1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
//! This module contains a generic Vector Clock implementation.
//!
//! # Examples
//!
//! ```
//! use crdts::{Dot, VClock, CmRDT};
//!
//! let mut a = VClock::new();
//! let mut b = VClock::new();
//! a.apply(Dot::new("A", 2));
//! b.apply(Dot::new("A", 1));
//! assert!(a > b);
//! ```

use core::cmp::{self, Ordering};
use core::convert::Infallible;
use core::fmt::{self, Debug, Display};
use core::mem;
use std::collections::{btree_map, BTreeMap};

use serde::{Deserialize, Serialize};

use crate::{CmRDT, CvRDT, Dot, DotRange, ResetRemove};

/// A `VClock` is a standard vector clock.
/// It contains a set of "actors" and associated counters.
/// When a particular actor witnesses a mutation, their associated
/// counter in a `VClock` is incremented. `VClock` is typically used
/// as metadata for associated application data, rather than as the
/// container for application data. `VClock` just tracks causality.
/// It can tell you if something causally descends something else,
/// or if different replicas are "concurrent" (were mutated in
/// isolation, and need to be resolved externally).
#[derive(Debug, Clone, PartialEq, Eq, Hash, Serialize, Deserialize)]
pub struct VClock<A: Ord> {
    /// dots is the mapping from actors to their associated counters
    pub dots: BTreeMap<A, u64>,
}

impl<A: Ord> Default for VClock<A> {
    fn default() -> Self {
        Self {
            dots: BTreeMap::new(),
        }
    }
}

impl<A: Ord> PartialOrd for VClock<A> {
    fn partial_cmp(&self, other: &VClock<A>) -> Option<Ordering> {
        // This algorithm is pretty naive, I think there's a way to
        // just track if the ordering changes as we iterate over the
        // active dots zipped by actor.
        // ie. it's None if the ordering changes from Less to Greator
        //     or vice-versa.

        if self == other {
            Some(Ordering::Equal)
        } else if other.dots.iter().all(|(w, c)| self.get(w) >= *c) {
            Some(Ordering::Greater)
        } else if self.dots.iter().all(|(w, c)| other.get(w) >= *c) {
            Some(Ordering::Less)
        } else {
            None
        }
    }
}

impl<A: Ord + Display> Display for VClock<A> {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "<")?;
        for (i, (actor, count)) in self.dots.iter().enumerate() {
            if i > 0 {
                write!(f, ", ")?;
            }
            write!(f, "{}:{}", actor, count)?;
        }
        write!(f, ">")
    }
}

impl<A: Ord> ResetRemove<A> for VClock<A> {
    /// Forget any actors that have smaller counts than the
    /// count in the given vclock
    fn reset_remove(&mut self, other: &Self) {
        for Dot { actor, counter } in other.iter() {
            if counter >= self.get(actor) {
                self.dots.remove(actor);
            }
        }
    }
}

impl<A: Ord + Clone + Debug> CmRDT for VClock<A> {
    type Op = Dot<A>;
    type Validation = DotRange<A>;

    fn validate_op(&self, dot: &Self::Op) -> Result<(), Self::Validation> {
        let next_counter = self.get(&dot.actor) + 1;
        if dot.counter > next_counter {
            Err(DotRange {
                actor: dot.actor.clone(),
                counter_range: next_counter..dot.counter,
            })
        } else {
            Ok(())
        }
    }

    /// Monotonically adds the given actor version to
    /// this VClock.
    ///
    /// # Examples
    /// ```
    /// use crdts::{VClock, Dot, CmRDT};
    /// let mut v = VClock::new();
    ///
    /// v.apply(Dot::new("A", 2));
    ///
    /// // now all dots applied to `v` from actor `A` where
    /// // the counter is not bigger than 2 are nops.
    /// v.apply(Dot::new("A", 0));
    /// assert_eq!(v.get(&"A"), 2);
    /// ```
    fn apply(&mut self, dot: Self::Op) {
        if self.get(&dot.actor) < dot.counter {
            self.dots.insert(dot.actor, dot.counter);
        }
    }
}

impl<A: Ord + Clone + Debug> CvRDT for VClock<A> {
    type Validation = Infallible;

    fn validate_merge(&self, _other: &Self) -> Result<(), Self::Validation> {
        Ok(())
    }

    fn merge(&mut self, other: Self) {
        for dot in other.into_iter() {
            self.apply(dot);
        }
    }
}

impl<A: Ord> VClock<A> {
    /// Returns a new `VClock` instance.
    pub fn new() -> Self {
        Default::default()
    }

    /// Returns a clone of self but with information that is older than given clock is
    /// forgotten
    pub fn clone_without(&self, base_clock: &VClock<A>) -> VClock<A>
    where
        A: Clone,
    {
        let mut cloned = self.clone();
        cloned.reset_remove(base_clock);
        cloned
    }

    /// Generate Op to increment an actor's counter.
    ///
    /// # Examples
    /// ```
    /// use crdts::{VClock, CmRDT};
    /// let mut a = VClock::new();
    ///
    /// // `a.inc()` does not mutate the vclock!
    /// let op = a.inc("A");
    /// assert_eq!(a, VClock::new());
    ///
    /// // we must apply the op to the VClock to have
    /// // its edit take effect.
    /// a.apply(op.clone());
    /// assert_eq!(a.get(&"A"), 1);
    ///
    /// // Op's can be replicated to another node and
    /// // applied to the local state there.
    /// let mut other_node = VClock::new();
    /// other_node.apply(op);
    /// assert_eq!(other_node.get(&"A"), 1);
    /// ```
    pub fn inc(&self, actor: A) -> Dot<A>
    where
        A: Clone,
    {
        self.dot(actor).inc()
    }

