1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
use crate::cell::{RootCell, RootObj};
use crate::result::Result;
use crate::stm::{journal::*, Chaperon, Log};
use crate::{as_mut, PSafe, TxInSafe, TxOutSafe};
use std::collections::HashMap;
use std::fs::OpenOptions;
use std::ops::Range;
use std::panic::UnwindSafe;
use std::path::Path;
use std::thread::ThreadId;
use std::{alloc::Layout, mem, ptr};

/// Default pool memory size to be used while creating a new pool
pub const DEFAULT_POOL_SIZE: u64 = 8 * 1024 * 1024;

/// Open pool flags
pub mod open_flags {
    /// Open Flag: Create the pool memory file
    pub const O_C: u32 = 0x00000001;

    /// Open Flag: Formats the pool memory file if file exists, otherwise error
    pub const O_F: u32 = 0x00000002;

    /// Open Flag: Creates pool memory file only if it does not exist
    pub const O_CNE: u32 = 0x00000004;

    /// Open Flag: Creates and formats a new file
    pub const O_CF: u32 = O_C | O_F;

    /// Open Flag: Creates and formats pool memory file only if it does not exist
    pub const O_CFNE: u32 = O_CNE | O_F;

    /// Open Flag: Creates a pool memory file of size 1GB
    pub const O_1GB: u32 = 0x00000010;

    /// Open Flag: Creates a pool memory file of size 2GB
    pub const O_2GB: u32 = 0x00000020;

    /// Open Flag: Creates a pool memory file of size 4GB
    pub const O_4GB: u32 = 0x00000040;

    /// Open Flag: Creates a pool memory file of size 8GB
    pub const O_8GB: u32 = 0x00000080;

    /// Open Flag: Creates a pool memory file of size 16GB
    pub const O_16GB: u32 = 0x00000100;

    /// Open Flag: Creates a pool memory file of size 32GB
    pub const O_32GB: u32 = 0x00000200;

    /// Open Flag: Creates a pool memory file of size 64GB
    pub const O_64GB: u32 = 0x00000400;

    /// Open Flag: Creates a pool memory file of size 128GB
    pub const O_128GB: u32 = 0x00000800;

    /// Open Flag: Creates a pool memory file of size 256GB
    pub const O_256GB: u32 = 0x00001000;

    /// Open Flag: Creates a pool memory file of size 512GB
    pub const O_512GB: u32 = 0x00002000;

    /// Open Flag: Creates a pool memory file of size 1TB
    pub const O_1TB: u32 = 0x00004000;

    /// Open Flag: Creates a pool memory file of size 2TB
    pub const O_2TB: u32 = 0x00008000;

    /// Open Flag: Creates a pool memory file of size 4TB
    pub const O_4TB: u32 = 0x00010000;

    /// Open Flag: Creates a pool memory file of size 8TB
    pub const O_8TB: u32 = 0x00020000;

    /// Open Flag: Creates a pool memory file of size 16TB
    pub const O_16TB: u32 = 0x00040000;

    /// Open Flag: Creates a pool memory file of size 32TB
    pub const O_32TB: u32 = 0x00080000;

    /// Open Flag: Creates a pool memory file of size 64TB
    pub const O_64TB: u32 = 0x00100000;
}

pub use open_flags::*;

/// Shows that the pool has a root object
pub const FLAG_HAS_ROOT: u64 = 0x0000_0001;

/// This macro can be used to declare a static struct for the inner data of an
/// arbitrary allocator.
#[macro_export]
macro_rules! static_inner_object {
    ($id:ident, $ty:ty) => {
        static mut $id: Option<&'static mut $ty> = None;
    };
}

/// This macro can be used to access static data of an arbitrary allocator
#[macro_export]
macro_rules! static_inner {
    ($id:ident, $inner:ident, $body:block) => {
        unsafe {
            if let Some($inner) = &mut $id {
                $body
            } else {
                panic!("No memory pool is open");
            }
        }
    };
}

