    ///     // Pre-reserve the memory, exiting if we can't
    ///     heap.try_reserve(data.len())?;
    ///
    ///     // Now we know this can't OOM in the middle of our complex work
    ///     heap.extend(data.iter());
    ///
    ///     Ok(heap.pop())
    /// }
    /// # find_max_slow(&[1, 2, 3]).expect("why is the test harness OOMing on 12 bytes?");
    /// ```
    #[cfg(feature = "extra")]
    #[cfg_attr(docsrs, doc(cfg(feature = "extra")))]
    pub fn try_reserve(&mut self, additional: usize) -> Result<(), TryReserveError> {
        self.data.try_reserve(additional)
    }

    /// Discards as much additional capacity as possible.
    ///
    /// # Examples
    ///
    /// Basic usage:
    ///
    /// ```
    /// use dary_heap::TernaryHeap;
    /// let mut heap: TernaryHeap<i32> = TernaryHeap::with_capacity(100);
    ///
    /// assert!(heap.capacity() >= 100);
    /// heap.shrink_to_fit();
    /// assert!(heap.capacity() == 0);
    /// ```
    pub fn shrink_to_fit(&mut self) {
        self.data.shrink_to_fit();
    }

    /// Discards capacity with a lower bound.
    ///
    /// The capacity will remain at least as large as both the length
    /// and the supplied value.
    ///
    /// If the current capacity is less than the lower limit, this is a no-op.
    ///
    /// # Examples
    ///
    /// ```
    /// use dary_heap::TernaryHeap;
    /// let mut heap: TernaryHeap<i32> = TernaryHeap::with_capacity(100);
    ///
    /// assert!(heap.capacity() >= 100);
    /// heap.shrink_to(10);
    /// assert!(heap.capacity() >= 10);
    /// ```
    #[inline]
    #[cfg(feature = "extra")]
    #[cfg_attr(docsrs, doc(cfg(feature = "extra")))]
    pub fn shrink_to(&mut self, min_capacity: usize) {
        self.data.shrink_to(min_capacity)
    }

    /// Returns a slice of all values in the underlying vector, in arbitrary
    /// order.
    ///
    /// # Examples
    ///
    /// Basic usage:
    ///
    /// ```
    /// use dary_heap::OctonaryHeap;
    /// use std::io::{self, Write};
    ///
    /// let heap = OctonaryHeap::from([1, 2, 3, 4, 5, 6, 7]);
    ///
    /// io::sink().write(heap.as_slice()).unwrap();
    /// ```
    #[cfg(feature = "unstable")]
    #[cfg_attr(docsrs, doc(cfg(feature = "unstable")))]
    #[must_use]
    pub fn as_slice(&self) -> &[T] {
        self.data.as_slice()
    }

    /// Consumes the `DaryHeap` and returns the underlying vector
    /// in arbitrary order.
    ///
    /// # Examples
    ///
    /// Basic usage:
    ///
    /// ```
    /// use dary_heap::QuaternaryHeap;
    /// let heap = QuaternaryHeap::from([1, 2, 3, 4, 5, 6, 7]);
    /// let vec = heap.into_vec();
    ///
    /// // Will print in some order
    /// for x in vec {
    ///     println!("{x}");
    /// }
    /// ```
    #[must_use = "`self` will be dropped if the result is not used"]
    pub fn into_vec(self) -> Vec<T> {
        self.into()
    }

    /// Returns the length of the *d*-ary heap.
    ///
    /// # Examples
    ///
    /// Basic usage:
    ///
    /// ```
    /// use dary_heap::BinaryHeap;
    /// let heap = BinaryHeap::from([1, 3]);
    ///
    /// assert_eq!(heap.len(), 2);
    /// ```
    #[must_use]
    pub fn len(&self) -> usize {
        self.data.len()
    }

    /// Checks if the *d*-ary heap is empty.
    ///
    /// # Examples
    ///
    /// Basic usage:
    ///
    /// ```
    /// use dary_heap::BinaryHeap;
    /// let mut heap = BinaryHeap::new();
    ///
    /// assert!(heap.is_empty());
    ///
    /// heap.push(3);
    /// heap.push(5);
    /// heap.push(1);
    ///
    /// assert!(!heap.is_empty());
    /// ```
    #[must_use]
    pub fn is_empty(&self) -> bool {
        self.len() == 0
    }

