1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
//! # CSharp_Binder
//!
//! CSharp_Binder is a tool written to generate C# bindings for a Rust FFI (Foreign Function Interface).
//! By interacting over extern C functions, this allows you to easily call Rust functions from C#,
//! without having to write the extern C# functions yourself.
//!
//! CSharp_Binder will when given a Rust script, parse this script, and extract any functions marked as
//! extern "C", enums with a ``[repr(u*)]`` attribute, and structs with a ``#[repr(C)]`` attribute. It
//! will then convert these into appropriate representations in C#.
//!
//! CSharp_Binder will also extract Rust documentation on functions, enums and their variants, and
//! on structs and their fields, and convert it into XML Documentation on the generated C# code.
//!
//! Note that CSharp_Binder uses syn to parse Rust scripts, so macros will not be expanded! If you
//! have functions, structs, or enums that need to be extracted inside macros, make sure to run them
//! to something like cargo-expand first.
//!
//! # Examples
//!
//! Example:
//! ```
//! use csharp_binder::{CSharpConfiguration, CSharpBuilder};
//!
//! fn main(){
//!     // Create C# configuration with C# target version 9.
//!     let mut configuration = CSharpConfiguration::new(9);
//!     let rust_file = r#"
//!     /// Just a random return enum
//!     #[repr(u8)]
//!     enum ReturnEnum {
//!         Val1,
//!         Val2,
//!     }
//!     
//!     /// An input struct we expect
//!     #[repr(C)]
//!     struct InputStruct {
//!         field_a: u16,
//!         /// This field is used for floats!
//!         field_b: f64,
//!     }
//!     
//!     pub extern "C" fn foo(a: InputStruct) -> ReturnEnum {
//!     }
//!     "#;
//!     let mut builder = CSharpBuilder::new(rust_file, "foo", &mut configuration)
//!                         .expect("Failed to parse file");
//!     builder.set_namespace("MainNamespace");
//!     builder.set_type("InsideClass");
//!     let script = builder.build().expect("Failed to build");
//! }
//!```
//!
//! This would return the following C# code:
//!
//! ```cs
//! // Automatically generated, do not edit!
//! using System;
//! using System.Runtime.InteropServices;
//!
//! namespace MainNamespace
//! {
//!    internal static class InsideClass
//!    {
//!        /// <summary>
//!        /// Just a random return enum
//!        /// </summary>
//!         public enum ReturnEnum : byte
//!         {
//!             Val1,
//!             Val2,
//!         }
//!
//!         /// <summary>
//!         /// An input struct we expect
//!         /// </summary>
//!         [StructLayout(LayoutKind.Sequential, CharSet = CharSet.Unicode)]
//!         public struct InputStruct
//!         {
//!             /// <remarks>u16</remarks>
//!             public ushort FieldA { get; init; }
//!             /// <summary>
//!             /// This field is used for floats!
//!             /// </summary>
//!             /// <remarks>f64</remarks>
//!             public double FieldB { get; init; }
//!
//!             public InputStruct(ushort fieldA, double fieldB)
//!             {
//!                 FieldA = fieldA;
//!                 FieldB = fieldB;
//!             }
//!         }
//!
//!         /// <param name="a">InputStruct</param>
//!         /// <returns>ReturnEnum</returns>
//!         [DllImport("foo", CallingConvention = CallingConvention.Cdecl, EntryPoint="foo")]
//!         internal static extern ReturnEnum Foo(InputStruct a);
//!
//!     }
//! }
//! ```
//!
use crate::builder::{build_csharp, parse_script};
use std::collections::HashMap;
use std::fmt::Formatter;

mod builder;

#[cfg(test)]
mod tests;

pub(crate) struct CSharpType {
    pub namespace: Option<String>,
    pub inside_type: Option<String>,
    pub real_type_name: String,
}

/// This struct holds the generic data used between multiple builds. Currently this only holds the
/// type registry, but further features such as ignore patterns will likely be added here.
pub struct CSharpConfiguration {
    known_types: HashMap<String, CSharpType>,
    csharp_version: u8,
    out_type: Option<String>,
    generated_warning: String,
}

impl CSharpConfiguration {
    /// Create a new C# configuration. Input parameter is the target version of C#, i.e. C# 7, 8, 9, etc.
    pub fn new(csharp_version: u8) -> Self {
        Self {
            known_types: HashMap::new(),
            csharp_version,
            out_type: None,
            generated_warning: "Automatically generated, do not edit!".to_string(),
        }
    }

