[][src]Trait cranelift_codegen::ir::InstBuilder

pub trait InstBuilder<'f>: InstBuilderBase<'f> {
    fn jump(self, EBB: Ebb, args: &[Value]) -> Inst { ... }
fn fallthrough(self, EBB: Ebb, args: &[Value]) -> Inst { ... }
fn brz(self, c: Value, EBB: Ebb, args: &[Value]) -> Inst { ... }
fn brnz(self, c: Value, EBB: Ebb, args: &[Value]) -> Inst { ... }
fn br_icmp<T1intcc: Into<IntCC>>(
        self,
        Cond: T1intcc,
        x: Value,
        y: Value,
        EBB: Ebb,
        args: &[Value]
    ) -> Inst { ... }
fn brif<T1intcc: Into<IntCC>>(
        self,
        Cond: T1intcc,
        f: Value,
        EBB: Ebb,
        args: &[Value]
    ) -> Inst { ... }
fn brff<T1floatcc: Into<FloatCC>>(
        self,
        Cond: T1floatcc,
        f: Value,
        EBB: Ebb,
        args: &[Value]
    ) -> Inst { ... }
fn br_table(self, x: Value, EBB: Ebb, JT: JumpTable) -> Inst { ... }
fn jump_table_entry<T1uimm8: Into<Uimm8>>(
        self,
        x: Value,
        addr: Value,
        Size: T1uimm8,
        JT: JumpTable
    ) -> Value { ... }
fn jump_table_base(self, iAddr: Type, JT: JumpTable) -> Value { ... }
fn indirect_jump_table_br(self, addr: Value, JT: JumpTable) -> Inst { ... }
fn debugtrap(self) -> Inst { ... }
fn trap<T1trapcode: Into<TrapCode>>(self, code: T1trapcode) -> Inst { ... }
fn trapz<T1trapcode: Into<TrapCode>>(
        self,
        c: Value,
        code: T1trapcode
    ) -> Inst { ... }
fn resumable_trap<T1trapcode: Into<TrapCode>>(
        self,
        code: T1trapcode
    ) -> Inst { ... }
fn trapnz<T1trapcode: Into<TrapCode>>(
        self,
        c: Value,
        code: T1trapcode
    ) -> Inst { ... }
fn trapif<T1intcc: Into<IntCC>, T2trapcode: Into<TrapCode>>(
        self,
        Cond: T1intcc,
        f: Value,
        code: T2trapcode
    ) -> Inst { ... }
fn trapff<T1floatcc: Into<FloatCC>, T2trapcode: Into<TrapCode>>(
        self,
        Cond: T1floatcc,
        f: Value,
        code: T2trapcode
    ) -> Inst { ... }
fn return_(self, rvals: &[Value]) -> Inst { ... }
fn fallthrough_return(self, rvals: &[Value]) -> Inst { ... }
fn call(self, FN: FuncRef, args: &[Value]) -> Inst { ... }
fn call_indirect(self, SIG: SigRef, callee: Value, args: &[Value]) -> Inst { ... }
fn func_addr(self, iAddr: Type, FN: FuncRef) -> Value { ... }
fn load<T1memflags: Into<MemFlags>, T2offset32: Into<Offset32>>(
        self,
        Mem: Type,
        MemFlags: T1memflags,
        p: Value,
        Offset: T2offset32
    ) -> Value { ... }
fn load_complex<T1memflags: Into<MemFlags>, T2offset32: Into<Offset32>>(
        self,
        Mem: Type,
        MemFlags: T1memflags,
        args: &[Value],
        Offset: T2offset32
    ) -> Value { ... }
fn store<T1memflags: Into<MemFlags>, T2offset32: Into<Offset32>>(
        self,
        MemFlags: T1memflags,
        x: Value,
        p: Value,
        Offset: T2offset32
    ) -> Inst { ... }
fn store_complex<T1memflags: Into<MemFlags>, T2offset32: Into<Offset32>>(
        self,
        MemFlags: T1memflags,
        x: Value,
        args: &[Value],
        Offset: T2offset32
    ) -> Inst { ... }
fn uload8<T1memflags: Into<MemFlags>, T2offset32: Into<Offset32>>(
        self,
        iExt8: Type,
        MemFlags: T1memflags,
        p: Value,
        Offset: T2offset32
    ) -> Value { ... }
fn uload8_complex<T1memflags: Into<MemFlags>, T2offset32: Into<Offset32>>(
        self,
        iExt8: Type,
        MemFlags: T1memflags,
        args: &[Value],
        Offset: T2offset32
    ) -> Value { ... }
fn sload8<T1memflags: Into<MemFlags>, T2offset32: Into<Offset32>>(
        self,
        iExt8: Type,
        MemFlags: T1memflags,
        p: Value,
        Offset: T2offset32
    ) -> Value { ... }
fn sload8_complex<T1memflags: Into<MemFlags>, T2offset32: Into<Offset32>>(
        self,
        iExt8: Type,
        MemFlags: T1memflags,
        args: &[Value],
        Offset: T2offset32
    ) -> Value { ... }
fn istore8<T1memflags: Into<MemFlags>, T2offset32: Into<Offset32>>(
        self,
        MemFlags: T1memflags,
        x: Value,
        p: Value,
        Offset: T2offset32
    ) -> Inst { ... }
fn istore8_complex<T1memflags: Into<MemFlags>, T2offset32: Into<Offset32>>(
        self,
        MemFlags: T1memflags,
        x: Value,
        args: &[Value],
        Offset: T2offset32
    ) -> Inst { ... }
fn uload16<T1memflags: Into<MemFlags>, T2offset32: Into<Offset32>>(
        self,
        iExt16: Type,
        MemFlags: T1memflags,
        p: Value,
        Offset: T2offset32
    ) -> Value { ... }
fn uload16_complex<T1memflags: Into<MemFlags>, T2offset32: Into<Offset32>>(
        self,
        iExt16: Type,
        MemFlags: T1memflags,
        args: &[Value],
        Offset: T2offset32
    ) -> Value { ... }
fn sload16<T1memflags: Into<MemFlags>, T2offset32: Into<Offset32>>(
        self,
        iExt16: Type,
        MemFlags: T1memflags,
        p: Value,
        Offset: T2offset32
    ) -> Value { ... }
fn sload16_complex<T1memflags: Into<MemFlags>, T2offset32: Into<Offset32>>(
        self,
        iExt16: Type,
        MemFlags: T1memflags,
        args: &[Value],
        Offset: T2offset32
    ) -> Value { ... }
fn istore16<T1memflags: Into<MemFlags>, T2offset32: Into<Offset32>>(
        self,
        MemFlags: T1memflags,
        x: Value,
        p: Value,
        Offset: T2offset32
    ) -> Inst { ... }
fn istore16_complex<T1memflags: Into<MemFlags>, T2offset32: Into<Offset32>>(
        self,
        MemFlags: T1memflags,
        x: Value,
        args: &[Value],
        Offset: T2offset32
    ) -> Inst { ... }
fn uload32<T1memflags: Into<MemFlags>, T2offset32: Into<Offset32>>(
        self,
        MemFlags: T1memflags,
        p: Value,
        Offset: T2offset32
    ) -> Value { ... }
fn uload32_complex<T1memflags: Into<MemFlags>, T2offset32: Into<Offset32>>(
        self,
        MemFlags: T1memflags,
        args: &[Value],
        Offset: T2offset32
    ) -> Value { ... }
fn sload32<T1memflags: Into<MemFlags>, T2offset32: Into<Offset32>>(
        self,
        MemFlags: T1memflags,
        p: Value,
        Offset: T2offset32
    ) -> Value { ... }
fn sload32_complex<T1memflags: Into<MemFlags>, T2offset32: Into<Offset32>>(
        self,
        MemFlags: T1memflags,
        args: &[Value],