    /// Clears the *d*-ary heap, returning an iterator over the removed elements
    /// in arbitrary order. If the iterator is dropped before being fully
    /// consumed, it drops the remaining elements in arbitrary order.
    ///
    /// The returned iterator keeps a mutable borrow on the heap to optimize
    /// its implementation.
    ///
    /// # Examples
    ///
    /// Basic usage:
    ///
    /// ```
    /// use dary_heap::QuaternaryHeap;
    /// let mut heap = QuaternaryHeap::from([1, 3]);
    ///
    /// assert!(!heap.is_empty());
    ///
    /// for x in heap.drain() {
    ///     println!("{x}");
    /// }
    ///
    /// assert!(heap.is_empty());
    /// ```
    #[inline]
    pub fn drain(&mut self) -> Drain<'_, T> {
        Drain {
            iter: self.data.drain(..),
        }
    }

    /// Drops all items from the *d*-ary heap.
    ///
    /// # Examples
    ///
    /// Basic usage:
    ///
    /// ```
    /// use dary_heap::TernaryHeap;
    /// let mut heap = TernaryHeap::from([1, 3]);
    ///
    /// assert!(!heap.is_empty());
    ///
    /// heap.clear();
    ///
    /// assert!(heap.is_empty());
    /// ```
    pub fn clear(&mut self) {
        self.drain();
    }
}

/// Hole represents a hole in a slice i.e., an index without valid value
/// (because it was moved from or duplicated).
/// In drop, `Hole` will restore the slice by filling the hole
/// position with the value that was originally removed.
struct Hole<'a, T: 'a> {
    data: &'a mut [T],
    elt: ManuallyDrop<T>,
    pos: usize,
}

impl<'a, T> Hole<'a, T> {
    /// Create a new `Hole` at index `pos`.
    ///
    /// Unsafe because pos must be within the data slice.
    #[inline]
    unsafe fn new(data: &'a mut [T], pos: usize) -> Self {
        debug_assert!(pos < data.len());
        // SAFE: pos should be inside the slice
        let elt = ptr::read(data.get_unchecked(pos));
        Hole {
            data,
            elt: ManuallyDrop::new(elt),
            pos,
        }
    }

    #[inline]
    fn pos(&self) -> usize {
        self.pos
    }

    /// Returns a reference to the element removed.
    #[inline]
    fn element(&self) -> &T {
        &self.elt
    }

    /// Returns a reference to the element at `index`.
    ///
    /// Unsafe because index must be within the data slice and not equal to pos.
    #[inline]
    unsafe fn get(&self, index: usize) -> &T {
        debug_assert!(index != self.pos);
        debug_assert!(index < self.data.len());
        self.data.get_unchecked(index)
    }

    /// Move hole to new location
    ///
    /// Unsafe because index must be within the data slice and not equal to pos.
    #[inline]
    unsafe fn move_to(&mut self, index: usize) {
        debug_assert!(index != self.pos);
        debug_assert!(index < self.data.len());
        let ptr = self.data.as_mut_ptr();
        let index_ptr: *const _ = ptr.add(index);
        let hole_ptr = ptr.add(self.pos);
        ptr::copy_nonoverlapping(index_ptr, hole_ptr, 1);
        self.pos = index;
    }
}

impl<'a, T: Ord> Hole<'a, T> {
    /// Get largest element
    ///
    /// Unsafe because both elements must be within the data slice and not equal
    /// to pos.
    #[inline]
    unsafe fn max(&self, elem1: usize, elem2: usize) -> usize {
        if self.get(elem1) <= self.get(elem2) {
            elem2
        } else {
            elem1
        }
    }

    /// Get index of greatest sibling
    ///
    /// Unsafe because all siblings must be within the data slice and not equal
    /// to pos.
    #[inline]
    unsafe fn max_sibling<const D: usize>(&self, first_sibling: usize) -> usize {
        let mut sibling = first_sibling;
        match D {
            2 => {
                sibling += (self.get(sibling) <= self.get(sibling + 1)) as usize;
            }
            3 => {
                let sibling_a = self.max_sibling::<2>(sibling);
                let sibling_b = sibling + 2;
                sibling = self.max(sibling_a, sibling_b);
            }
            4 => {
                let sibling_a = self.max_sibling::<2>(sibling);
                let sibling_b = self.max_sibling::<2>(sibling + 2);
                sibling = self.max(sibling_a, sibling_b);
            }
            _ => {
                for other_sibling in sibling + 1..sibling + D {
                    if self.get(sibling) <= self.get(other_sibling) {
                        sibling = other_sibling;
                    }
                }
            }
        }
        sibling
    }

