Struct crossbeam::channel::Receiver[][src]

pub struct Receiver<T> { /* fields omitted */ }
Expand description

The receiving side of a channel.

Examples

use std::thread;
use std::time::Duration;
use crossbeam_channel::unbounded;

let (s, r) = unbounded();

thread::spawn(move || {
    let _ = s.send(1);
    thread::sleep(Duration::from_secs(1));
    let _ = s.send(2);
});

assert_eq!(r.recv(), Ok(1)); // Received immediately.
assert_eq!(r.recv(), Ok(2)); // Received after 1 second.

Implementations

impl<T> Receiver<T>[src]

pub fn try_recv(&self) -> Result<T, TryRecvError>[src]

Attempts to receive a message from the channel without blocking.

This method will either receive a message from the channel immediately or return an error if the channel is empty.

If called on a zero-capacity channel, this method will receive a message only if there happens to be a send operation on the other side of the channel at the same time.

Examples

use crossbeam_channel::{unbounded, TryRecvError};

let (s, r) = unbounded();
assert_eq!(r.try_recv(), Err(TryRecvError::Empty));

s.send(5).unwrap();
drop(s);

assert_eq!(r.try_recv(), Ok(5));
assert_eq!(r.try_recv(), Err(TryRecvError::Disconnected));

pub fn recv(&self) -> Result<T, RecvError>[src]

Blocks the current thread until a message is received or the channel is empty and disconnected.

If the channel is empty and not disconnected, this call will block until the receive operation can proceed. If the channel is empty and becomes disconnected, this call will wake up and return an error.

If called on a zero-capacity channel, this method will wait for a send operation to appear on the other side of the channel.

Examples

use std::thread;
use std::time::Duration;
use crossbeam_channel::{unbounded, RecvError};

let (s, r) = unbounded();

thread::spawn(move || {
    thread::sleep(Duration::from_secs(1));
    s.send(5).unwrap();
    drop(s);
});

assert_eq!(r.recv(), Ok(5));
assert_eq!(r.recv(), Err(RecvError));

pub fn recv_timeout(&self, timeout: Duration) -> Result<T, RecvTimeoutError>[src]

Waits for a message to be received from the channel, but only for a limited time.

If the channel is empty and not disconnected, this call will block until the receive operation can proceed or the operation times out. If the channel is empty and becomes disconnected, this call will wake up and return an error.

If called on a zero-capacity channel, this method will wait for a send operation to appear on the other side of the channel.

Examples

use std::thread;
use std::time::Duration;
use crossbeam_channel::{unbounded, RecvTimeoutError};

let (s, r) = unbounded();

thread::spawn(move || {
    thread::sleep(Duration::from_secs(1));
    s.send(5).unwrap();
    drop(s);
});

assert_eq!(
    r.recv_timeout(Duration::from_millis(500)),
    Err(RecvTimeoutError::Timeout),
);
assert_eq!(
    r.recv_timeout(Duration::from_secs(1)),
    Ok(5),
);
assert_eq!(
    r.recv_timeout(Duration::from_secs(1)),
    Err(RecvTimeoutError::Disconnected),
);

pub fn recv_deadline(&self, deadline: Instant) -> Result<T, RecvTimeoutError>[src]

Waits for a message to be received from the channel, but only before a given deadline.

If the channel is empty and not disconnected, this call will block until the receive operation can proceed or the operation times out. If the channel is empty and becomes disconnected, this call will wake up and return an error.

If called on a zero-capacity channel, this method will wait for a send operation to appear on the other side of the channel.

Examples

use std::thread;
use std::time::{Instant, Duration};
use crossbeam_channel::{unbounded, RecvTimeoutError};

let (s, r) = unbounded();

thread::spawn(move || {
    thread::sleep(Duration::from_secs(1));
    s.send(5).unwrap();
    drop(s);
});

let now = Instant::now();

assert_eq!(
    r.recv_deadline(now + Duration::from_millis(500)),
    Err(RecvTimeoutError::Timeout),
);
assert_eq!(
    r.recv_deadline(now + Duration::from_millis(1500)),
    Ok(5),
);
assert_eq!(
    r.recv_deadline(now + Duration::from_secs(5)),
    Err(RecvTimeoutError::Disconnected),
);

pub fn is_empty(&self) -> bool[src]

Returns true if the channel is empty.

Note: Zero-capacity channels are always empty.

Examples

use crossbeam_channel::unbounded;

let (s, r) = unbounded();

assert!(r.is_empty());
s.send(0).unwrap();
assert!(!r.is_empty());

pub fn is_full(&self) -> bool[src]

Returns true if the channel is full.

Note: Zero-capacity channels are always full.

Examples

use crossbeam_channel::bounded;

let (s, r) = bounded(1);

assert!(!r.is_full());
s.send(0).unwrap();
assert!(r.is_full());

pub fn len(&self) -> usize[src]

Returns the number of messages in the channel.

Examples

use crossbeam_channel::unbounded;

let (s, r) = unbounded();
assert_eq!(r.len(), 0);

s.send(1).unwrap();
s.send(2).unwrap();
assert_eq!(r.len(), 2);

pub fn capacity(&self) -> Option<usize>[src]

If the channel is bounded, returns its capacity.

Examples

use crossbeam_channel::{bounded, unbounded};

let (_, r) = unbounded::<i32>();
assert_eq!(r.capacity(), None);

let (_, r) = bounded::<i32>(5);
assert_eq!(r.capacity(), Some(5));

let (_, r) = bounded::<i32>(0);
assert_eq!(r.capacity(), Some(0));

pub fn iter(&self) -> Iter<'_, T>

Notable traits for Iter<'_, T>

impl<'_, T> Iterator for Iter<'_, T> type Item = T;
[src]

A blocking iterator over messages in the channel.