        Offset: T2offset32
    ) -> Value { ... }
fn istore32<T1memflags: Into<MemFlags>, T2offset32: Into<Offset32>>(
        self,
        MemFlags: T1memflags,
        x: Value,
        p: Value,
        Offset: T2offset32
    ) -> Inst { ... }
fn istore32_complex<T1memflags: Into<MemFlags>, T2offset32: Into<Offset32>>(
        self,
        MemFlags: T1memflags,
        x: Value,
        args: &[Value],
        Offset: T2offset32
    ) -> Inst { ... }
fn stack_load<T1offset32: Into<Offset32>>(
        self,
        Mem: Type,
        SS: StackSlot,
        Offset: T1offset32
    ) -> Value { ... }
fn stack_store<T1offset32: Into<Offset32>>(
        self,
        x: Value,
        SS: StackSlot,
        Offset: T1offset32
    ) -> Inst { ... }
fn stack_addr<T1offset32: Into<Offset32>>(
        self,
        iAddr: Type,
        SS: StackSlot,
        Offset: T1offset32
    ) -> Value { ... }
fn global_value(self, Mem: Type, GV: GlobalValue) -> Value { ... }
fn symbol_value(self, Mem: Type, GV: GlobalValue) -> Value { ... }
fn heap_addr<T1uimm32: Into<Uimm32>>(
        self,
        iAddr: Type,
        H: Heap,
        p: Value,
        Size: T1uimm32
    ) -> Value { ... }
fn table_addr<T1offset32: Into<Offset32>>(
        self,
        iAddr: Type,
        T: Table,
        p: Value,
        Offset: T1offset32
    ) -> Value { ... }
fn iconst<T1imm64: Into<Imm64>>(self, Int: Type, N: T1imm64) -> Value { ... }
fn f32const<T1ieee32: Into<Ieee32>>(self, N: T1ieee32) -> Value { ... }
fn f64const<T1ieee64: Into<Ieee64>>(self, N: T1ieee64) -> Value { ... }
fn bconst<T1boolean: Into<bool>>(self, Bool: Type, N: T1boolean) -> Value { ... }
fn vconst<T1uimm128: Into<Constant>>(self, TxN: Type, N: T1uimm128) -> Value { ... }
fn null(self, Ref: Type) -> Value { ... }
fn nop(self) -> Inst { ... }
fn select(self, c: Value, x: Value, y: Value) -> Value { ... }
fn selectif<T1intcc: Into<IntCC>>(
        self,
        Any: Type,
        cc: T1intcc,
        flags: Value,
        x: Value,
        y: Value
    ) -> Value { ... }
fn copy(self, x: Value) -> Value { ... }
fn spill(self, x: Value) -> Value { ... }
fn fill(self, x: Value) -> Value { ... }
fn fill_nop(self, x: Value) -> Value { ... }
fn regmove<T1regunit: Into<RegUnit>, T2regunit: Into<RegUnit>>(
        self,
        x: Value,
        src: T1regunit,
        dst: T2regunit
    ) -> Inst { ... }
fn copy_special<T1regunit: Into<RegUnit>, T2regunit: Into<RegUnit>>(
        self,
        src: T1regunit,
        dst: T2regunit
    ) -> Inst { ... }
fn copy_to_ssa<T1regunit: Into<RegUnit>>(
        self,
        Any: Type,
        src: T1regunit
    ) -> Value { ... }
fn copy_nop(self, x: Value) -> Value { ... }
fn adjust_sp_down(self, delta: Value) -> Inst { ... }
fn adjust_sp_up_imm<T1imm64: Into<Imm64>>(self, Offset: T1imm64) -> Inst { ... }
fn adjust_sp_down_imm<T1imm64: Into<Imm64>>(self, Offset: T1imm64) -> Inst { ... }
fn ifcmp_sp(self, addr: Value) -> Value { ... }
fn regspill<T1regunit: Into<RegUnit>>(
        self,
        x: Value,
        src: T1regunit,
        SS: StackSlot
    ) -> Inst { ... }
fn regfill<T1regunit: Into<RegUnit>>(
        self,
        x: Value,
        SS: StackSlot,
        dst: T1regunit
    ) -> Inst { ... }
fn safepoint(self, args: &[Value]) -> Inst { ... }
fn vsplit(self, x: Value) -> (Value, Value) { ... }
fn vconcat(self, x: Value, y: Value) -> Value { ... }
fn vselect(self, c: Value, x: Value, y: Value) -> Value { ... }
fn splat(self, TxN: Type, x: Value) -> Value { ... }
fn insertlane<T1uimm8: Into<Uimm8>>(
        self,
        x: Value,
        Idx: T1uimm8,
        y: Value
    ) -> Value { ... }
fn extractlane<T1uimm8: Into<Uimm8>>(self, x: Value, Idx: T1uimm8) -> Value { ... }
fn icmp<T1intcc: Into<IntCC>>(
        self,
        Cond: T1intcc,
        x: Value,
        y: Value
    ) -> Value { ... }
fn icmp_imm<T1intcc: Into<IntCC>, T2imm64: Into<Imm64>>(
        self,
        Cond: T1intcc,
        x: Value,
        Y: T2imm64
    ) -> Value { ... }
fn ifcmp(self, x: Value, y: Value) -> Value { ... }
fn ifcmp_imm<T1imm64: Into<Imm64>>(self, x: Value, Y: T1imm64) -> Value { ... }
fn iadd(self, x: Value, y: Value) -> Value { ... }
fn isub(self, x: Value, y: Value) -> Value { ... }
fn imul(self, x: Value, y: Value) -> Value { ... }
fn umulhi(self, x: Value, y: Value) -> Value { ... }
fn smulhi(self, x: Value, y: Value) -> Value { ... }
fn udiv(self, x: Value, y: Value) -> Value { ... }
fn sdiv(self, x: Value, y: Value) -> Value { ... }
fn urem(self, x: Value, y: Value) -> Value { ... }
fn srem(self, x: Value, y: Value) -> Value { ... }
fn iadd_imm<T1imm64: Into<Imm64>>(self, x: Value, Y: T1imm64) -> Value { ... }
fn imul_imm<T1imm64: Into<Imm64>>(self, x: Value, Y: T1imm64) -> Value { ... }
fn udiv_imm<T1imm64: Into<Imm64>>(self, x: Value, Y: T1imm64) -> Value { ... }
fn sdiv_imm<T1imm64: Into<Imm64>>(self, x: Value, Y: T1imm64) -> Value { ... }
fn urem_imm<T1imm64: Into<Imm64>>(self, x: Value, Y: T1imm64) -> Value { ... }
fn srem_imm<T1imm64: Into<Imm64>>(self, x: Value, Y: T1imm64) -> Value { ... }
fn irsub_imm<T1imm64: Into<Imm64>>(self, x: Value, Y: T1imm64) -> Value { ... }
fn iadd_cin(self, x: Value, y: Value, c_in: Value) -> Value { ... }
fn iadd_cout(self, x: Value, y: Value) -> (Value, Value) { ... }
fn iadd_carry(self, x: Value, y: Value, c_in: Value) -> (Value, Value) { ... }
fn isub_bin(self, x: Value, y: Value, b_in: Value) -> Value { ... }
fn isub_bout(self, x: Value, y: Value) -> (Value, Value) { ... }
fn isub_borrow(self, x: Value, y: Value, b_in: Value) -> (Value, Value) { ... }
fn band(self, x: Value, y: Value) -> Value { ... }
fn bor(self, x: Value, y: Value) -> Value { ... }
fn bxor(self, x: Value, y: Value) -> Value { ... }
fn bnot(self, x: Value) -> Value { ... }
fn band_not(self, x: Value, y: Value) -> Value { ... }
fn bor_not(self, x: Value, y: Value) -> Value { ... }
fn bxor_not(self, x: Value, y: Value) -> Value { ... }
fn band_imm<T1imm64: Into<Imm64>>(self, x: Value, Y: T1imm64) -> Value { ... }
fn bor_imm<T1imm64: Into<Imm64>>(self, x: Value, Y: T1imm64) -> Value { ... }
fn bxor_imm<T1imm64: Into<Imm64>>(self, x: Value, Y: T1imm64) -> Value { ... }
fn rotl(self, x: Value, y: Value) -> Value { ... }
fn rotr(self, x: Value, y: Value) -> Value { ... }