/// Persistent Memory Pool
///
/// This trait can be used to define a persistent memory pool type. The
/// methods of `MemPool` trait do not have a reference to self in order to make
/// sure that all information that it works with, including the virtual address
/// boundaries, are static. Therefore, all objects with the same memory
/// allocator will share a unique memory pool type. Having a strong set of type
/// checking rules, Rust prevents referencing from one memory pool to another.
///
/// To implement a new memory pool, you should define a new type with static
/// values, that implements `MemPool`. You may use [`static_inner_object!()`]
/// to statically define allocator's inner data, and [`static_inner!()`] to
/// access it. You may also use the default allocator using [`pool!()`] which
/// creates a pool module with a default allocator of type [`BuddyAlloc`].
///
/// # Examples
/// The following example shows how to use `MemPool` to track allocations of a
/// single numerical object of type `i32`.
///
/// ```
/// # use crndm::alloc::MemPool;
/// # use crndm::stm::Journal;
/// # use crndm::result::Result;
/// # use std::ops::Range;
/// use std::alloc::{alloc,dealloc,realloc,Layout};
///
/// struct TrackAlloc {}
///
/// unsafe impl MemPool for TrackAlloc {
///     fn rng() -> Range<u64> { 0..u64::MAX }
///     unsafe fn pre_alloc(size: usize) -> (*mut u8, u64, usize) {
///         let p = alloc(Layout::from_size_align_unchecked(size, 4));
///         println!("A block of {} bytes is allocated at {}", size, p as u64);
///         (p, p as u64, size)
///     }
///     unsafe fn pre_dealloc(p: *mut u8, size: usize) {
///         println!("A block of {} bytes at {} is deallocated", size, p as u64);
///         dealloc(p, Layout::from_size_align_unchecked(size, 1));
///     }
///     unsafe fn pre_realloc(p: *mut *mut u8, old: usize, new: usize) -> bool {
///         println!("A block of {} bytes at {} is reallocated to {}", old, *p as u64, new);
///         *p = realloc(*p, Layout::from_size_align_unchecked(old, 1), new);
///         true
///     }
/// }
///
/// unsafe {
///     let (p, _, _) = TrackAlloc::alloc(1);
///     *p = 10;
///     println!("loc {} contains {}", p as u64, *p);
///     TrackAlloc::dealloc(p, 1);
/// }
/// ```
///
/// # Safety
///
/// This is the developer's responsibility to manually drop allocated objects.
/// One way for memory management is to use pointer wrappers that implement
/// [`Drop`] trait and deallocate the object on drop. Unsafe
/// methods does not guarantee persistent memory safety.
///
/// `pmem` crate provides `Pbox`, `Prc`, and `Parc` for memory management using
/// RAII. They internally use the unsafe methods.
/// 
/// [`pool!()`]: ./default/macro.pool.html
/// [`static_inner_object!()`]: ../macro.static_inner_object.html
/// [`static_inner!()`]: ../macro.static_inner.html
/// [`BuddyAlloc`]: ./default/struct.BuddyAlloc.html
pub unsafe trait MemPool
where
    Self: 'static + Sized,
{
    /// Opens a new pool without any root object. This function is for testing 
    /// and is not useful in real applications as none of the allocated
    /// objects in persistent region is durable. The reason is that they are not
    /// reachable from a root object as it doesn't exists. All objects can live
    /// only in the scope of a transaction.
    /// 
    /// # Flags
    ///   * O_C:    create a memory pool file if not exists
    ///   * O_F:    format the memory pool file
    ///   * O_CNE:  create a memory pool file if not exists
    ///   * O_CF:   create and format a new memory pool file
    ///   * O_CFNE: create and format a memory pool file only if not exists
    /// 
    /// See [`open_flags`](./open_flags/index.html) for more options.
    fn open_no_root(_path: &str, _flags: u32) -> Result<Self> {
        unimplemented!()
    }

    /// Commits all changes and clears the logs for all threads
    ///
    /// This method should be called while dropping the `MemPool` object to
    /// make sure that all uncommitted changes outside transactions, such as
    /// reference counters, are persistent.
    unsafe fn close() -> Result<()> {
        unimplemented!()
    }

    /// Opens a pool and retrieves the root object
    ///
    /// The root type should implement [`RootObj`] trait in order to create a
    /// root object on its absence. This function [creates and] returns an
    /// immutable reference to the root object. The pool remains open as long as
    /// the root object is in the scope. Like other persistent objects, the root
    /// object is immutable and it is modifiable via interior mutability.
    /// 
    /// # Flags
    ///   * O_C:    create a memory pool file if not exists
    ///   * O_F:    format the memory pool file
    ///   * O_CNE:  create a memory pool file if not exists
    ///   * O_CF:   create and format a new memory pool file
    ///   * O_CFNE: create and format a memory pool file only if not exists
    /// 
    /// See [`open_flags`](./open_flags/index.html) for more options.
    ///
    /// # Examples
    ///
    /// ```
    /// use crndm::default::*;
    ///
    /// let root = BuddyAlloc::open::<i32>("foo.pool", O_CF).unwrap();
    ///
    /// assert_eq!(*root, i32::default());
    /// ```
    ///
    /// ## Single-thread Shared Root Object
    ///
    /// [`Prc`]`<`[`PCell`]`<T>>` can be used in order to have a mutable shared
    /// root object, as follows.
    ///
    /// ```
    /// use crndm::default::*;
    ///
    /// type Root = Prc<PCell<i32>>;
    ///
    /// let root = BuddyAlloc::open::<Root>("foo.pool", O_CF).unwrap();
    ///
    /// let data = root.get();
    ///
    /// if data == i32::default() {
    ///     println!("Initializing data");
    ///     // This block runs only once to initialize the root object
    ///     transaction(|j| {
    ///         root.set(10, j);
    ///     }).unwrap();
    /// }
    ///
    /// assert_eq!(root.get(), 10);
    /// ```
    ///
    /// ## Thread-safe Root Object
    ///
    /// If you need a thread-safe root object, you may want to wrap the root object
    /// in [`Parc`]`<`[`PMutex`]`<T>>`, as shown in the example below:
    ///
    /// ```
    /// use crndm::default::*;
    /// use std::thread;
    ///
    /// type Root = Parc<PMutex<i32>>;
    ///
    /// let root = BuddyAlloc::open::<Root>("foo.pool", O_CF).unwrap();
    ///
    /// let mut threads = vec!();
    ///
    /// for _ in 0..10 {
    ///     let root = Parc::volatile(&root);
    ///     threads.push(thread::spawn(move || {
    ///         transaction(|j| {
    ///             if let Some(root) = root.upgrade(j) {
    ///                 let mut root = root.lock(j);
    ///                 *root += 10;
    ///             }
    ///         }).unwrap();
    ///     }));
    /// }
    ///
    /// for thread in threads {
    ///     thread.join().unwrap();
    /// }
    ///
    /// transaction(|j| {
    ///     let data = root.lock(j);
    ///     assert_eq!(*data % 100, 0);
    /// }).unwrap();
    /// ```
    ///
    /// # Errors
    ///
    /// * A volatile memory pool (e.g. `Heap`) doesn't have a root object.
    /// * The pool should be open before accessing the root object.
    ///
    /// [`RootObj`]: ../stm/trait.RootObj.html
    /// [`Prc`]: ../prc/struct.Prc.html
    /// [`Parc`]: ../sync/parc/struct.Parc.html
    /// [`PCell`]: ./default/type.PCell.html
    /// [`PRefCell`]: ./default/type.PRefCell.html
    /// [`PMutex`]: ./default/type.PMutex.html
    fn open<'a, U: 'a + PSafe + RootObj<Self>>(
        _path: &str,
        _flags: u32,
    ) -> Result<RootCell<'a, U, Self>> {
        unimplemented!()
    }

