1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
//! External function calls.
//!
//! To a Cranelift function, all functions are "external". Directly called functions must be
//! declared in the preamble, and all function calls must have a signature.
//!
//! This module declares the data types used to represent external functions and call signatures.

use crate::ir::{ArgumentLoc, ExternalName, SigRef, Type};
use crate::isa::{CallConv, RegInfo, RegUnit};
use alloc::vec::Vec;
use core::fmt;
use core::str::FromStr;

/// Function signature.
///
/// The function signature describes the types of formal parameters and return values along with
/// other details that are needed to call a function correctly.
///
/// A signature can optionally include ISA-specific ABI information which specifies exactly how
/// arguments and return values are passed.
#[derive(Clone, Debug, PartialEq, Eq, Hash)]
pub struct Signature {
    /// The arguments passed to the function.
    pub params: Vec<AbiParam>,
    /// Values returned from the function.
    pub returns: Vec<AbiParam>,

    /// Calling convention.
    pub call_conv: CallConv,
}

impl Signature {
    /// Create a new blank signature.
    pub fn new(call_conv: CallConv) -> Self {
        Self {
            params: Vec::new(),
            returns: Vec::new(),
            call_conv,
        }
    }

    /// Clear the signature so it is identical to a fresh one returned by `new()`.
    pub fn clear(&mut self, call_conv: CallConv) {
        self.params.clear();
        self.returns.clear();
        self.call_conv = call_conv;
    }

    /// Return an object that can display `self` with correct register names.
    pub fn display<'a, R: Into<Option<&'a RegInfo>>>(&'a self, regs: R) -> DisplaySignature<'a> {
        DisplaySignature(self, regs.into())
    }

    /// Find the index of a presumed unique special-purpose parameter.
    pub fn special_param_index(&self, purpose: ArgumentPurpose) -> Option<usize> {
        self.params.iter().rposition(|arg| arg.purpose == purpose)
    }

    /// Find the index of a presumed unique special-purpose parameter.
    pub fn special_return_index(&self, purpose: ArgumentPurpose) -> Option<usize> {
        self.returns.iter().rposition(|arg| arg.purpose == purpose)
    }

    /// Does this signature have a parameter whose `ArgumentPurpose` is
    /// `purpose`?
    pub fn uses_special_param(&self, purpose: ArgumentPurpose) -> bool {
        self.special_param_index(purpose).is_some()
    }

    /// Does this signature have a return whose `ArgumentPurpose` is `purpose`?
    pub fn uses_special_return(&self, purpose: ArgumentPurpose) -> bool {
        self.special_return_index(purpose).is_some()
    }

    /// How many special parameters does this function have?
    pub fn num_special_params(&self) -> usize {
        self.params
            .iter()
            .filter(|p| p.purpose != ArgumentPurpose::Normal)
            .count()
    }

    /// How many special returns does this function have?
    pub fn num_special_returns(&self) -> usize {
        self.returns
            .iter()
            .filter(|r| r.purpose != ArgumentPurpose::Normal)
            .count()
    }

    /// Does this signature take an struct return pointer parameter?
    pub fn uses_struct_return_param(&self) -> bool {
        self.uses_special_param(ArgumentPurpose::StructReturn)
    }

    /// Does this return more than one normal value? (Pre-struct return
    /// legalization)
    pub fn is_multi_return(&self) -> bool {
        self.returns
            .iter()
            .filter(|r| r.purpose == ArgumentPurpose::Normal)
            .count()
            > 1
    }
}

/// Wrapper type capable of displaying a `Signature` with correct register names.
pub struct DisplaySignature<'a>(&'a Signature, Option<&'a RegInfo>);

fn write_list(f: &mut fmt::Formatter, args: &[AbiParam], regs: Option<&RegInfo>) -> fmt::Result {
    match args.split_first() {
        None => {}
        Some((first, rest)) => {
            write!(f, "{}", first.display(regs))?;
            for arg in rest {
                write!(f, ", {}", arg.display(regs))?;
            }
        }
    }
    Ok(())
}

impl<'a> fmt::Display for DisplaySignature<'a> {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "(")?;
        write_list(f, &self.0.params, self.1)?;
        write!(f, ")")?;
        if !self.0.returns.is_empty() {
            write!(f, " -> ")?;
            write_list(f, &self.0.returns, self.1)?;
        }
        write!(f, " {}", self.0.call_conv)
    }
}

impl fmt::Display for Signature {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        self.display(None).fmt(f)
    }
}

/// Function parameter or return value descriptor.
///
/// This describes the value type being passed to or from a function along with flags that affect
/// how the argument is passed.
#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash)]
pub struct AbiParam {
    /// Type of the argument value.
    pub value_type: Type,
    /// Special purpose of argument, or `Normal`.
    pub purpose: ArgumentPurpose,
    /// Method for extending argument to a full register.
    pub extension: ArgumentExtension,