fn rotl_imm<T1imm64: Into<Imm64>>(self, x: Value, Y: T1imm64) -> Value { ... }
fn rotr_imm<T1imm64: Into<Imm64>>(self, x: Value, Y: T1imm64) -> Value { ... }
fn ishl(self, x: Value, y: Value) -> Value { ... }
fn ushr(self, x: Value, y: Value) -> Value { ... }
fn sshr(self, x: Value, y: Value) -> Value { ... }
fn ishl_imm<T1imm64: Into<Imm64>>(self, x: Value, Y: T1imm64) -> Value { ... }
fn ushr_imm<T1imm64: Into<Imm64>>(self, x: Value, Y: T1imm64) -> Value { ... }
fn sshr_imm<T1imm64: Into<Imm64>>(self, x: Value, Y: T1imm64) -> Value { ... }
fn bitrev(self, x: Value) -> Value { ... }
fn clz(self, x: Value) -> Value { ... }
fn cls(self, x: Value) -> Value { ... }
fn ctz(self, x: Value) -> Value { ... }
fn popcnt(self, x: Value) -> Value { ... }
fn fcmp<T1floatcc: Into<FloatCC>>(
        self,
        Cond: T1floatcc,
        x: Value,
        y: Value
    ) -> Value { ... }
fn ffcmp(self, x: Value, y: Value) -> Value { ... }
fn fadd(self, x: Value, y: Value) -> Value { ... }
fn fsub(self, x: Value, y: Value) -> Value { ... }
fn fmul(self, x: Value, y: Value) -> Value { ... }
fn fdiv(self, x: Value, y: Value) -> Value { ... }
fn sqrt(self, x: Value) -> Value { ... }
fn fma(self, x: Value, y: Value, z: Value) -> Value { ... }
fn fneg(self, x: Value) -> Value { ... }
fn fabs(self, x: Value) -> Value { ... }
fn fcopysign(self, x: Value, y: Value) -> Value { ... }
fn fmin(self, x: Value, y: Value) -> Value { ... }
fn fmax(self, x: Value, y: Value) -> Value { ... }
fn ceil(self, x: Value) -> Value { ... }
fn floor(self, x: Value) -> Value { ... }
fn trunc(self, x: Value) -> Value { ... }
fn nearest(self, x: Value) -> Value { ... }
fn is_null(self, x: Value) -> Value { ... }
fn trueif<T1intcc: Into<IntCC>>(self, Cond: T1intcc, f: Value) -> Value { ... }
fn trueff<T1floatcc: Into<FloatCC>>(
        self,
        Cond: T1floatcc,
        f: Value
    ) -> Value { ... }
fn bitcast(self, MemTo: Type, x: Value) -> Value { ... }
fn raw_bitcast(self, AnyTo: Type, x: Value) -> Value { ... }
fn scalar_to_vector(self, TxN: Type, s: Value) -> Value { ... }
fn breduce(self, BoolTo: Type, x: Value) -> Value { ... }
fn bextend(self, BoolTo: Type, x: Value) -> Value { ... }
fn bint(self, IntTo: Type, x: Value) -> Value { ... }
fn bmask(self, IntTo: Type, x: Value) -> Value { ... }
fn ireduce(self, IntTo: Type, x: Value) -> Value { ... }
fn uextend(self, IntTo: Type, x: Value) -> Value { ... }
fn sextend(self, IntTo: Type, x: Value) -> Value { ... }
fn fpromote(self, FloatTo: Type, x: Value) -> Value { ... }
fn fdemote(self, FloatTo: Type, x: Value) -> Value { ... }
fn fcvt_to_uint(self, IntTo: Type, x: Value) -> Value { ... }
fn fcvt_to_uint_sat(self, IntTo: Type, x: Value) -> Value { ... }
fn fcvt_to_sint(self, IntTo: Type, x: Value) -> Value { ... }
fn fcvt_to_sint_sat(self, IntTo: Type, x: Value) -> Value { ... }
fn fcvt_from_uint(self, FloatTo: Type, x: Value) -> Value { ... }
fn fcvt_from_sint(self, FloatTo: Type, x: Value) -> Value { ... }
fn isplit(self, x: Value) -> (Value, Value) { ... }
fn iconcat(self, lo: Value, hi: Value) -> Value { ... }
fn x86_udivmodx(self, nlo: Value, nhi: Value, d: Value) -> (Value, Value) { ... }
fn x86_sdivmodx(self, nlo: Value, nhi: Value, d: Value) -> (Value, Value) { ... }
fn x86_umulx(self, argL: Value, argR: Value) -> (Value, Value) { ... }
fn x86_smulx(self, argL: Value, argR: Value) -> (Value, Value) { ... }
fn x86_cvtt2si(self, IntTo: Type, x: Value) -> Value { ... }
fn x86_fmin(self, x: Value, y: Value) -> Value { ... }
fn x86_fmax(self, x: Value, y: Value) -> Value { ... }
fn x86_push(self, x: Value) -> Inst { ... }
fn x86_pop(self, iWord: Type) -> Value { ... }
fn x86_bsr(self, x: Value) -> (Value, Value) { ... }
fn x86_bsf(self, x: Value) -> (Value, Value) { ... }
fn x86_pshufd<T1uimm8: Into<Uimm8>>(self, a: Value, i: T1uimm8) -> Value { ... }
fn x86_pshufb(self, a: Value, b: Value) -> Value { ... }
fn Unary(
        self,
        opcode: Opcode,
        ctrl_typevar: Type,
        arg0: Value
    ) -> (Inst, &'f mut DataFlowGraph) { ... }
fn UnaryImm(
        self,
        opcode: Opcode,
        ctrl_typevar: Type,
        imm: Imm64
    ) -> (Inst, &'f mut DataFlowGraph) { ... }
fn UnaryImm128(
        self,
        opcode: Opcode,
        ctrl_typevar: Type,
        imm: Constant
    ) -> (Inst, &'f mut DataFlowGraph) { ... }
fn UnaryIeee32(
        self,
        opcode: Opcode,
        ctrl_typevar: Type,
        imm: Ieee32
    ) -> (Inst, &'f mut DataFlowGraph) { ... }
fn UnaryIeee64(
        self,
        opcode: Opcode,
        ctrl_typevar: Type,
        imm: Ieee64
    ) -> (Inst, &'f mut DataFlowGraph) { ... }
fn UnaryBool(
        self,
        opcode: Opcode,
        ctrl_typevar: Type,
        imm: bool
    ) -> (Inst, &'f mut DataFlowGraph) { ... }
fn UnaryGlobalValue(
        self,
        opcode: Opcode,
        ctrl_typevar: Type,
        global_value: GlobalValue
    ) -> (Inst, &'f mut DataFlowGraph) { ... }
fn Binary(
        self,
        opcode: Opcode,
        ctrl_typevar: Type,
        arg0: Value,
        arg1: Value
    ) -> (Inst, &'f mut DataFlowGraph) { ... }
fn BinaryImm(
        self,
        opcode: Opcode,
        ctrl_typevar: Type,
        imm: Imm64,
        arg0: Value
    ) -> (Inst, &'f mut DataFlowGraph) { ... }
fn Ternary(
        self,
        opcode: Opcode,
        ctrl_typevar: Type,
        arg0: Value,
        arg1: Value,
        arg2: Value
    ) -> (Inst, &'f mut DataFlowGraph) { ... }
fn MultiAry(
        self,
        opcode: Opcode,
        ctrl_typevar: Type,
        args: ValueList
    ) -> (Inst, &'f mut DataFlowGraph) { ... }
fn NullAry(
        self,
        opcode: Opcode,
        ctrl_typevar: Type
    ) -> (Inst, &'f mut DataFlowGraph) { ... }
fn InsertLane(
        self,
        opcode: Opcode,
        ctrl_typevar: Type,
        lane: Uimm8,
        arg0: Value,
        arg1: Value
    ) -> (Inst, &'f mut DataFlowGraph) { ... }
fn ExtractLane(
        self,
        opcode: Opcode,
        ctrl_typevar: Type,
        lane: Uimm8,
        arg0: Value
    ) -> (Inst, &'f mut DataFlowGraph) { ... }
fn IntCompare(
        self,
        opcode: Opcode,
        ctrl_typevar: Type,
        cond: IntCC,
        arg0: Value,
        arg1: Value
    ) -> (Inst, &'f mut DataFlowGraph) { ... }
fn IntCompareImm(
        self,