    /// Formats the memory pool file
    unsafe fn format(_path: &str) -> Result<()> {
        unimplemented!()
    }

    /// Applies open pool flags
    unsafe fn apply_flags(path: &str, flags: u32) -> Result<()> {
        let mut size: u64 = flags as u64 >> 4;
        if size.count_ones() > 1 {
            return Err("Cannot have multiple size flags".to_string());
        } else if size == 0 {
            size = DEFAULT_POOL_SIZE;
        } else {
            if flags & (O_C | O_CNE) == 0 {
                return Err("Cannot use size flag without a create flag".to_string());
            }
            size <<= 30;
        }
        let mut format = !Path::new(path).exists() && ((flags & O_F) != 0);
        if ((flags & O_C) != 0) || ((flags & O_CNE != 0) && !Path::new(path).exists()) {
            create_file(path, size)?;
            format = (flags & O_F) != 0;
        }
        if format {
            Self::format(path)?;
        }
        Ok(())
    }

    /// Indicates if the given offset is allocated
    #[inline]
    fn allocated(_off: u64, _len: usize) -> bool {
        true
    }

    /// Translates raw pointers to memory offsets
    ///
    /// # Safety
    ///
    /// The raw pointer should be in the valid range
    #[inline]
    unsafe fn off_unchecked<T: ?Sized>(x: *const T) -> u64 {
        (x as *const u8 as u64) - Self::start()
    }

    /// Acquires a reference pointer to the object
    ///
    /// # Safety
    ///
    /// The offset should be in the valid address range
    #[inline]
    unsafe fn get_unchecked<'a, T: 'a + ?Sized>(off: u64) -> &'a T {
        union U<'b, K: 'b + ?Sized> {
            off: u64,
            raw: &'b K,
        }

        #[cfg(any(feature = "access_violation_check", debug_assertions))]
        assert!( Self::allocated(off, 1), "Bad address (0x{:x})", off );

        U { off: Self::start() + off }.raw
    }

    /// Acquires a mutable reference to the object
    ///
    /// # Safety
    ///
    /// The offset should be in the valid address range
    #[inline]
    #[track_caller]
    unsafe fn get_mut_unchecked<'a, T: 'a + ?Sized>(off: u64) -> &'a mut T {
        union U<'b, K: 'b + ?Sized> {
            off: u64,
            raw: &'b mut K,
        }

        #[cfg(any(feature = "access_violation_check", debug_assertions))]
        assert!( Self::allocated(off, 1), "Bad address (0x{:x})", off );

        U { off: Self::start() + off }.raw
    }

    /// Acquires a reference to the slice
    ///
    /// # Safety
    ///
    /// The offset should be in the valid address range
    #[inline]
    unsafe fn deref_slice_unchecked<'a, T: 'a>(off: u64, len: usize) -> &'a [T] {
        if len == 0 {
            &[]
        } else {
            union U<'b, K: 'b> {
                off: u64,
                raw: &'b K,
            }
            let ptr = U {
                off: Self::start() + off,
            }
            .raw;
            let res = std::slice::from_raw_parts(ptr, len);

            #[cfg(any(feature = "access_violation_check", debug_assertions))]
            assert!(
                Self::allocated(off, mem::size_of::<T>() * len),
                format!(
                    "Bad address (0x{:x}..0x{:x})",
                    off,
                    off + (mem::size_of::<T>() * len) as u64 - 1
                )
            );

            res
        }
    }

    /// Acquires a mutable reference to the slice
    ///
    /// # Safety
    ///
    /// The offset should be in the valid address range
    #[inline]
    unsafe fn deref_slice_unchecked_mut<'a, T: 'a>(off: u64, len: usize) -> &'a mut [T] {
        if len == 0 {
            &mut []
        } else {
            union U<'b, K: 'b> {
                off: u64,
                raw: &'b mut K,
            }
            let ptr = U {
                off: Self::start() + off,
            }
            .raw;
            let res = std::slice::from_raw_parts_mut(ptr, len);