    /// Get index of greatest sibling within range
    ///
    /// Unsafe because end must be the length of the data slice, last sibling
    /// must be outside of the data slice and no sibling may be equal to pos.
    /// It is allowed for first_sibling to be outside of the data slice.
    #[inline]
    unsafe fn max_sibling_to<const D: usize>(&self, first_sibling: usize, end: usize) -> usize {
        let mut sibling = first_sibling;
        match D {
            2 => {}
            3 => {
                if sibling + 1 < end {
                    sibling = self.max_sibling::<2>(sibling);
                }
            }
            _ => {
                for other_sibling in sibling + 1..end {
                    if self.get(sibling) <= self.get(other_sibling) {
                        sibling = other_sibling;
                    }
                }
            }
        }
        sibling
    }
}

impl<T> Drop for Hole<'_, T> {
    #[inline]
    fn drop(&mut self) {
        // fill the hole again
        unsafe {
            let pos = self.pos;
            ptr::copy_nonoverlapping(&*self.elt, self.data.get_unchecked_mut(pos), 1);
        }
    }
}

/// An iterator over the elements of a `DaryHeap`.
///
/// This `struct` is created by [`DaryHeap::iter()`]. See its
/// documentation for more.
///
/// [`iter`]: DaryHeap::iter
#[must_use = "iterators are lazy and do nothing unless consumed"]
pub struct Iter<'a, T: 'a> {
    iter: slice::Iter<'a, T>,
}

impl<T: fmt::Debug> fmt::Debug for Iter<'_, T> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        f.debug_tuple("Iter").field(&self.iter.as_slice()).finish()
    }
}

// FIXME(#26925) Remove in favor of `#[derive(Clone)]`
impl<T> Clone for Iter<'_, T> {
    fn clone(&self) -> Self {
        Iter {
            iter: self.iter.clone(),
        }
    }
}

impl<'a, T> Iterator for Iter<'a, T> {
    type Item = &'a T;

    #[inline]
    fn next(&mut self) -> Option<&'a T> {
        self.iter.next()
    }

    #[inline]
    fn size_hint(&self) -> (usize, Option<usize>) {
        self.iter.size_hint()
    }

    #[inline]
    fn last(self) -> Option<&'a T> {
        self.iter.last()
    }
}

impl<'a, T> DoubleEndedIterator for Iter<'a, T> {
    #[inline]
    fn next_back(&mut self) -> Option<&'a T> {
        self.iter.next_back()
    }
}

impl<T> ExactSizeIterator for Iter<'_, T> {
    #[cfg(feature = "unstable_nightly")]
    fn is_empty(&self) -> bool {
        self.iter.is_empty()
    }
}

impl<T> FusedIterator for Iter<'_, T> {}

/// An owning iterator over the elements of a `DaryHeap`.
///
/// This `struct` is created by [`DaryHeap::into_iter()`]
/// (provided by the [`IntoIterator`] trait). See its documentation for more.
///
/// [`into_iter`]: DaryHeap::into_iter
#[derive(Clone)]
pub struct IntoIter<T> {
    iter: vec::IntoIter<T>,
}

impl<T: fmt::Debug> fmt::Debug for IntoIter<T> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        f.debug_tuple("IntoIter")
            .field(&self.iter.as_slice())
            .finish()
    }
}

impl<T> Iterator for IntoIter<T> {
    type Item = T;

    #[inline]
    fn next(&mut self) -> Option<T> {
        self.iter.next()
    }

    #[inline]
    fn size_hint(&self) -> (usize, Option<usize>) {
        self.iter.size_hint()
    }
}

impl<T> DoubleEndedIterator for IntoIter<T> {
    #[inline]
    fn next_back(&mut self) -> Option<T> {
        self.iter.next_back()
    }
}

impl<T> ExactSizeIterator for IntoIter<T> {
    #[cfg(feature = "unstable_nightly")]
    fn is_empty(&self) -> bool {
        self.iter.is_empty()
    }
}

impl<T> FusedIterator for IntoIter<T> {}

impl<T> Default for IntoIter<T> {
    /// Creates an empty `dary_heap::IntoIter`.
    ///
    /// ```
    /// let iter: dary_heap::IntoIter<u8> = Default::default();
    /// assert_eq!(iter.len(), 0);
    /// ```
    fn default() -> Self {
        IntoIter {
            iter: Vec::new().into_iter(),
        }
    }
}