        opcode: Opcode,
        ctrl_typevar: Type,
        cond: IntCC,
        imm: Imm64,
        arg0: Value
    ) -> (Inst, &'f mut DataFlowGraph) { ... }
fn IntCond(
        self,
        opcode: Opcode,
        ctrl_typevar: Type,
        cond: IntCC,
        arg0: Value
    ) -> (Inst, &'f mut DataFlowGraph) { ... }
fn FloatCompare(
        self,
        opcode: Opcode,
        ctrl_typevar: Type,
        cond: FloatCC,
        arg0: Value,
        arg1: Value
    ) -> (Inst, &'f mut DataFlowGraph) { ... }
fn FloatCond(
        self,
        opcode: Opcode,
        ctrl_typevar: Type,
        cond: FloatCC,
        arg0: Value
    ) -> (Inst, &'f mut DataFlowGraph) { ... }
fn IntSelect(
        self,
        opcode: Opcode,
        ctrl_typevar: Type,
        cond: IntCC,
        arg0: Value,
        arg1: Value,
        arg2: Value
    ) -> (Inst, &'f mut DataFlowGraph) { ... }
fn Jump(
        self,
        opcode: Opcode,
        ctrl_typevar: Type,
        destination: Ebb,
        args: ValueList
    ) -> (Inst, &'f mut DataFlowGraph) { ... }
fn Branch(
        self,
        opcode: Opcode,
        ctrl_typevar: Type,
        destination: Ebb,
        args: ValueList
    ) -> (Inst, &'f mut DataFlowGraph) { ... }
fn BranchInt(
        self,
        opcode: Opcode,
        ctrl_typevar: Type,
        cond: IntCC,
        destination: Ebb,
        args: ValueList
    ) -> (Inst, &'f mut DataFlowGraph) { ... }
fn BranchFloat(
        self,
        opcode: Opcode,
        ctrl_typevar: Type,
        cond: FloatCC,
        destination: Ebb,
        args: ValueList
    ) -> (Inst, &'f mut DataFlowGraph) { ... }
fn BranchIcmp(
        self,
        opcode: Opcode,
        ctrl_typevar: Type,
        cond: IntCC,
        destination: Ebb,
        args: ValueList
    ) -> (Inst, &'f mut DataFlowGraph) { ... }
fn BranchTable(
        self,
        opcode: Opcode,
        ctrl_typevar: Type,
        destination: Ebb,
        table: JumpTable,
        arg0: Value
    ) -> (Inst, &'f mut DataFlowGraph) { ... }
fn BranchTableEntry(
        self,
        opcode: Opcode,
        ctrl_typevar: Type,
        imm: Uimm8,
        table: JumpTable,
        arg0: Value,
        arg1: Value
    ) -> (Inst, &'f mut DataFlowGraph) { ... }
fn BranchTableBase(
        self,
        opcode: Opcode,
        ctrl_typevar: Type,
        table: JumpTable
    ) -> (Inst, &'f mut DataFlowGraph) { ... }
fn IndirectJump(
        self,
        opcode: Opcode,
        ctrl_typevar: Type,
        table: JumpTable,
        arg0: Value
    ) -> (Inst, &'f mut DataFlowGraph) { ... }
fn Call(
        self,
        opcode: Opcode,
        ctrl_typevar: Type,
        func_ref: FuncRef,
        args: ValueList
    ) -> (Inst, &'f mut DataFlowGraph) { ... }
fn CallIndirect(
        self,
        opcode: Opcode,
        ctrl_typevar: Type,
        sig_ref: SigRef,
        args: ValueList
    ) -> (Inst, &'f mut DataFlowGraph) { ... }
fn FuncAddr(
        self,
        opcode: Opcode,
        ctrl_typevar: Type,
        func_ref: FuncRef
    ) -> (Inst, &'f mut DataFlowGraph) { ... }
fn Load(
        self,
        opcode: Opcode,
        ctrl_typevar: Type,
        flags: MemFlags,
        offset: Offset32,
        arg0: Value
    ) -> (Inst, &'f mut DataFlowGraph) { ... }
fn LoadComplex(
        self,
        opcode: Opcode,
        ctrl_typevar: Type,
        flags: MemFlags,
        offset: Offset32,
        args: ValueList
    ) -> (Inst, &'f mut DataFlowGraph) { ... }
fn Store(
        self,
        opcode: Opcode,
        ctrl_typevar: Type,
        flags: MemFlags,
        offset: Offset32,
        arg0: Value,
        arg1: Value
    ) -> (Inst, &'f mut DataFlowGraph) { ... }
fn StoreComplex(
        self,
        opcode: Opcode,
        ctrl_typevar: Type,
        flags: MemFlags,
        offset: Offset32,
        args: ValueList
    ) -> (Inst, &'f mut DataFlowGraph) { ... }
fn StackLoad(
        self,
        opcode: Opcode,
        ctrl_typevar: Type,
        stack_slot: StackSlot,
        offset: Offset32
    ) -> (Inst, &'f mut DataFlowGraph) { ... }
fn StackStore(
        self,
        opcode: Opcode,
        ctrl_typevar: Type,
        stack_slot: StackSlot,
        offset: Offset32,
        arg0: Value
    ) -> (Inst, &'f mut DataFlowGraph) { ... }
fn HeapAddr(
        self,
        opcode: Opcode,
        ctrl_typevar: Type,
        heap: Heap,
        imm: Uimm32,
        arg0: Value
    ) -> (Inst, &'f mut DataFlowGraph) { ... }
fn TableAddr(
        self,
        opcode: Opcode,
        ctrl_typevar: Type,
        table: Table,
        offset: Offset32,
        arg0: Value
    ) -> (Inst, &'f mut DataFlowGraph) { ... }
fn RegMove(
        self,
        opcode: Opcode,
        ctrl_typevar: Type,
        src: RegUnit,
        dst: RegUnit,
        arg0: Value
    ) -> (Inst, &'f mut DataFlowGraph) { ... }
fn CopySpecial(
        self,
        opcode: Opcode,
        ctrl_typevar: Type,
        src: RegUnit,
        dst: RegUnit
    ) -> (Inst, &'f mut DataFlowGraph) { ... }
fn CopyToSsa(
        self,
        opcode: Opcode,
        ctrl_typevar: Type,
        src: RegUnit
    ) -> (Inst, &'f mut DataFlowGraph) { ... }
fn RegSpill(
        self,
        opcode: Opcode,
        ctrl_typevar: Type,
        src: RegUnit,
        dst: StackSlot,
        arg0: Value
    ) -> (Inst, &'f mut DataFlowGraph) { ... }
fn RegFill(
        self,
        opcode: Opcode,
        ctrl_typevar: Type,
        src: StackSlot,
        dst: RegUnit,
        arg0: Value
    ) -> (Inst, &'f mut DataFlowGraph) { ... }
fn Trap(
        self,
        opcode: Opcode,
        ctrl_typevar: Type,
        code: TrapCode
    ) -> (Inst, &'f mut DataFlowGraph) { ... }
fn CondTrap(
        self,
        opcode: Opcode,
        ctrl_typevar: Type,
        code: TrapCode,
        arg0: Value
    ) -> (Inst, &'f mut DataFlowGraph) { ... }
fn IntCondTrap(
        self,
        opcode: Opcode,
        ctrl_typevar: Type,
        cond: IntCC,
        code: TrapCode,
        arg0: Value
    ) -> (Inst, &'f mut DataFlowGraph) { ... }
fn FloatCondTrap(
        self,
        opcode: Opcode,
        ctrl_typevar: Type,
        cond: FloatCC,
        code: TrapCode,
        arg0: Value
    ) -> (Inst, &'f mut DataFlowGraph) { ... } }