            #[cfg(any(feature = "access_violation_check", debug_assertions))]
            assert!(
                Self::allocated(off, mem::size_of::<T>() * len),
                format!(
                    "Bad address (0x{:x}..0x{:x})",
                    off,
                    off + (mem::size_of::<T>() * len) as u64 - 1
                )
            );

            res
        }
    }

    /// Acquires a reference to the object
    #[inline]
    unsafe fn deref<'a, T: 'a>(off: u64) -> Result<&'a T> {
        if Self::allocated(off, mem::size_of::<T>()) {
            Ok(Self::get_unchecked(off))
        } else {
            Err(format!("Bad address (0x{:x})", off))
        }
    }

    /// Acquires a mutable reference pointer to the object
    #[inline]
    unsafe fn deref_mut<'a, T: 'a>(off: u64) -> Result<&'a mut T> {
        if Self::allocated(off, mem::size_of::<T>()) {
            Ok(Self::get_mut_unchecked(off))
        } else {
            Err(format!("Bad address (0x{:x})", off))
        }
    }

    /// Translates raw pointers to memory offsets
    #[inline]
    fn off<T: ?Sized>(x: *const T) -> Result<u64> {
        if Self::valid(unsafe { &*x }) {
            Ok(x as *const u8 as u64 - Self::start())
        } else {
            Err("out of valid range".to_string())
        }
    }

    /// Valid Virtual Address Range
    fn rng() -> Range<u64> {
        Self::start()..Self::end()
    }

    /// Start of virtual address range
    #[inline]
    fn start() -> u64 {
        Self::rng().start
    }

    /// End of virtual address range
    #[inline]
    fn end() -> u64 {
        Self::rng().end
    }

    /// Total size of the memory pool
    fn size() -> usize {
        unimplemented!()
    }

    /// Available space in the pool
    fn available() -> usize {
        unimplemented!()
    }

    /// Total occupied space
    fn used() -> usize {
        Self::size() - Self::available()
    }

    /// Checks if the reference `p` belongs to this pool
    #[inline]
    fn valid<T: ?Sized>(p: &T) -> bool {
        let rng = Self::rng();
        let start = p as *const T as *const u8 as u64;
        // let end = start + std::mem::size_of_val(p) as u64;
        start >= rng.start && start < rng.end
        // && end >= rng.start && end < rng.end
    }

    /// Checks if `addr` is in the valid address range if this allocator
    ///
    /// `addr` contains the scalar of a virtual address. If you have a raw
    /// fat pointer of type T, you can obtain its virtual address by converting
    /// it into a thin pointer and then `u64`.
    ///
    /// # Examples
    ///
    /// ```
    /// let p = Box::new(1);
    /// println!("Address {:#x} contains value '{}'", p.as_ref() as *const _ as u64, *p);
    /// ```
    #[inline]
    fn contains(addr: u64) -> bool {
        let rng = Self::rng();
        addr >= rng.start && addr < rng.end
    }

    /// Allocate memory as described by the given `layout`.
    ///
    /// Returns a pointer to newly-allocated memory.
    ///
    /// # Safety
    ///
    /// This function is unsafe because undefined behavior can result
    /// if the caller does not ensure that `layout` has non-zero size.
    /// The allocated block of memory may or may not be initialized.
    #[inline]
    #[track_caller]
    unsafe fn alloc(size: usize) -> (*mut u8, u64, usize) {
        let (p, off, len) = Self::pre_alloc(size);
        Self::drop_on_failure(off, len);
        Self::perform();
        (p, off, len)
    }

    /// Deallocate the block of memory at the given `ptr` pointer with the
    /// given `size`.
    ///
    /// # Safety
    ///
    /// This function is unsafe because undefined behavior can result if the
    /// caller does not ensure all of the following:
    ///
    /// * `ptr` must denote a block of memory currently allocated via this
    ///   allocator,
    ///
    /// * `size` must be the same size that was used to allocate that block
    ///   of memory.
    #[inline]
    #[track_caller]
    unsafe fn dealloc(ptr: *mut u8, size: usize) {
        Self::pre_dealloc(ptr, size);
        Self::perform();
    }

    /// Prepares allocation without performing it
    /// 
    /// This function is used internally for low-level atomicity in memory
    /// allocation. See [`Log::set()`] for more details.
    /// 
    /// # Examples
    /// 
    /// ```
    /// # use crndm::default::*;
    /// # type P = BuddyAlloc;
    /// # let _=P::open_no_root("foo.pool", O_CF).unwrap();
    /// unsafe {
    ///     let (ptr, _, _) = P::pre_alloc(8);
    ///     *ptr = 10;
    ///     P::perform();
    /// }
    /// ```
    /// 
    /// [`Log::set()`]: ../stm/struct.Log.html#method.set
    /// 
    unsafe fn pre_alloc(size: usize) -> (*mut u8, u64, usize);