    /// Register a type the converter should know about.
    ///
    /// Useful if you use a type on the Rust side that you know has a C# representation without first
    /// passing it through the C#builder. This function takes the Rust type name, along with an optional
    /// C# namespace, optional containing type, and the actual C# type name.
    pub fn add_known_type(
        &mut self,
        rust_type_name: &str,
        csharp_namespace: Option<String>,
        csharp_inside_type: Option<String>,
        csharp_type_name: String,
    ) {
        self.known_types.insert(
            rust_type_name.to_string(),
            CSharpType {
                namespace: csharp_namespace,
                inside_type: csharp_inside_type,
                real_type_name: csharp_type_name,
            },
        );
    }
    /// Sets a rust type to represent an out parameter in C#.
    ///
    /// This allows converting a parameter like ``foo: Out<u8>`` into ``out byte foo``.
    /// Useful for following patterns such as: <https://github.com/KodrAus/rust-csharp-ffi>
    pub fn set_out_type(&mut self, rust_type_name: &str) {
        self.out_type = Some(rust_type_name.to_string());
    }

    /// By default we add a warning on top of each generated C# script, which defaults to
    /// ``// Automatically generated, do not edit!``. This functions allows you to modify this
    /// warning. Can be multiline, and can be removed entirely by setting with an empty string.
    pub fn set_generated_warning(&mut self, generated_warning: &str) {
        self.generated_warning = generated_warning.to_string();
    }

    pub(crate) fn get_known_type(&self, rust_type_name: &str) -> Option<&CSharpType> {
        self.known_types.get(rust_type_name)
    }
}

/// The CSharpBuilder is used to load a Rust script string, and convert it into the appropriate C#
/// script as a string.
pub struct CSharpBuilder<'a> {
    configuration: &'a mut CSharpConfiguration,
    dll_name: String,
    usings: Vec<String>,
    tokens: syn::File,
    namespace: Option<String>,
    type_name: Option<String>,
}

impl<'a> CSharpBuilder<'a> {
    /// Creates a new C# Builder from a Rust script string, the name of the library C# is going to
    /// make calls to (the .so/.dll file), and a configuration.
    ///
    /// Note that this will immediately parse the rust script and extract its symbols. As such, this
    /// can return a parse error.
    pub fn new(
        script: &str,
        dll_name: &str,
        configuration: &'a mut CSharpConfiguration,
    ) -> Result<CSharpBuilder<'a>, Error> {
        match parse_script(script) {
            Ok(tokens) => Ok(CSharpBuilder {
                configuration,
                dll_name: dll_name.to_string(),
                // Load the default usings.
                usings: vec![
                    "System".to_string(),
                    "System.Runtime.InteropServices".to_string(),
                ],
                tokens,
                namespace: None,
                type_name: None,
            }),
            Err(e) => Err(Error::from(e)),
        }
    }

    /// This function will return the C# script. Should be called after the C# Builder is setup.
    pub fn build(&mut self) -> Result<String, Error> {
        build_csharp(self)
    }

    /// Sets the namespace the C# script should use to generate its functions in. If not set, no
    /// namespace will be used.
    pub fn set_namespace(&mut self, namespace: &str) {
        self.namespace = Some(namespace.to_string());
    }

    /// Sets the type that will be wrapped around the generated C# script. If not set, no type
    /// will be used.
    pub fn set_type(&mut self, type_name: &str) {
        self.type_name = Some(type_name.to_string());
    }

    /// Adds a using to the top of the C# script.
    pub fn add_using(&mut self, using: &str) {
        self.usings.push(using.to_string());
    }

    pub(crate) fn add_known_type(&mut self, rust_type_name: &str, csharp_type_name: &str) {
        self.configuration.add_known_type(
            rust_type_name,
            self.namespace.clone(),
            self.type_name.clone(),
            csharp_type_name.to_string(),
        );
    }
}

#[derive(Debug)]
pub enum Error {
    ParseError(syn::Error),
    IOError(std::io::Error),
    FmtError(std::fmt::Error),
    UnsupportedError(String, proc_macro2::Span),
    UnknownType(String, proc_macro2::Span),
}

impl std::fmt::Display for Error {
    fn fmt(&self, f: &mut Formatter<'_>) -> std::fmt::Result {
        match self {
            Error::ParseError(e) => e.fmt(f),
            Error::IOError(e) => e.fmt(f),
            Error::FmtError(e) => e.fmt(f),
            Error::UnsupportedError(e, span) => {
                f.write_str(e)?;
                f.write_str(
                    format!(
                        ". At line {}, position {}",
                        span.start().line,
                        span.start().column
                    )
                    .as_str(),
                )
            }
            Error::UnknownType(e, span) => {
                f.write_str(e)?;
                f.write_str(
                    format!(
                        ". At At line {}, position {}",
                        span.start().line,
                        span.start().column
                    )
                    .as_str(),
                )
            }
        }
    }
}

impl From<syn::Error> for Error {
    fn from(error: syn::Error) -> Self {
        Error::ParseError(error)
    }
}
impl From<std::io::Error> for Error {
    fn from(error: std::io::Error) -> Self {
        Error::IOError(error)
    }
}
impl From<std::fmt::Error> for Error {
    fn from(error: std::fmt::Error) -> Self {
        Error::FmtError(error)
    }
}