Convenience methods for building instructions.

The InstBuilder trait has one method per instruction opcode for conveniently constructing the instruction with minimum arguments. Polymorphic instructions infer their result types from the input arguments when possible. In some cases, an explicit ctrl_typevar argument is required.

The opcode methods return the new instruction's result values, or the Inst itself for instructions that don't have any results.

There is also a method per instruction format. These methods all return an Inst.

Provided methods

fn jump(self, EBB: Ebb, args: &[Value]) -> Inst

Jump.

Unconditionally jump to an extended basic block, passing the specified EBB arguments. The number and types of arguments must match the destination EBB.

fn fallthrough(self, EBB: Ebb, args: &[Value]) -> Inst

Fall through to the next EBB.

This is the same as jump, except the destination EBB must be the next one in the layout.

Jumps are turned into fall-through instructions by the branch relaxation pass. There is no reason to use this instruction outside that pass.

fn brz(self, c: Value, EBB: Ebb, args: &[Value]) -> Inst

Branch when zero.

If c is a b1 value, take the branch when c is false. If c is an integer value, take the branch when c = 0.

fn brnz(self, c: Value, EBB: Ebb, args: &[Value]) -> Inst

Branch when non-zero.

If c is a b1 value, take the branch when c is true. If c is an integer value, take the branch when c != 0.

fn br_icmp<T1intcc: Into<IntCC>>(
    self,
    Cond: T1intcc,
    x: Value,
    y: Value,
    EBB: Ebb,
    args: &[Value]
) -> Inst

Compare scalar integers and branch.

Compare x and y in the same way as the icmp instruction and take the branch if the condition is true:

    br_icmp ugt v1, v2, ebb4(v5, v6)

is semantically equivalent to:

    v10 = icmp ugt, v1, v2
    brnz v10, ebb4(v5, v6)

Some RISC architectures like MIPS and RISC-V provide instructions that implement all or some of the condition codes. The instruction can also be used to represent macro-op fusion on architectures like Intel's.

fn brif<T1intcc: Into<IntCC>>(
    self,
    Cond: T1intcc,
    f: Value,
    EBB: Ebb,
    args: &[Value]
) -> Inst

Branch when condition is true in integer CPU flags.

fn brff<T1floatcc: Into<FloatCC>>(
    self,
    Cond: T1floatcc,
    f: Value,
    EBB: Ebb,
    args: &[Value]
) -> Inst

Branch when condition is true in floating point CPU flags.

fn br_table(self, x: Value, EBB: Ebb, JT: JumpTable) -> Inst

Indirect branch via jump table.

Use x as an unsigned index into the jump table JT. If a jump table entry is found, branch to the corresponding EBB. If no entry was found or the index is out-of-bounds, branch to the given default EBB.

Note that this branch instruction can't pass arguments to the targeted blocks. Split critical edges as needed to work around this.

Do not confuse this with "tables" in WebAssembly. br_table is for jump tables with destinations within the current function only -- think of a match in Rust or a switch in C. If you want to call a function in a dynamic library, that will typically use call_indirect.

fn jump_table_entry<T1uimm8: Into<Uimm8>>(
    self,
    x: Value,
    addr: Value,
    Size: T1uimm8,
    JT: JumpTable
) -> Value

Get an entry from a jump table.

Load a serialized entry from a jump table JT at a given index addr with a specific Size. The retrieved entry may need to be decoded after loading, depending upon the jump table type used.

Currently, the only type supported is entries which are relative to the base of the jump table.

fn jump_table_base(self, iAddr: Type, JT: JumpTable) -> Value

Get the absolute base address of a jump table.

This is used for jump tables wherein the entries are stored relative to the base of jump table. In order to use these, generated code should first load an entry using jump_table_entry, then use this instruction to add the relative base back to it.

fn indirect_jump_table_br(self, addr: Value, JT: JumpTable) -> Inst

Branch indirectly via a jump table entry.

Unconditionally jump via a jump table entry that was previously loaded with the jump_table_entry instruction.

fn debugtrap(self) -> Inst

Encodes an assembly debug trap.

fn trap<T1trapcode: Into<TrapCode>>(self, code: T1trapcode) -> Inst

Terminate execution unconditionally.

fn trapz<T1trapcode: Into<TrapCode>>(self, c: Value, code: T1trapcode) -> Inst

Trap when zero.

if c is non-zero, execution continues at the following instruction.

fn resumable_trap<T1trapcode: Into<TrapCode>>(self, code: T1trapcode) -> Inst

A resumable trap.

This instruction allows non-conditional traps to be used as non-terminal instructions.

fn trapnz<T1trapcode: Into<TrapCode>>(self, c: Value, code: T1trapcode) -> Inst

Trap when non-zero.

if c is zero, execution continues at the following instruction.

fn trapif<T1intcc: Into<IntCC>, T2trapcode: Into<TrapCode>>(
    self,
    Cond: T1intcc,
    f: Value,
    code: T2trapcode
) -> Inst

Trap when condition is true in integer CPU flags.

fn trapff<T1floatcc: Into<FloatCC>, T2trapcode: Into<TrapCode>>(
    self,
    Cond: T1floatcc,
    f: Value,
    code: T2trapcode
) -> Inst

Trap when condition is true in floating point CPU flags.

fn return_(self, rvals: &[Value]) -> Inst

Return from the function.

Unconditionally transfer control to the calling function, passing the provided return values. The list of return values must match the function signature's return types.

fn fallthrough_return(self, rvals: &[Value]) -> Inst

Return from the function by fallthrough.

This is a specialized instruction for use where one wants to append a custom epilogue, which will then perform the real return. This instruction has no encoding.

fn call(self, FN: FuncRef, args: &[Value]) -> Inst

Direct function call.

Call a function which has been declared in the preamble. The argument types must match the function's signature.

fn call_indirect(self, SIG: SigRef, callee: Value, args: &[Value]) -> Inst

Indirect function call.

Call the function pointed to by callee with the given arguments. The called function must match the specified signature.

Note that this is different from WebAssembly's call_indirect; the callee is a native address, rather than a table index. For WebAssembly, table_addr and load are used to obtain a native address from a table.

fn func_addr(self, iAddr: Type, FN: FuncRef) -> Value

Get the address of a function.

Compute the absolute address of a function declared in the preamble. The returned address can be used as a callee argument to call_indirect. This is also a method for calling functions that are too far away to be addressable by a direct call instruction.

fn load<T1memflags: Into<MemFlags>, T2offset32: Into<Offset32>>(
    self,
    Mem: Type,
    MemFlags: T1memflags,
    p: Value,
    Offset: T2offset32
) -> Value

Load from memory at p + Offset.

This is a polymorphic instruction that can load any value type which has a memory representation.

fn load_complex<T1memflags: Into<MemFlags>, T2offset32: Into<Offset32>>(
    self,
    Mem: Type,
    MemFlags: T1memflags,
    args: &[Value],
    Offset: T2offset32
) -> Value

Load from memory at sum(args) + Offset.

This is a polymorphic instruction that can load any value type which has a memory representation.

fn store<T1memflags: Into<MemFlags>, T2offset32: Into<Offset32>>(
    self,
    MemFlags: T1memflags,
    x: Value,
    p: Value,
    Offset: T2offset32
) -> Inst

Store x to memory at p + Offset.

This is a polymorphic instruction that can store any value type with a memory representation.

fn store_complex<T1memflags: Into<MemFlags>, T2offset32: Into<Offset32>>(
    self,
    MemFlags: T1memflags,
    x: Value,
    args: &[Value],
    Offset: T2offset32
) -> Inst

Store x to memory at sum(args) + Offset.

This is a polymorphic instruction that can store any value type with a memory representation.

fn uload8<T1memflags: Into<MemFlags>, T2offset32: Into<Offset32>>(
    self,
    iExt8: Type,
    MemFlags: T1memflags,
    p: Value,
    Offset: T2offset32
) -> Value

Load 8 bits from memory at p + Offset and zero-extend.

This is equivalent to load.i8 followed by uextend.

fn uload8_complex<T1memflags: Into<MemFlags>, T2offset32: Into<Offset32>>(
    self,
    iExt8: Type,
    MemFlags: T1memflags,
    args: &[Value],
    Offset: T2offset32
) -> Value

Load 8 bits from memory at sum(args) + Offset and zero-extend.