    /// Prepares deallocation without performing it
    /// 
    /// This function is used internally for low-level atomicity in memory
    /// allocation. See [`Log::set()`] for more details.
    /// 
    /// # Examples
    /// 
    /// ```
    /// # use crndm::default::*;
    /// # type P = BuddyAlloc;
    /// # let _=P::open_no_root("foo.pool", O_CF).unwrap();
    /// unsafe {
    ///     let (ptr, _, _) = P::alloc(8);
    ///     *ptr = 10;
    ///     P::pre_dealloc(ptr, 8);
    ///     assert_eq!(*ptr, 10);
    ///     P::perform();
    ///     assert_ne!(*ptr, 10);
    /// }
    /// ```
    /// 
    /// [`Log::set()`]: ../stm/struct.Log.html#method.set
    /// 
    unsafe fn pre_dealloc(ptr: *mut u8, size: usize);

    /// Prepares reallocation without performing it, updating the pointer to
    /// a new one, if required, with a new size
    /// 
    /// # Examples
    /// 
    /// ```
    /// # use crndm::default::*;
    /// # type P = BuddyAlloc;
    /// # let _=P::open_no_root("foo.pool", O_CF).unwrap();
    /// unsafe {
    ///     let (mut ptr, _, _) = P::alloc(8);
    ///     P::pre_realloc(&mut ptr, 8, 16);
    ///     P::perform();
    ///     P::dealloc(ptr, 16);
    /// }
    /// ```
    /// 
    /// [`Log::set()`]: ../stm/struct.Log.html#method.set
    /// 
    unsafe fn pre_realloc(ptr: *mut *mut u8, size: usize, new_size: usize) -> bool;

    /// Adds a low-level log to update as 64-bit `obj` to `val` when 
    /// [`perform()`] is called. See [`Log::set()`] for more details.
    /// 
    /// [`perform()`]: #method.perform
    /// [`Log::set()`]: ../stm/struct.Log.html#method.set
    /// 
    unsafe fn log64(_obj: *const u64, _val: u64) {
        unimplemented!()
    }

    /// Adds a low-level `DropOnFailure` log to perform inside the allocator. 
    /// This is internally used to atomically allocate a new objects. Calling
    /// [`perform()`] drops these logs.
    /// 
    /// # Examples
    /// 
    /// ```
    /// # use crndm::default::*;
    /// # type P = BuddyAlloc;
    /// # let _ = P::open_no_root("foo.pool", O_CF).unwrap();
    /// unsafe {
    ///     // Prepare an allocation. The allocation is not durable yet. In case
    ///     // of a crash, the prepared allocated space is gone. It is fine
    ///     // because it has not been used. The `pre_` and `perform` functions
    ///     // form a low-level atomic section.
    ///     let (obj, off, len) = P::pre_alloc(1);
    /// 
    ///     // Create a low-level DropOnFailure log. This log is going to be used
    ///     // when a crash happens while performing the changes made by the
    ///     // preparation functions. If a crash happens before that, these logs
    ///     // will be discarded.
    ///     P::drop_on_failure(off, len);
    ///     
    ///     // It is fine to work with the prepared raw pointer. All changes in
    ///     // the low-level atomic section are considered as part of the
    ///     // allocation and will be gone in case of a crash, as the allocation
    ///     // will be dropped.
    ///     *obj = 20;
    /// 
    ///     // Transaction ends here. The perform function sets the `operating`
    ///     // flag to show that the prepared changes are being materialized.
    ///     // This flag remains set until the end of materialization. In case
    ///     // of a crash while operating, the recovery procedure first continues
    ///     // the materialization, and then uses the `DropOnFailure` logs to
    ///     // reclaim the allocation.
    ///     P::perform();
    /// }
    /// ```
    /// 
    /// [`perform()`]: #method.perform
    /// [`Journal`]: ../stm/journal/struct.Journal.html
    /// 
    unsafe fn drop_on_failure(_off: u64, _len: usize) {}

    /// Performs the prepared operations
    /// 
    /// Materializes the changes made by [`pre_alloc`](#method.pre_alloc),
    /// [`pre_dealloc`](#method.pre_dealloc), and
    /// [`pre_realloc`](#method.pre_realloc). See [`Log::set()`] for more
    /// details.
    /// 
    /// [`Log::set()`]: ../stm/struct.Log.html#method.set
    /// 
    unsafe fn perform() { }

    /// Discards the prepared operations
    /// 
    /// Discards the changes made by [`pre_alloc`](#method.pre_alloc),
    /// [`pre_dealloc`](#method.pre_dealloc), and
    /// [`pre_realloc`](#method.pre_realloc).  See [`Log::set()`] for more
    /// details.
    /// 
    /// [`Log::set()`]: ../stm/struct.Log.html#method.set
    /// 
    unsafe fn discard() { }

    /// Behaves like `alloc`, but also ensures that the contents
    /// are set to zero before being returned.
    ///
    /// # Safety
    ///
    /// This function is unsafe for the same reasons that `alloc` is.
    /// However the allocated block of memory is guaranteed to be initialized.
    ///
    /// # Errors
    ///
    /// Returning a null pointer indicates that either memory is exhausted
    /// or `layout` does not meet allocator's size or alignment constraints,
    /// just as in `alloc`.
    ///
    /// Clients wishing to abort computation in response to an
    /// allocation error are encouraged to call the [`handle_alloc_error`] function,
    /// rather than directly invoking `panic!` or similar.
    ///
    /// [`handle_alloc_error`]: ../../alloc/alloc/fn.handle_alloc_error.html
    unsafe fn alloc_zeroed(size: usize) -> *mut u8 {
        let (ptr, _, _) = Self::alloc(size);
        if !ptr.is_null() {
            std::ptr::write_bytes(ptr, 0, size);
        }
        ptr
    }