Each call to next blocks waiting for the next message and then returns it. However, if the channel becomes empty and disconnected, it returns None without blocking.

Examples

use std::thread;
use crossbeam_channel::unbounded;

let (s, r) = unbounded();

thread::spawn(move || {
    s.send(1).unwrap();
    s.send(2).unwrap();
    s.send(3).unwrap();
    drop(s); // Disconnect the channel.
});

// Collect all messages from the channel.
// Note that the call to `collect` blocks until the sender is dropped.
let v: Vec<_> = r.iter().collect();

assert_eq!(v, [1, 2, 3]);

pub fn try_iter(&self) -> TryIter<'_, T>

Notable traits for TryIter<'_, T>

impl<'_, T> Iterator for TryIter<'_, T> type Item = T;
[src]

A non-blocking iterator over messages in the channel.

Each call to next returns a message if there is one ready to be received. The iterator never blocks waiting for the next message.

Examples

use std::thread;
use std::time::Duration;
use crossbeam_channel::unbounded;

let (s, r) = unbounded::<i32>();

thread::spawn(move || {
    s.send(1).unwrap();
    thread::sleep(Duration::from_secs(1));
    s.send(2).unwrap();
    thread::sleep(Duration::from_secs(2));
    s.send(3).unwrap();
});

thread::sleep(Duration::from_secs(2));

// Collect all messages from the channel without blocking.
// The third message hasn't been sent yet so we'll collect only the first two.
let v: Vec<_> = r.try_iter().collect();

assert_eq!(v, [1, 2]);

pub fn same_channel(&self, other: &Receiver<T>) -> bool[src]

Returns true if receivers belong to the same channel.

Examples

use crossbeam_channel::unbounded;

let (_, r) = unbounded::<usize>();

let r2 = r.clone();
assert!(r.same_channel(&r2));

let (_, r3) = unbounded();
assert!(!r.same_channel(&r3));

Trait Implementations

impl<T> Clone for Receiver<T>[src]

pub fn clone(&self) -> Receiver<T>[src]

Returns a copy of the value. Read more

fn clone_from(&mut self, source: &Self)1.0.0[src]

Performs copy-assignment from source. Read more

impl<T> Debug for Receiver<T>[src]

pub fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error>[src]

Formats the value using the given formatter. Read more

impl<T> Drop for Receiver<T>[src]

pub fn drop(&mut self)[src]

Executes the destructor for this type. Read more

impl<'a, T> IntoIterator for &'a Receiver<T>[src]

type Item = T

The type of the elements being iterated over.

type IntoIter = Iter<'a, T>

Which kind of iterator are we turning this into?

pub fn into_iter(self) -> <&'a Receiver<T> as IntoIterator>::IntoIter[src]

Creates an iterator from a value. Read more

impl<T> IntoIterator for Receiver<T>[src]

type Item = T

The type of the elements being iterated over.

type IntoIter = IntoIter<T>

Which kind of iterator are we turning this into?

pub fn into_iter(self) -> <Receiver<T> as IntoIterator>::IntoIter[src]

Creates an iterator from a value. Read more

impl<T> RefUnwindSafe for Receiver<T>[src]

impl<T> Send for Receiver<T> where
    T: Send
[src]

impl<T> Sync for Receiver<T> where
    T: Send
[src]

impl<T> UnwindSafe for Receiver<T>[src]

Auto Trait Implementations

impl<T> Unpin for Receiver<T> where
    T: Unpin

Blanket Implementations

impl<T> Any for T where
    T: 'static + ?Sized
[src]

pub fn type_id(&self) -> TypeId[src]

Gets the TypeId of self. Read more

impl<T> Borrow<T> for T where
    T: ?Sized
[src]

pub fn borrow(&self) -> &T[src]

Immutably borrows from an owned value. Read more

impl<T> BorrowMut<T> for T where
    T: ?Sized
[src]

pub fn borrow_mut(&mut self) -> &mut T[src]

Mutably borrows from an owned value. Read more

impl<T> From<T> for T[src]

pub fn from(t: T) -> T[src]

Performs the conversion.

impl<T, U> Into<U> for T where
    U: From<T>, 
[src]

pub fn into(self) -> U[src]

Performs the conversion.

impl<T> Pointable for T[src]

pub const ALIGN: usize[src]

The alignment of pointer.

type Init = T

The type for initializers.

pub unsafe fn init(init: <T as Pointable>::Init) -> usize[src]

Initializes a with the given initializer. Read more

pub unsafe fn deref<'a>(ptr: usize) -> &'a T[src]

Dereferences the given pointer. Read more

pub unsafe fn deref_mut<'a>(ptr: usize) -> &'a mut T[src]

Mutably dereferences the given pointer. Read more

pub unsafe fn drop(ptr: usize)[src]

Drops the object pointed to by the given pointer. Read more

impl<T> ToOwned for T where
    T: Clone
[src]

type Owned = T

The resulting type after obtaining ownership.

pub fn to_owned(&self) -> T[src]

Creates owned data from borrowed data, usually by cloning. Read more

pub fn clone_into(&self, target: &mut T)[src]

🔬 This is a nightly-only experimental API. (toowned_clone_into)

recently added

Uses borrowed data to replace owned data, usually by cloning. Read more

impl<T, U> TryFrom<U> for T where
    U: Into<T>, 
[src]

type Error = Infallible

The type returned in the event of a conversion error.

pub fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>[src]

Performs the conversion.

impl<T, U> TryInto<U> for T where
    U: TryFrom<T>, 
[src]

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.

pub fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>[src]

Performs the conversion.