This is equivalent to load.i8 followed by uextend.

fn sload8<T1memflags: Into<MemFlags>, T2offset32: Into<Offset32>>(
    self,
    iExt8: Type,
    MemFlags: T1memflags,
    p: Value,
    Offset: T2offset32
) -> Value

Load 8 bits from memory at p + Offset and sign-extend.

This is equivalent to load.i8 followed by sextend.

fn sload8_complex<T1memflags: Into<MemFlags>, T2offset32: Into<Offset32>>(
    self,
    iExt8: Type,
    MemFlags: T1memflags,
    args: &[Value],
    Offset: T2offset32
) -> Value

Load 8 bits from memory at sum(args) + Offset and sign-extend.

This is equivalent to load.i8 followed by sextend.

fn istore8<T1memflags: Into<MemFlags>, T2offset32: Into<Offset32>>(
    self,
    MemFlags: T1memflags,
    x: Value,
    p: Value,
    Offset: T2offset32
) -> Inst

Store the low 8 bits of x to memory at p + Offset.

This is equivalent to ireduce.i8 followed by store.i8.

fn istore8_complex<T1memflags: Into<MemFlags>, T2offset32: Into<Offset32>>(
    self,
    MemFlags: T1memflags,
    x: Value,
    args: &[Value],
    Offset: T2offset32
) -> Inst

Store the low 8 bits of x to memory at sum(args) + Offset.

This is equivalent to ireduce.i8 followed by store.i8.

fn uload16<T1memflags: Into<MemFlags>, T2offset32: Into<Offset32>>(
    self,
    iExt16: Type,
    MemFlags: T1memflags,
    p: Value,
    Offset: T2offset32
) -> Value

Load 16 bits from memory at p + Offset and zero-extend.

This is equivalent to load.i16 followed by uextend.

fn uload16_complex<T1memflags: Into<MemFlags>, T2offset32: Into<Offset32>>(
    self,
    iExt16: Type,
    MemFlags: T1memflags,
    args: &[Value],
    Offset: T2offset32
) -> Value

Load 16 bits from memory at sum(args) + Offset and zero-extend.

This is equivalent to load.i16 followed by uextend.

fn sload16<T1memflags: Into<MemFlags>, T2offset32: Into<Offset32>>(
    self,
    iExt16: Type,
    MemFlags: T1memflags,
    p: Value,
    Offset: T2offset32
) -> Value

Load 16 bits from memory at p + Offset and sign-extend.

This is equivalent to load.i16 followed by sextend.

fn sload16_complex<T1memflags: Into<MemFlags>, T2offset32: Into<Offset32>>(
    self,
    iExt16: Type,
    MemFlags: T1memflags,
    args: &[Value],
    Offset: T2offset32
) -> Value

Load 16 bits from memory at sum(args) + Offset and sign-extend.

This is equivalent to load.i16 followed by sextend.

fn istore16<T1memflags: Into<MemFlags>, T2offset32: Into<Offset32>>(
    self,
    MemFlags: T1memflags,
    x: Value,
    p: Value,
    Offset: T2offset32
) -> Inst

Store the low 16 bits of x to memory at p + Offset.

This is equivalent to ireduce.i16 followed by store.i16.

fn istore16_complex<T1memflags: Into<MemFlags>, T2offset32: Into<Offset32>>(
    self,
    MemFlags: T1memflags,
    x: Value,
    args: &[Value],
    Offset: T2offset32
) -> Inst

Store the low 16 bits of x to memory at sum(args) + Offset.

This is equivalent to ireduce.i16 followed by store.i16.

fn uload32<T1memflags: Into<MemFlags>, T2offset32: Into<Offset32>>(
    self,
    MemFlags: T1memflags,
    p: Value,
    Offset: T2offset32
) -> Value

Load 32 bits from memory at p + Offset and zero-extend.

This is equivalent to load.i32 followed by uextend.

fn uload32_complex<T1memflags: Into<MemFlags>, T2offset32: Into<Offset32>>(
    self,
    MemFlags: T1memflags,
    args: &[Value],
    Offset: T2offset32
) -> Value

Load 32 bits from memory at sum(args) + Offset and zero-extend.

This is equivalent to load.i32 followed by uextend.

fn sload32<T1memflags: Into<MemFlags>, T2offset32: Into<Offset32>>(
    self,
    MemFlags: T1memflags,
    p: Value,
    Offset: T2offset32
) -> Value

Load 32 bits from memory at p + Offset and sign-extend.

This is equivalent to load.i32 followed by sextend.

fn sload32_complex<T1memflags: Into<MemFlags>, T2offset32: Into<Offset32>>(
    self,
    MemFlags: T1memflags,
    args: &[Value],
    Offset: T2offset32
) -> Value

Load 32 bits from memory at sum(args) + Offset and sign-extend.

This is equivalent to load.i32 followed by sextend.

fn istore32<T1memflags: Into<MemFlags>, T2offset32: Into<Offset32>>(
    self,
    MemFlags: T1memflags,
    x: Value,
    p: Value,
    Offset: T2offset32
) -> Inst

Store the low 32 bits of x to memory at p + Offset.

This is equivalent to ireduce.i32 followed by store.i32.

fn istore32_complex<T1memflags: Into<MemFlags>, T2offset32: Into<Offset32>>(
    self,
    MemFlags: T1memflags,
    x: Value,
    args: &[Value],
    Offset: T2offset32
) -> Inst

Store the low 32 bits of x to memory at sum(args) + Offset.

This is equivalent to ireduce.i32 followed by store.i32.

fn stack_load<T1offset32: Into<Offset32>>(
    self,
    Mem: Type,
    SS: StackSlot,
    Offset: T1offset32
) -> Value

Load a value from a stack slot at the constant offset.

This is a polymorphic instruction that can load any value type which has a memory representation.

The offset is an immediate constant, not an SSA value. The memory access cannot go out of bounds, i.e. sizeof(a) + Offset <= sizeof(SS).

fn stack_store<T1offset32: Into<Offset32>>(
    self,
    x: Value,
    SS: StackSlot,
    Offset: T1offset32
) -> Inst

Store a value to a stack slot at a constant offset.

This is a polymorphic instruction that can store any value type with a memory representation.

The offset is an immediate constant, not an SSA value. The memory access cannot go out of bounds, i.e. sizeof(a) + Offset <= sizeof(SS).

fn stack_addr<T1offset32: Into<Offset32>>(
    self,
    iAddr: Type,
    SS: StackSlot,
    Offset: T1offset32
) -> Value

Get the address of a stack slot.

Compute the absolute address of a byte in a stack slot. The offset must refer to a byte inside the stack slot: 0 <= Offset < sizeof(SS).

fn global_value(self, Mem: Type, GV: GlobalValue) -> Value

Compute the value of global GV.

fn symbol_value(self, Mem: Type, GV: GlobalValue) -> Value

Compute the value of global GV, which is a symbolic value.

fn heap_addr<T1uimm32: Into<Uimm32>>(
    self,
    iAddr: Type,
    H: Heap,
    p: Value,
    Size: T1uimm32
) -> Value

Bounds check and compute absolute address of heap memory.

Verify that the offset range p .. p + Size - 1 is in bounds for the heap H, and generate an absolute address that is safe to dereference.

  1. If p + Size is not greater than the heap bound, return an absolute address corresponding to a byte offset of p from the heap's base address.
  2. If p + Size is greater than the heap bound, generate a trap.

fn table_addr<T1offset32: Into<Offset32>>(
    self,
    iAddr: Type,
    T: Table,
    p: Value,
    Offset: T1offset32
) -> Value

Bounds check and compute absolute address of a table entry.

Verify that the offset p is in bounds for the table T, and generate an absolute address that is safe to dereference.

Offset must be less than the size of a table element.

  1. If p is not greater than the table bound, return an absolute address corresponding to a byte offset of p from the table's base address.
  2. If p is greater than the table bound, generate a trap.

fn iconst<T1imm64: Into<Imm64>>(self, Int: Type, N: T1imm64) -> Value

Integer constant.