    /// Shrink or grow a block of memory to the given `new_size`.
    /// The block is described by the given `ptr` pointer and `layout`.
    ///
    /// If successful, it replaces the pointer location to a new value and
    /// returns true.
    ///
    /// # Safety
    ///
    /// This function is unsafe because undefined behavior can result
    /// if the caller does not ensure all of the following:
    ///
    /// * `ptr` must be currently allocated using this allocator,
    ///
    /// * `size` must be the same size that was used
    ///   to allocate that block of memory,
    ///
    /// * `new_size` must be greater than zero.
    ///
    unsafe fn realloc(ptr: *mut *mut u8, size: usize, new_size: usize) -> bool{
        let (new_ptr, _, _) = Self::alloc(new_size);
        if !new_ptr.is_null() {
            std::ptr::copy_nonoverlapping(*ptr, new_ptr, std::cmp::min(size, new_size));
            Self::dealloc(*ptr, size);
            *ptr = new_ptr;
            true
        } else {
            false
        }
    }

    /// Allocates new memory and then places `x` into it with `DropOnFailure` log
    unsafe fn new<'a, T: PSafe + 'a>(x: T, j: &Journal<Self>) -> &'a mut T {
        debug_assert!(mem::size_of::<T>() != 0, "Cannot allocated ZST");

        let mut log = Log::drop_on_failure(u64::MAX, 1, j);
        let (p, off, len) = Self::atomic_new(x);
        log.set(off, len);
        Self::perform();
        p
    }

    /// Allocates a new slice and then places `x` into it with `DropOnAbort` log
    unsafe fn new_slice<'a, T: PSafe + 'a>(x: &'a [T], _journal: &Journal<Self>) -> &'a mut [T] {
        debug_assert!(mem::size_of::<T>() != 0, "Cannot allocate ZST");
        debug_assert!(!x.is_empty(), "Cannot allocate empty slice");

        let mut log = Log::drop_on_abort(u64::MAX, 1, _journal);
        let (p, off, size) = Self::atomic_new_slice(x);
        log.set(off, size);
        Self::perform();
        p
    }

    /// Allocates new memory and then places `x` into it without realizing the allocation
    unsafe fn atomic_new<'a, T: 'a>(x: T) -> (&'a mut T, u64, usize) {
        union U<'b, K: 'b + ?Sized> {
            raw: *mut u8,
            rf: &'b mut K,
        }

        #[cfg(feature = "verbose")]
        println!("          ALLOC      TYPE: {}", std::any::type_name::<T>());

        let size = mem::size_of::<T>();
        let (raw, off, len) = Self::pre_alloc(size);
        if raw.is_null() {
            panic!("Memory exhausted");
        }
        Self::drop_on_failure(off, len);
        let p = U { raw }.rf;
        mem::forget(ptr::replace(p, x));
        (p, off, size)
    }

    /// Allocates new memory and then places `x` into it without realizing the allocation
    unsafe fn atomic_new_slice<'a, T: 'a + PSafe>(x: &'a [T]) -> (&'a mut [T], u64, usize) {
        #[cfg(feature = "verbose")]
        println!(
            "          ALLOC      TYPE: [{}; {}]",
            std::any::type_name::<T>(),
            x.len()
        );

        let (ptr, off, size) = Self::pre_alloc(Layout::for_value(x).size());
        if ptr.is_null() {
            panic!("Memory exhausted");
        }
        Self::drop_on_failure(off, size);
        ptr::copy_nonoverlapping(
            x as *const _ as *const u8,
            ptr,
            x.len() * mem::size_of::<T>(),
        );
        (
            std::slice::from_raw_parts_mut(ptr.cast(), x.len()),
            off,
            size,
        )
    }

    /// Allocates new memory without copying data
    unsafe fn new_uninit<'a, T: PSafe + 'a>(j: &Journal<Self>) -> &'a mut T {
        let mut log = Log::drop_on_failure(u64::MAX, 1, j);
        let (p, off, size) = Self::atomic_new_uninit();
        // Self::drop_on_failure(off, size);
        log.set(off, size);
        Self::perform();
        p
    }

    /// Allocates new memory without copying data
    unsafe fn new_uninit_for_layout(size: usize, journal: &Journal<Self>) -> *mut u8 {
        #[cfg(feature = "verbose")]
        println!("          ALLOC      {:?}", size);

        let mut log = Log::drop_on_abort(u64::MAX, 1, journal);
        let (p, off, len) = Self::pre_alloc(size);
        if p.is_null() {
            panic!("Memory exhausted");
        }
        // Self::drop_on_failure(off, len);
        log.set(off, len);
        Self::perform();
        p
    }