// In addition to the SAFETY invariants of the following two unsafe traits
// also refer to the vec::in_place_collect module documentation to get an overview
#[cfg(feature = "unstable_nightly")]
#[doc(hidden)]
unsafe impl<T> core::iter::SourceIter for IntoIter<T> {
    type Source = IntoIter<T>;

    #[inline]
    unsafe fn as_inner(&mut self) -> &mut Self::Source {
        self
    }
}

#[cfg(feature = "unstable_nightly")]
#[doc(hidden)]
unsafe impl<I> core::iter::InPlaceIterable for IntoIter<I> {}

#[must_use = "iterators are lazy and do nothing unless consumed"]
#[cfg(feature = "unstable")]
#[derive(Clone, Debug)]
pub struct IntoIterSorted<T, const D: usize> {
    inner: DaryHeap<T, D>,
}

#[cfg(feature = "unstable")]
impl<T: Ord, const D: usize> Iterator for IntoIterSorted<T, D> {
    type Item = T;

    #[inline]
    fn next(&mut self) -> Option<T> {
        self.inner.pop()
    }

    #[inline]
    fn size_hint(&self) -> (usize, Option<usize>) {
        let exact = self.inner.len();
        (exact, Some(exact))
    }
}

#[cfg(feature = "unstable")]
impl<T: Ord, const D: usize> ExactSizeIterator for IntoIterSorted<T, D> {}

#[cfg(feature = "unstable")]
impl<T: Ord, const D: usize> FusedIterator for IntoIterSorted<T, D> {}

#[cfg(all(feature = "unstable", feature = "unstable_nightly"))]
unsafe impl<T: Ord, const D: usize> core::iter::TrustedLen for IntoIterSorted<T, D> {}

/// A draining iterator over the elements of a `DaryHeap`.
///
/// This `struct` is created by [`DaryHeap::drain()`]. See its
/// documentation for more.
///
/// [`drain`]: DaryHeap::drain
#[derive(Debug)]
pub struct Drain<'a, T: 'a> {
    iter: vec::Drain<'a, T>,
}

impl<T> Iterator for Drain<'_, T> {
    type Item = T;

    #[inline]
    fn next(&mut self) -> Option<T> {
        self.iter.next()
    }

    #[inline]
    fn size_hint(&self) -> (usize, Option<usize>) {
        self.iter.size_hint()
    }
}

impl<T> DoubleEndedIterator for Drain<'_, T> {
    #[inline]
    fn next_back(&mut self) -> Option<T> {
        self.iter.next_back()
    }
}

impl<T> ExactSizeIterator for Drain<'_, T> {
    #[cfg(feature = "unstable_nightly")]
    fn is_empty(&self) -> bool {
        self.iter.is_empty()
    }
}

impl<T> FusedIterator for Drain<'_, T> {}

/// A draining iterator over the elements of a `DaryHeap`.
///
/// This `struct` is created by [`DaryHeap::drain_sorted()`]. See its
/// documentation for more.
///
/// [`drain_sorted`]: DaryHeap::drain_sorted
#[cfg(feature = "unstable")]
#[derive(Debug)]
pub struct DrainSorted<'a, T: Ord, const D: usize> {
    inner: &'a mut DaryHeap<T, D>,
}

#[cfg(feature = "unstable")]
impl<'a, T: Ord, const D: usize> Drop for DrainSorted<'a, T, D> {
    /// Removes heap elements in heap order.
    fn drop(&mut self) {
        use core::mem::forget;

        struct DropGuard<'r, 'a, T: Ord, const D: usize>(&'r mut DrainSorted<'a, T, D>);

        impl<'r, 'a, T: Ord, const D: usize> Drop for DropGuard<'r, 'a, T, D> {
            fn drop(&mut self) {
                while self.0.inner.pop().is_some() {}
            }
        }

        while let Some(item) = self.inner.pop() {
            let guard = DropGuard(self);
            drop(item);
            forget(guard);
        }
    }
}