Create a scalar integer SSA value with an immediate constant value, or an integer vector where all the lanes have the same value.

fn f32const<T1ieee32: Into<Ieee32>>(self, N: T1ieee32) -> Value

Floating point constant.

Create a f32 SSA value with an immediate constant value.

fn f64const<T1ieee64: Into<Ieee64>>(self, N: T1ieee64) -> Value

Floating point constant.

Create a f64 SSA value with an immediate constant value.

fn bconst<T1boolean: Into<bool>>(self, Bool: Type, N: T1boolean) -> Value

Boolean constant.

Create a scalar boolean SSA value with an immediate constant value, or a boolean vector where all the lanes have the same value.

fn vconst<T1uimm128: Into<Constant>>(self, TxN: Type, N: T1uimm128) -> Value

SIMD vector constant.

Construct a vector with the given immediate bytes.

fn null(self, Ref: Type) -> Value

Null constant value for reference types.

Create a scalar reference SSA value with a constant null value.

fn nop(self) -> Inst

Just a dummy instruction

Note: this doesn't compile to a machine code nop

fn select(self, c: Value, x: Value, y: Value) -> Value

Conditional select.

This instruction selects whole values. Use vselect for lane-wise selection.

fn selectif<T1intcc: Into<IntCC>>(
    self,
    Any: Type,
    cc: T1intcc,
    flags: Value,
    x: Value,
    y: Value
) -> Value

Conditional select, dependent on integer condition codes.

fn copy(self, x: Value) -> Value

Register-register copy.

This instruction copies its input, preserving the value type.

A pure SSA-form program does not need to copy values, but this instruction is useful for representing intermediate stages during instruction transformations, and the register allocator needs a way of representing register copies.

fn spill(self, x: Value) -> Value

Spill a register value to a stack slot.

This instruction behaves exactly like copy, but the result value is assigned to a spill slot.

fn fill(self, x: Value) -> Value

Load a register value from a stack slot.

This instruction behaves exactly like copy, but creates a new SSA value for the spilled input value.

fn fill_nop(self, x: Value) -> Value

This is identical to fill, except it has no encoding, since it is a no-op.

This instruction is created only during late-stage redundant-reload removal, after all registers and stack slots have been assigned. It is used to replace fills that have been identified as redundant.

fn regmove<T1regunit: Into<RegUnit>, T2regunit: Into<RegUnit>>(
    self,
    x: Value,
    src: T1regunit,
    dst: T2regunit
) -> Inst

Temporarily divert x from src to dst.

This instruction moves the location of a value from one register to another without creating a new SSA value. It is used by the register allocator to temporarily rearrange register assignments in order to satisfy instruction constraints.

The register diversions created by this instruction must be undone before the value leaves the EBB. At the entry to a new EBB, all live values must be in their originally assigned registers.

fn copy_special<T1regunit: Into<RegUnit>, T2regunit: Into<RegUnit>>(
    self,
    src: T1regunit,
    dst: T2regunit
) -> Inst

Copies the contents of ''src'' register to ''dst'' register.

This instructions copies the contents of one register to another register without involving any SSA values. This is used for copying special registers, e.g. copying the stack register to the frame register in a function prologue.

fn copy_to_ssa<T1regunit: Into<RegUnit>>(
    self,
    Any: Type,
    src: T1regunit
) -> Value

Copies the contents of ''src'' register to ''a'' SSA name.

This instruction copies the contents of one register, regardless of its SSA name, to another register, creating a new SSA name. In that sense it is a one-sided version of ''copy_special''. This instruction is internal and should not be created by Cranelift users.

fn copy_nop(self, x: Value) -> Value

Stack-slot-to-the-same-stack-slot copy, which is guaranteed to turn into a no-op. This instruction is for use only within Cranelift itself.

This instruction copies its input, preserving the value type.

fn adjust_sp_down(self, delta: Value) -> Inst

Subtracts delta offset value from the stack pointer register.

This instruction is used to adjust the stack pointer by a dynamic amount.

fn adjust_sp_up_imm<T1imm64: Into<Imm64>>(self, Offset: T1imm64) -> Inst

Adds Offset immediate offset value to the stack pointer register.

This instruction is used to adjust the stack pointer, primarily in function prologues and epilogues. Offset is constrained to the size of a signed 32-bit integer.

fn adjust_sp_down_imm<T1imm64: Into<Imm64>>(self, Offset: T1imm64) -> Inst

Subtracts Offset immediate offset value from the stack pointer register.

This instruction is used to adjust the stack pointer, primarily in function prologues and epilogues. Offset is constrained to the size of a signed 32-bit integer.

fn ifcmp_sp(self, addr: Value) -> Value

Compare addr with the stack pointer and set the CPU flags.

This is like ifcmp where addr is the LHS operand and the stack pointer is the RHS.

fn regspill<T1regunit: Into<RegUnit>>(
    self,
    x: Value,
    src: T1regunit,
    SS: StackSlot
) -> Inst

Temporarily divert x from src to SS.

This instruction moves the location of a value from a register to a stack slot without creating a new SSA value. It is used by the register allocator to temporarily rearrange register assignments in order to satisfy instruction constraints.

See also regmove.

fn regfill<T1regunit: Into<RegUnit>>(
    self,
    x: Value,
    SS: StackSlot,
    dst: T1regunit
) -> Inst

Temporarily divert x from SS to dst.

This instruction moves the location of a value from a stack slot to a register without creating a new SSA value. It is used by the register allocator to temporarily rearrange register assignments in order to satisfy instruction constraints.

See also regmove.

fn safepoint(self, args: &[Value]) -> Inst

This instruction will provide live reference values at a point in the function. It can only be used by the compiler.

fn vsplit(self, x: Value) -> (Value, Value)

Split a vector into two halves.

Split the vector x into two separate values, each containing half of the lanes from x. The result may be two scalars if x only had two lanes.

fn vconcat(self, x: Value, y: Value) -> Value

Vector concatenation.

Return a vector formed by concatenating x and y. The resulting vector type has twice as many lanes as each of the inputs. The lanes of x appear as the low-numbered lanes, and the lanes of y become the high-numbered lanes of a.

It is possible to form a vector by concatenating two scalars.

fn vselect(self, c: Value, x: Value, y: Value) -> Value

Vector lane select.

Select lanes from x or y controlled by the lanes of the boolean vector c.

fn splat(self, TxN: Type, x: Value) -> Value

Vector splat.

Return a vector whose lanes are all x.

fn insertlane<T1uimm8: Into<Uimm8>>(
    self,
    x: Value,
    Idx: T1uimm8,
    y: Value
) -> Value

Insert y as lane Idx in x.

The lane index, Idx, is an immediate value, not an SSA value. It must indicate a valid lane index for the type of x.

fn extractlane<T1uimm8: Into<Uimm8>>(self, x: Value, Idx: T1uimm8) -> Value

Extract lane Idx from x.

The lane index, Idx, is an immediate value, not an SSA value. It must indicate a valid lane index for the type of x.

fn icmp<T1intcc: Into<IntCC>>(self, Cond: T1intcc, x: Value, y: Value) -> Value

Integer comparison.

The condition code determines if the operands are interpreted as signed or unsigned integers.

====== ======== ========= Signed Unsigned Condition ====== ======== ========= eq eq Equal ne ne Not equal slt ult Less than sge uge Greater than or equal sgt ugt Greater than sle ule Less than or equal ====== ======== =========

When this instruction compares integer vectors, it returns a boolean vector of lane-wise comparisons.

fn icmp_imm<T1intcc: Into<IntCC>, T2imm64: Into<Imm64>>(
    self,
    Cond: T1intcc,
    x: Value,
    Y: T2imm64
) -> Value

Compare scalar integer to a constant.

This is the same as the icmp instruction, except one operand is an immediate constant.

This instruction can only compare scalars. Use icmp for lane-wise vector comparisons.

fn ifcmp(self, x: Value, y: Value) -> Value

Compare scalar integers and return flags.