    /// Allocates new memory without copying data and realizing the allocation
    unsafe fn atomic_new_uninit<'a, T: 'a>() -> (&'a mut T, u64, usize) {
        union U<'b, K: 'b + ?Sized> {
            ptr: *mut u8,
            rf: &'b mut K,
        }

        let (ptr, off, len) = Self::pre_alloc(mem::size_of::<T>());
        if ptr.is_null() {
            panic!("Memory exhausted");
        }
        Self::drop_on_failure(off, len);
        (U { ptr }.rf, off, len)
    }

    /// Allocates new memory for value `x`
    unsafe fn alloc_for_value<'a, T: ?Sized>(x: &T) -> &'a mut T {
        union U<'b, K: 'b + ?Sized> {
            raw: *mut u8,
            rf: &'b mut K,
        }
        let raw = Self::alloc(mem::size_of_val(x));
        if raw.0.is_null() {
            panic!("Memory exhausted");
        }
        U { raw: raw.0 }.rf
    }

    /// Creates a `DropOnCommit` log for the value `x`
    unsafe fn free<'a, T: PSafe + ?Sized>(x: &mut T) {
        // std::ptr::drop_in_place(x);
        let off = Self::off_unchecked(x);
        let len = mem::size_of_val(x);
        if std::thread::panicking() {
            Log::drop_on_abort(off, len, &mut Journal::<Self>::current(true).unwrap().0);
        } else {
            Log::drop_on_commit(off, len, &mut Journal::<Self>::current(true).unwrap().0);
        }
    }

    /// Creates a `DropOnCommit` log for the value `x`
    unsafe fn free_slice<'a, T: PSafe>(x: &mut [T]) {
        // eprintln!("FREEING {} of size {}", x as *mut u8 as u64, len);
        if x.len() > 0 {
            let off = Self::off_unchecked(x);
            Log::drop_on_commit(
                off,
                x.len() * mem::size_of::<T>(),
                &mut Journal::<Self>::current(true).unwrap().0,
            );
        }
    }

    /// Frees the allocation for value `x`
    unsafe fn free_nolog<'a, T: ?Sized>(x: &T) {
        Self::pre_dealloc(x as *const _ as *mut u8, mem::size_of_val(x))
    }

    /// Executes a closure guarded by a global mutex
    unsafe fn guarded<T, F: FnOnce() -> T>(f: F) -> T {
        f()
    }

    /// Creates a new `Journal` object for the current thread
    unsafe fn new_journal(_tid: ThreadId) { }

    /// Drops a `journal` from memory
    unsafe fn drop_journal(_journal: &mut Journal<Self>) { }

    /// Returns the list of all journals
    unsafe fn journals() -> &'static mut HashMap<ThreadId, (&'static Journal<Self>, i32)> {
        unimplemented!()
    }

    /// Recovers from a crash
    unsafe fn recover() {
        unimplemented!()
    }

    /// Commits all changes and clears the logs for one thread
    ///
    /// If the transaction is nested, it postpones the commit to the top most
    /// transaction.
    ///
    /// # Safety
    ///
    /// This function is for internal use and should not be called elsewhere.
    ///
    #[inline]
    unsafe fn commit() {
        if let Some(journal) = Journal::<Self>::current(false) {
            journal.1 -= 1;

            if journal.1 == 0 {
                #[cfg(feature = "verbose")]
                println!("{:?}", journal.0);

                let journal = as_mut(journal.0);
                journal.commit();
                journal.clear();
            }
        }
    }

    #[inline]
    /// Commits all changes without clearing the logs
    ///
    /// If the transaction is nested, it postpones the commit to the top most
    /// transaction.
    ///
    /// # Safety
    ///
    /// This function is for internal use and should not be called elsewhere.
    ///
    unsafe fn commit_no_clear() {
        if let Some(journal) = Journal::<Self>::current(false) {
            if journal.1 == 1 {
                #[cfg(feature = "verbose")]
                println!("{:?}", journal.0);

                as_mut(journal.0).commit();
            }
        }
    }

    #[inline]
    /// Clears the logs
    ///
    /// If the transaction is nested, it postpones the clear to the top most
    /// transaction.
    ///
    /// # Safety
    ///
    /// This function is for internal use and should not be called elsewhere.
    ///
    unsafe fn clear() {
        if let Some(journal) = Journal::<Self>::current(false) {
            journal.1 -= 1;

            if journal.1 == 0 {
                #[cfg(feature = "verbose")]
                println!("{:?}", journal.0);

                as_mut(journal.0).clear();
            }
        }
    }

    #[inline]
    /// Discards all changes and clears the logs
    ///
    /// If the transaction is nested, it propagates the panic upto the top most
    /// transaction to make all of them tainted.
    ///
    /// # Safety
    ///
    /// This function is for internal use and should not be called elsewhere.
    ///
    unsafe fn rollback() {
        if let Some(journal) = Journal::<Self>::current(false) {
            journal.1 -= 1;

            if journal.1 == 0 {
                #[cfg(feature = "verbose")]
                println!("{:?}", journal.0);

                let journal = as_mut(journal.0);
                journal.rollback();
                journal.clear();
            } else {
                // Propagate the panic to the upper transactions
                panic!("Unsuccessful nested transaction");
            }
        }
    }