#[cfg(feature = "unstable")]
impl<T: Ord, const D: usize> Iterator for DrainSorted<'_, T, D> {
    type Item = T;

    #[inline]
    fn next(&mut self) -> Option<T> {
        self.inner.pop()
    }

    #[inline]
    fn size_hint(&self) -> (usize, Option<usize>) {
        let exact = self.inner.len();
        (exact, Some(exact))
    }
}

#[cfg(feature = "unstable")]
impl<T: Ord, const D: usize> ExactSizeIterator for DrainSorted<'_, T, D> {}

#[cfg(feature = "unstable")]
impl<T: Ord, const D: usize> FusedIterator for DrainSorted<'_, T, D> {}

#[cfg(all(feature = "unstable", feature = "unstable_nightly"))]
unsafe impl<T: Ord, const D: usize> core::iter::TrustedLen for DrainSorted<'_, T, D> {}

impl<T: Ord, const D: usize> From<Vec<T>> for DaryHeap<T, D> {
    /// Converts a `Vec<T>` into a `DaryHeap<T, D>`.
    ///
    /// This conversion happens in-place, and has *O*(*n*) time complexity.
    fn from(vec: Vec<T>) -> DaryHeap<T, D> {
        let mut heap = DaryHeap { data: vec };
        heap.rebuild();
        heap
    }
}

impl<T: Ord, const D: usize, const N: usize> From<[T; N]> for DaryHeap<T, D> {
    /// ```
    /// use dary_heap::TernaryHeap;
    ///
    /// let mut h1 = TernaryHeap::from([1, 4, 2, 3]);
    /// let mut h2: TernaryHeap<_> = [1, 4, 2, 3].into();
    /// while let Some((a, b)) = h1.pop().zip(h2.pop()) {
    ///     assert_eq!(a, b);
    /// }
    /// ```
    fn from(arr: [T; N]) -> Self {
        // With newer Rust versions `Self::from_iter(arr)` should be used, as
        // using `IntoIter::new` is deprecated from 1.59.0. However, this would
        // require a MSRV of 1.53.0, and both are equivalent behind the scenes.
        #[allow(deprecated)]
        core::array::IntoIter::new(arr).collect()
    }
}

impl<T, const D: usize> From<DaryHeap<T, D>> for Vec<T> {
    /// Converts a `DaryHeap<T, D>` into a `Vec<T>`.
    ///
    /// This conversion requires no data movement or allocation, and has
    /// constant time complexity.
    fn from(heap: DaryHeap<T, D>) -> Vec<T> {
        heap.data
    }
}

impl<T: Ord, const D: usize> FromIterator<T> for DaryHeap<T, D> {
    fn from_iter<I: IntoIterator<Item = T>>(iter: I) -> DaryHeap<T, D> {
        DaryHeap::from(iter.into_iter().collect::<Vec<_>>())
    }
}

impl<T, const D: usize> IntoIterator for DaryHeap<T, D> {
    type Item = T;
    type IntoIter = IntoIter<T>;

    /// Creates a consuming iterator, that is, one that moves each value out of
    /// the *d*-ary heap in arbitrary order. The *d*-ary heap cannot be used
    /// after calling this.
    ///
    /// # Examples
    ///
    /// Basic usage:
    ///
    /// ```
    /// use dary_heap::BinaryHeap;
    /// let heap = BinaryHeap::from([1, 2, 3, 4]);
    ///
    /// // Print 1, 2, 3, 4 in arbitrary order
    /// for x in heap.into_iter() {
    ///     // x has type i32, not &i32
    ///     println!("{x}");
    /// }
    /// ```
    fn into_iter(self) -> IntoIter<T> {
        IntoIter {
            iter: self.data.into_iter(),
        }
    }
}

impl<'a, T, const D: usize> IntoIterator for &'a DaryHeap<T, D> {
    type Item = &'a T;
    type IntoIter = Iter<'a, T>;

    fn into_iter(self) -> Iter<'a, T> {
        self.iter()
    }
}

impl<T: Ord, const D: usize> Extend<T> for DaryHeap<T, D> {
    #[inline]
    fn extend<I: IntoIterator<Item = T>>(&mut self, iter: I) {
        let guard = RebuildOnDrop {
            rebuild_from: self.len(),
            heap: self,
        };
        guard.heap.data.extend(iter);
    }