    /// Return the associated counter for this actor.
    /// All actors not in the vclock have an implied count of 0
    pub fn get(&self, actor: &A) -> u64 {
        self.dots.get(actor).cloned().unwrap_or(0)
    }

    /// Return the Dot for a given actor
    pub fn dot(&self, actor: A) -> Dot<A> {
        let counter = self.get(&actor);
        Dot::new(actor, counter)
    }

    /// True if two vector clocks have diverged.
    ///
    /// # Examples
    /// ```
    /// use crdts::{VClock, CmRDT};
    /// let (mut a, mut b) = (VClock::new(), VClock::new());
    /// a.apply(a.inc("A"));
    /// b.apply(b.inc("B"));
    /// assert!(a.concurrent(&b));
    /// ```
    pub fn concurrent(&self, other: &VClock<A>) -> bool {
        self.partial_cmp(other).is_none()
    }

    /// Returns `true` if this vector clock contains nothing.
    pub fn is_empty(&self) -> bool {
        self.dots.is_empty()
    }

    /// Returns the common elements (same actor and counter)
    /// for two `VClock` instances.
    pub fn intersection(left: &VClock<A>, right: &VClock<A>) -> VClock<A>
    where
        A: Clone,
    {
        let mut dots = BTreeMap::new();
        for (left_actor, left_counter) in left.dots.iter() {
            let right_counter = right.get(left_actor);
            if right_counter == *left_counter {
                dots.insert(left_actor.clone(), *left_counter);
            }
        }
        Self { dots }
    }

    /// Reduces this VClock to the greatest-lower-bound of the given
    /// VClock and itsef, as an example see the following code.
    /// ``` rust
    /// use crdts::{VClock, Dot, ResetRemove, CmRDT};
    /// let mut c = VClock::new();
    /// c.apply(Dot::new(23, 6));
    /// c.apply(Dot::new(89, 14));
    /// let c2 = c.clone();
    ///
    /// c.glb(&c2); // this is a no-op since `glb { c, c } = c`
    /// assert_eq!(c, c2);
    ///
    /// c.apply(Dot::new(43, 1));
    /// assert_eq!(c.get(&43), 1);
    /// c.glb(&c2); // should remove the 43 => 1 entry
    /// assert_eq!(c.get(&43), 0);
    /// ```
    pub fn glb(&mut self, other: &Self) {
        self.dots = mem::take(&mut self.dots)
            .into_iter()
            .filter_map(|(actor, count)| {
                // Since an actor missing from the dots map has an implied
                // counter of 0 we can save some memory, and remove the actor.
                let min_count = cmp::min(count, other.get(&actor));
                match min_count {
                    0 => None,
                    _ => Some((actor, min_count)),
                }
            })
            .collect();
    }

    /// Returns an iterator over the dots in this vclock
    pub fn iter(&self) -> impl Iterator<Item = Dot<&A>> {
        self.dots.iter().map(|(a, c)| Dot {
            actor: a,
            counter: *c,
        })
    }
}

/// Generated from calls to VClock::into_iter()
pub struct IntoIter<A: Ord> {
    btree_iter: btree_map::IntoIter<A, u64>,
}

impl<A: Ord> std::iter::Iterator for IntoIter<A> {
    type Item = Dot<A>;

    fn next(&mut self) -> Option<Dot<A>> {
        self.btree_iter
            .next()
            .map(|(actor, counter)| Dot::new(actor, counter))
    }
}

impl<A: Ord> std::iter::IntoIterator for VClock<A> {
    type Item = Dot<A>;
    type IntoIter = IntoIter<A>;

    /// Consumes the vclock and returns an iterator over dots in the clock
    fn into_iter(self) -> Self::IntoIter {
        IntoIter {
            btree_iter: self.dots.into_iter(),
        }
    }
}

impl<A: Ord + Clone + Debug> std::iter::FromIterator<Dot<A>> for VClock<A> {
    fn from_iter<I: IntoIterator<Item = Dot<A>>>(iter: I) -> Self {
        let mut clock = VClock::default();

        for dot in iter {
            clock.apply(dot);
        }

        clock
    }
}

impl<A: Ord + Clone + Debug> From<Dot<A>> for VClock<A> {
    fn from(dot: Dot<A>) -> Self {
        let mut clock = VClock::default();
        clock.apply(dot);
        clock
    }
}

#[cfg(feature = "quickcheck")]
use quickcheck::{Arbitrary, Gen};

#[cfg(feature = "quickcheck")]
impl<A: Ord + Clone + Debug + Arbitrary> Arbitrary for VClock<A> {
    fn arbitrary(g: &mut Gen) -> Self {
        let mut clock = VClock::default();

        for _ in 0..u8::arbitrary(g) % 10 {
            clock.apply(Dot::arbitrary(g));
        }

        clock
    }

    fn shrink(&self) -> Box<dyn Iterator<Item = Self>> {
        let mut shrunk_clocks = Vec::default();
        for dot in self.clone().into_iter() {
            let clock_without_dot: Self = self.clone().into_iter().filter(|d| d != &dot).collect();

            for shrunk_dot in dot.shrink() {
                let mut clock = clock_without_dot.clone();
                clock.apply(shrunk_dot);
                shrunk_clocks.push(clock);
            }

            shrunk_clocks.push(clock_without_dot);
        }

        Box::new(shrunk_clocks.into_iter())
    }
}