    #[inline]
    /// Discards all changes without clearing the logs
    ///
    /// If the transaction is nested, it propagates the panic upto the top most
    /// transaction to make all of them tainted.
    ///
    /// # Safety
    ///
    /// This function is for internal use and should not be called elsewhere.
    ///
    unsafe fn rollback_no_clear() {
        if let Some(journal) = Journal::<Self>::current(false) {
            if journal.1 == 1 {
                #[cfg(feature = "verbose")]
                println!("{:?}", journal.0);

                as_mut(journal.0).rollback();
            } else {
                // Propagate the panic to the upper transactions
                panic!("Unsuccessful nested transaction");
            }
        }
    }

    /// Executes commands atomically
    /// 
    /// The `transaction` function takes a closure with one argument of type
    /// `&Journal<Self>`. Before running the closure, it atomically creates a
    /// [`Journal`] object, if required, and prepares an immutable reference to
    /// it. Since there is no other safe way to create a `Journal` object, it
    /// ensures that every function taking an argument of type `&Journal<P>` is
    /// enforced to be invoked from a transaction.
    /// 
    /// The captured types are bounded to be [`TxInSafe`], unless explicitly
    /// asserted otherwise using [`AssertTxInSafe`] type wrapper. This
    /// guarantees the volatile state consistency, as well as the persistent
    /// state.
    /// 
    /// The returned type should be [`TxOutSafe`]. This prevents sending out
    /// unreachable persistent objects. The only way out of a transaction for
    /// a persistent object is to be reachable by the root object.
    ///
    /// # Examples
    /// 
    /// ```
    /// use crndm::default::*;
    /// 
    /// type P = BuddyAlloc;
    /// 
    /// let root = P::open::<PCell<i32>>("foo.pool", O_CF).unwrap();
    /// 
    /// let old = root.get();
    /// let new = BuddyAlloc::transaction(|j| {
    ///     root.set(root.get() + 1, j);
    ///     root.get()
    /// }).unwrap();
    /// 
    /// assert_eq!(new, old + 1);
    /// ```
    /// 
    /// [`Journal`]: ../stm/journal/struct.Journal.html
    /// [`TxInSafe`]: ../trait.TxInSafe.html
    /// [`TxOutSafe`]: ../trait.TxOutSafe.html
    /// [`AssertTxInSafe`]: ../struct.AssertTxInSafe.html
    /// 
    #[inline]
    fn transaction<T, F: FnOnce(&Journal<Self>) -> T>(body: F) -> Result<T>
    where
        F: TxInSafe + UnwindSafe,
        T: TxOutSafe,
    {
        let mut chaperoned = false;
        let cptr = &mut chaperoned as *mut bool;
        let res = std::panic::catch_unwind(move || {
            let chaperon = Chaperon::current();
            if let Some(ptr) = chaperon {
                // FIXME: Chaperone session is corrupted. fix it.
                unsafe {
                    *cptr = true;
                    let mut chaperon = &mut *ptr;
                    chaperon.postpone(
                        &|| Self::commit_no_clear(),
                        &|| Self::rollback_no_clear(),
                        &|| Self::clear(),
                    );
                    body({
                        let j = Journal::<Self>::current(true).unwrap();
                        j.1 += 1;
                        let journal = as_mut(j.0);
                        journal.start_session(&mut chaperon);
                        journal.reset(JOURNAL_COMMITTED);
                        journal
                    })
                }
            } else {
                body({
                    let j = Journal::<Self>::current(true).unwrap();
                    j.1 += 1;
                    as_mut(j.0).reset(JOURNAL_COMMITTED);
                    j.0
                })
            }
        });
        unsafe {
            if let Ok(res) = res {
                if !chaperoned {
                    Self::commit();
                }
                Ok(res)
            } else {
                if !chaperoned {
                    Self::rollback();
                    Err("Unsuccessful transaction".to_string())
                } else {
                    // Propagates the panic to the top level in enforce rollback
                    panic!("Unsuccessful chaperoned transaction");
                }
            }
        }
    }

    fn gen() -> u32 {
        0
    }

    /// Prints memory information
    fn print_info() {}

    #[cfg(feature = "capture_footprint")]
    fn footprint() -> usize {
        0
    }
}

pub(crate) fn create_file(filename: &str, size: u64) -> Result<()> {
    let file = OpenOptions::new().write(true).create(true).open(filename);
    if file.is_err() {
        Err(format!("{}", file.err().unwrap()))
    } else {
        if let Some(e) = file.unwrap().set_len(size).err() {
            Err(format!("{}", e))
        } else {
            Ok(())
        }
    }
}

#[cfg(test)]
mod test {
    use crate::default::*;

    #[test]
    #[ignore]
    fn nested_transactions() {
        let _image = BuddyAlloc::open_no_root("nosb.pool", O_CFNE);
        if let Err(e) = BuddyAlloc::transaction(|_| {
            let _ = BuddyAlloc::transaction(|_| {
                let _ = BuddyAlloc::transaction(|_| {
                    let _ = BuddyAlloc::transaction(|_| {
                        println!("should print");
                        panic!("intentional");
                    });
                    println!("should not print");
                });
                println!("should not print");
            });
            println!("should not print");
        }) {
            println!("Error: '{}'", e);
        }
    }
}