    #[inline]
    #[cfg(feature = "unstable_nightly")]
    fn extend_one(&mut self, item: T) {
        self.push(item);
    }

    #[inline]
    #[cfg(feature = "unstable_nightly")]
    fn extend_reserve(&mut self, additional: usize) {
        self.reserve(additional);
    }
}

impl<'a, T: 'a + Ord + Copy, const D: usize> Extend<&'a T> for DaryHeap<T, D> {
    fn extend<I: IntoIterator<Item = &'a T>>(&mut self, iter: I) {
        self.extend(iter.into_iter().cloned());
    }

    #[inline]
    #[cfg(feature = "unstable_nightly")]
    fn extend_one(&mut self, &item: &'a T) {
        self.push(item);
    }

    #[inline]
    #[cfg(feature = "unstable_nightly")]
    fn extend_reserve(&mut self, additional: usize) {
        self.reserve(additional);
    }
}

#[cfg(any(test, fuzzing))]
impl<T: Ord + fmt::Debug, const D: usize> DaryHeap<T, D> {
    /// Panics if the heap is in an inconsistent state
    #[track_caller]
    pub fn assert_valid_state(&self) {
        assert_ne!(D, 0, "Arity should be greater than zero");
        for (i, v) in self.iter().enumerate() {
            let children = D * i + 1..D * i + D;
            if children.start > self.len() {
                break;
            }
            for j in children {
                if let Some(x) = self.data.get(j) {
                    assert!(v >= x);
                }
            }
        }
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use rand::{seq::SliceRandom, thread_rng};

    fn pop<const D: usize>() {
        let mut rng = thread_rng();
        let ntest = if cfg!(miri) { 1 } else { 10 };
        let nelem = if cfg!(miri) { 100 } else { 1000 };
        for _ in 0..ntest {
            let mut data: Vec<_> = (0..nelem).collect();
            data.shuffle(&mut rng);
            let mut heap = DaryHeap::<_, D>::from(data);
            heap.assert_valid_state();
            for i in (0..nelem).rev() {
                assert_eq!(heap.pop(), Some(i));
                heap.assert_valid_state();
            }
            assert_eq!(heap.pop(), None);
        }
    }

    #[test]
    #[should_panic]
    fn push_d0() {
        let mut heap = DaryHeap::<_, 0>::new();
        heap.push(42);
    }

    #[test]
    #[should_panic]
    fn from_vec_d0() {
        let _heap = DaryHeap::<_, 0>::from(vec![42]);
    }

    #[test]
    fn pop_d1() {
        pop::<1>();
    }

    #[test]
    fn pop_d2() {
        pop::<2>();
    }

    #[test]
    fn pop_d3() {
        pop::<3>();
    }

    #[test]
    fn pop_d4() {
        pop::<4>();
    }

    #[test]
    fn pop_d5() {
        pop::<5>();
    }

    #[test]
    fn pop_d6() {
        pop::<6>();
    }

    #[test]
    fn pop_d7() {
        pop::<7>();
    }

    #[test]
    fn pop_d8() {
        pop::<8>();
    }

    #[test]
    #[cfg(feature = "serde")]
    fn serde() {
        use serde_test::Token::{Seq, SeqEnd, I32};

        impl<T: PartialEq, const D: usize> PartialEq for DaryHeap<T, D> {
            fn eq(&self, other: &Self) -> bool {
                self.iter().zip(other).all(|(a, b)| a == b)
            }
        }

        let empty = [Seq { len: Some(0) }, SeqEnd];
        let part = [Seq { len: Some(3) }, I32(3), I32(1), I32(2), SeqEnd];
        let full = [Seq { len: Some(4) }, I32(4), I32(3), I32(2), I32(1), SeqEnd];

        let mut dary = BinaryHeap::<i32>::new();
        serde_test::assert_tokens(&dary, &empty);
        for i in [1, 2, 3] {
            dary.push(i);
        }
        serde_test::assert_tokens(&dary, &part);
        dary.push(4);
        serde_test::assert_tokens(&dary, &full);

        let mut std = alloc::collections::BinaryHeap::<i32>::new();
        serde_test::assert_ser_tokens(&std, &empty);
        for i in [1, 2, 3] {
            std.push(i);
        }
        serde_test::assert_ser_tokens(&std, &part);
        std.push(4);
        serde_test::assert_ser_tokens(&std, &full);
    }
}