    /// ABI-specific location of this argument, or `Unassigned` for arguments that have not yet
    /// been legalized.
    pub location: ArgumentLoc,
}

impl AbiParam {
    /// Create a parameter with default flags.
    pub fn new(vt: Type) -> Self {
        Self {
            value_type: vt,
            extension: ArgumentExtension::None,
            purpose: ArgumentPurpose::Normal,
            location: Default::default(),
        }
    }

    /// Create a special-purpose parameter that is not (yet) bound to a specific register.
    pub fn special(vt: Type, purpose: ArgumentPurpose) -> Self {
        Self {
            value_type: vt,
            extension: ArgumentExtension::None,
            purpose,
            location: Default::default(),
        }
    }

    /// Create a parameter for a special-purpose register.
    pub fn special_reg(vt: Type, purpose: ArgumentPurpose, regunit: RegUnit) -> Self {
        Self {
            value_type: vt,
            extension: ArgumentExtension::None,
            purpose,
            location: ArgumentLoc::Reg(regunit),
        }
    }

    /// Convert `self` to a parameter with the `uext` flag set.
    pub fn uext(self) -> Self {
        debug_assert!(self.value_type.is_int(), "uext on {} arg", self.value_type);
        Self {
            extension: ArgumentExtension::Uext,
            ..self
        }
    }

    /// Convert `self` to a parameter type with the `sext` flag set.
    pub fn sext(self) -> Self {
        debug_assert!(self.value_type.is_int(), "sext on {} arg", self.value_type);
        Self {
            extension: ArgumentExtension::Sext,
            ..self
        }
    }

    /// Return an object that can display `self` with correct register names.
    pub fn display<'a, R: Into<Option<&'a RegInfo>>>(&'a self, regs: R) -> DisplayAbiParam<'a> {
        DisplayAbiParam(self, regs.into())
    }
}

/// Wrapper type capable of displaying a `AbiParam` with correct register names.
pub struct DisplayAbiParam<'a>(&'a AbiParam, Option<&'a RegInfo>);

impl<'a> fmt::Display for DisplayAbiParam<'a> {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "{}", self.0.value_type)?;
        match self.0.extension {
            ArgumentExtension::None => {}
            ArgumentExtension::Uext => write!(f, " uext")?,
            ArgumentExtension::Sext => write!(f, " sext")?,
        }
        if self.0.purpose != ArgumentPurpose::Normal {
            write!(f, " {}", self.0.purpose)?;
        }

        if self.0.location.is_assigned() {
            write!(f, " [{}]", self.0.location.display(self.1))?;
        }

        Ok(())
    }
}

impl fmt::Display for AbiParam {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        self.display(None).fmt(f)
    }
}

/// Function argument extension options.
///
/// On some architectures, small integer function arguments are extended to the width of a
/// general-purpose register.
#[derive(Copy, Clone, PartialEq, Eq, Debug, Hash)]
pub enum ArgumentExtension {
    /// No extension, high bits are indeterminate.
    None,
    /// Unsigned extension: high bits in register are 0.
    Uext,
    /// Signed extension: high bits in register replicate sign bit.
    Sext,
}

/// The special purpose of a function argument.
///
/// Function arguments and return values are used to pass user program values between functions,
/// but they are also used to represent special registers with significance to the ABI such as
/// frame pointers and callee-saved registers.
///
/// The argument purpose is used to indicate any special meaning of an argument or return value.
#[derive(Copy, Clone, PartialEq, Eq, Debug, Hash)]
pub enum ArgumentPurpose {
    /// A normal user program value passed to or from a function.
    Normal,

    /// Struct return pointer.
    ///
    /// When a function needs to return more data than will fit in registers, the caller passes a
    /// pointer to a memory location where the return value can be written. In some ABIs, this
    /// struct return pointer is passed in a specific register.
    ///
    /// This argument kind can also appear as a return value for ABIs that require a function with
    /// a `StructReturn` pointer argument to also return that pointer in a register.
    StructReturn,

    /// The link register.
    ///
    /// Most RISC architectures implement calls by saving the return address in a designated
    /// register rather than pushing it on the stack. This is represented with a `Link` argument.
    ///
    /// Similarly, some return instructions expect the return address in a register represented as
    /// a `Link` return value.
    Link,

    /// The frame pointer.
    ///
    /// This indicates the frame pointer register which has a special meaning in some ABIs.
    ///
    /// The frame pointer appears as an argument and as a return value since it is a callee-saved
    /// register.
    FramePointer,

    /// A callee-saved register.
    ///
    /// Some calling conventions have registers that must be saved by the callee. These registers
    /// are represented as `CalleeSaved` arguments and return values.
    CalleeSaved,

    /// A VM context pointer.
    ///
    /// This is a pointer to a context struct containing details about the current sandbox. It is
    /// used as a base pointer for `vmctx` global values.
    VMContext,

    /// A signature identifier.
    ///
    /// This is a special-purpose argument used to identify the calling convention expected by the
    /// caller in an indirect call. The callee can verify that the expected signature ID matches.
    SignatureId,

    /// A stack limit pointer.
    ///
    /// This is a pointer to a stack limit. It is used to check the current stack pointer
    /// against. Can only appear once in a signature.
    StackLimit,
}

/// Text format names of the `ArgumentPurpose` variants.
static PURPOSE_NAMES: [&str; 8] = [
    "normal",
    "sret",
    "link",
    "fp",
    "csr",
    "vmctx",
    "sigid",
    "stack_limit",
];

impl fmt::Display for ArgumentPurpose {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        f.write_str(PURPOSE_NAMES[*self as usize])
    }
}

impl FromStr for ArgumentPurpose {
    type Err = ();
    fn from_str(s: &str) -> Result<Self, ()> {
        match s {
            "normal" => Ok(Self::Normal),
            "sret" => Ok(Self::StructReturn),
            "link" => Ok(Self::Link),
            "fp" => Ok(Self::FramePointer),
            "csr" => Ok(Self::CalleeSaved),
            "vmctx" => Ok(Self::VMContext),
            "sigid" => Ok(Self::SignatureId),
            "stack_limit" => Ok(Self::StackLimit),
            _ => Err(()),
        }
    }
}

/// An external function.
///
/// Information about a function that can be called directly with a direct `call` instruction.
#[derive(Clone, Debug)]
pub struct ExtFuncData {
    /// Name of the external function.
    pub name: ExternalName,
    /// Call signature of function.
    pub signature: SigRef,
    /// Will this function be defined nearby, such that it will always be a certain distance away,
    /// after linking? If so, references to it can avoid going through a GOT or PLT. Note that
    /// symbols meant to be preemptible cannot be considered colocated.
    pub colocated: bool,
}

impl fmt::Display for ExtFuncData {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        if self.colocated {
            write!(f, "colocated ")?;
        }
        write!(f, "{} {}", self.name, self.signature)
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use crate::ir::types::{B8, F32, I32};
    use alloc::string::ToString;

    #[test]
    fn argument_type() {
        let t = AbiParam::new(I32);
        assert_eq!(t.to_string(), "i32");
        let mut t = t.uext();
        assert_eq!(t.to_string(), "i32 uext");
        assert_eq!(t.sext().to_string(), "i32 sext");
        t.purpose = ArgumentPurpose::StructReturn;
        assert_eq!(t.to_string(), "i32 uext sret");
    }

    #[test]
    fn argument_purpose() {
        let all_purpose = [
            ArgumentPurpose::Normal,
            ArgumentPurpose::StructReturn,
            ArgumentPurpose::Link,
            ArgumentPurpose::FramePointer,
            ArgumentPurpose::CalleeSaved,
            ArgumentPurpose::VMContext,
            ArgumentPurpose::SignatureId,
            ArgumentPurpose::StackLimit,
        ];
        for (&e, &n) in all_purpose.iter().zip(PURPOSE_NAMES.iter()) {
            assert_eq!(e.to_string(), n);
            assert_eq!(Ok(e), n.parse());
        }
    }

    #[test]
    fn call_conv() {
        for &cc in &[
            CallConv::Fast,
            CallConv::Cold,
            CallConv::SystemV,
            CallConv::WindowsFastcall,
            CallConv::BaldrdashSystemV,
            CallConv::BaldrdashWindows,
        ] {
            assert_eq!(Ok(cc), cc.to_string().parse())
        }
    }

    #[test]
    fn signatures() {
        let mut sig = Signature::new(CallConv::BaldrdashSystemV);
        assert_eq!(sig.to_string(), "() baldrdash_system_v");
        sig.params.push(AbiParam::new(I32));
        assert_eq!(sig.to_string(), "(i32) baldrdash_system_v");
        sig.returns.push(AbiParam::new(F32));
        assert_eq!(sig.to_string(), "(i32) -> f32 baldrdash_system_v");
        sig.params.push(AbiParam::new(I32.by(4).unwrap()));
        assert_eq!(sig.to_string(), "(i32, i32x4) -> f32 baldrdash_system_v");
        sig.returns.push(AbiParam::new(B8));
        assert_eq!(
            sig.to_string(),
            "(i32, i32x4) -> f32, b8 baldrdash_system_v"
        );

        // Order does not matter.
        sig.params[0].location = ArgumentLoc::Stack(24);
        sig.params[1].location = ArgumentLoc::Stack(8);

        // Writing ABI-annotated signatures.
        assert_eq!(
            sig.to_string(),
            "(i32 [24], i32x4 [8]) -> f32, b8 baldrdash_system_v"
        );
    }
}