Compare two scalar integer values and return integer CPU flags representing the result.

fn ifcmp_imm<T1imm64: Into<Imm64>>(self, x: Value, Y: T1imm64) -> Value

Compare scalar integer to a constant and return flags.

Like icmp_imm, but returns integer CPU flags instead of testing a specific condition code.

fn iadd(self, x: Value, y: Value) -> Value

Wrapping integer addition: a := x + y \pmod{2^B}.

This instruction does not depend on the signed/unsigned interpretation of the operands.

fn isub(self, x: Value, y: Value) -> Value

Wrapping integer subtraction: a := x - y \pmod{2^B}.

This instruction does not depend on the signed/unsigned interpretation of the operands.

fn imul(self, x: Value, y: Value) -> Value

Wrapping integer multiplication: a := x y \pmod{2^B}.

This instruction does not depend on the signed/unsigned interpretation of the operands.

Polymorphic over all integer types (vector and scalar).

fn umulhi(self, x: Value, y: Value) -> Value

Unsigned integer multiplication, producing the high half of a double-length result.

Polymorphic over all scalar integer types, but does not support vector types.

fn smulhi(self, x: Value, y: Value) -> Value

Signed integer multiplication, producing the high half of a double-length result.

Polymorphic over all scalar integer types, but does not support vector types.

fn udiv(self, x: Value, y: Value) -> Value

Unsigned integer division: a := \lfloor {x \over y} \rfloor.

This operation traps if the divisor is zero.

fn sdiv(self, x: Value, y: Value) -> Value

Signed integer division rounded toward zero: a := sign(xy) \lfloor {|x| \over |y|}\rfloor.

This operation traps if the divisor is zero, or if the result is not representable in B bits two's complement. This only happens when x = -2^{B-1}, y = -1.

fn urem(self, x: Value, y: Value) -> Value

Unsigned integer remainder.

This operation traps if the divisor is zero.

fn srem(self, x: Value, y: Value) -> Value

Signed integer remainder. The result has the sign of the dividend.

This operation traps if the divisor is zero.

fn iadd_imm<T1imm64: Into<Imm64>>(self, x: Value, Y: T1imm64) -> Value

Add immediate integer.

Same as iadd, but one operand is an immediate constant.

Polymorphic over all scalar integer types, but does not support vector types.

fn imul_imm<T1imm64: Into<Imm64>>(self, x: Value, Y: T1imm64) -> Value

Integer multiplication by immediate constant.

Polymorphic over all scalar integer types, but does not support vector types.

fn udiv_imm<T1imm64: Into<Imm64>>(self, x: Value, Y: T1imm64) -> Value

Unsigned integer division by an immediate constant.

This operation traps if the divisor is zero.

fn sdiv_imm<T1imm64: Into<Imm64>>(self, x: Value, Y: T1imm64) -> Value

Signed integer division by an immediate constant.

This operation traps if the divisor is zero, or if the result is not representable in B bits two's complement. This only happens when x = -2^{B-1}, Y = -1.

fn urem_imm<T1imm64: Into<Imm64>>(self, x: Value, Y: T1imm64) -> Value

Unsigned integer remainder with immediate divisor.

This operation traps if the divisor is zero.

fn srem_imm<T1imm64: Into<Imm64>>(self, x: Value, Y: T1imm64) -> Value

Signed integer remainder with immediate divisor.

This operation traps if the divisor is zero.

fn irsub_imm<T1imm64: Into<Imm64>>(self, x: Value, Y: T1imm64) -> Value

Immediate reverse wrapping subtraction: a := Y - x \pmod{2^B}.

Also works as integer negation when Y = 0. Use iadd_imm with a negative immediate operand for the reverse immediate subtraction.

Polymorphic over all scalar integer types, but does not support vector types.

fn iadd_cin(self, x: Value, y: Value, c_in: Value) -> Value

Add integers with carry in.

Same as iadd with an additional carry input. Computes:

    a = x + y + c_{in} \pmod 2^B

Polymorphic over all scalar integer types, but does not support vector types.

fn iadd_cout(self, x: Value, y: Value) -> (Value, Value)

Add integers with carry out.

Same as iadd with an additional carry output.

    a &= x + y \pmod 2^B \\
    c_{out} &= x+y >= 2^B

Polymorphic over all scalar integer types, but does not support vector types.

fn iadd_carry(self, x: Value, y: Value, c_in: Value) -> (Value, Value)

Add integers with carry in and out.

Same as iadd with an additional carry input and output.

    a &= x + y + c_{in} \pmod 2^B \\
    c_{out} &= x + y + c_{in} >= 2^B

Polymorphic over all scalar integer types, but does not support vector types.

fn isub_bin(self, x: Value, y: Value, b_in: Value) -> Value

Subtract integers with borrow in.

Same as isub with an additional borrow flag input. Computes:

    a = x - (y + b_{in}) \pmod 2^B

Polymorphic over all scalar integer types, but does not support vector types.

fn isub_bout(self, x: Value, y: Value) -> (Value, Value)

Subtract integers with borrow out.

Same as isub with an additional borrow flag output.

    a &= x - y \pmod 2^B \\
    b_{out} &= x < y

Polymorphic over all scalar integer types, but does not support vector types.

fn isub_borrow(self, x: Value, y: Value, b_in: Value) -> (Value, Value)

Subtract integers with borrow in and out.

Same as isub with an additional borrow flag input and output.

    a &= x - (y + b_{in}) \pmod 2^B \\
    b_{out} &= x < y + b_{in}

Polymorphic over all scalar integer types, but does not support vector types.

fn band(self, x: Value, y: Value) -> Value

Bitwise and.

fn bor(self, x: Value, y: Value) -> Value

Bitwise or.

fn bxor(self, x: Value, y: Value) -> Value

Bitwise xor.

fn bnot(self, x: Value) -> Value

Bitwise not.

fn band_not(self, x: Value, y: Value) -> Value

Bitwise and not.

Computes x & ~y.

fn bor_not(self, x: Value, y: Value) -> Value

Bitwise or not.

Computes x | ~y.

fn bxor_not(self, x: Value, y: Value) -> Value

Bitwise xor not.

Computes x ^ ~y.

fn band_imm<T1imm64: Into<Imm64>>(self, x: Value, Y: T1imm64) -> Value

Bitwise and with immediate.

Same as band, but one operand is an immediate constant.

Polymorphic over all scalar integer types, but does not support vector types.

fn bor_imm<T1imm64: Into<Imm64>>(self, x: Value, Y: T1imm64) -> Value

Bitwise or with immediate.

Same as bor, but one operand is an immediate constant.

Polymorphic over all scalar integer types, but does not support vector types.

fn bxor_imm<T1imm64: Into<Imm64>>(self, x: Value, Y: T1imm64) -> Value

Bitwise xor with immediate.

Same as bxor, but one operand is an immediate constant.

Polymorphic over all scalar integer types, but does not support vector types.

fn rotl(self, x: Value, y: Value) -> Value

Rotate left.

Rotate the bits in x by y places.

fn rotr(self, x: Value, y: Value) -> Value

Rotate right.

Rotate the bits in x by y places.

fn rotl_imm<T1imm64: Into<Imm64>>(self, x: Value, Y: T1imm64) -> Value

Rotate left by immediate.

fn rotr_imm<T1imm64: Into<Imm64>>(self, x: Value, Y: T1imm64) -> Value

Rotate right by immediate.

fn ishl(self, x: Value, y: Value) -> Value

Integer shift left. Shift the bits in x towards the MSB by y places. Shift in zero bits to the LSB.

The shift amount is masked to the size of x.

When shifting a B-bits integer type, this instruction computes:

    s &:= y \pmod B,
    a &:= x \cdot 2^s \pmod{2^B}.

fn ushr(self, x: Value, y: Value) -> Value

Unsigned shift right. Shift bits in x towards the LSB by y places, shifting in zero bits to the MSB. Also called a logical shift.

The shift amount is masked to the size of the register.

When shifting a B-bits integer type, this instruction computes:

    s &:= y \pmod B,
    a &:= \lfloor x \cdot 2^{-s} \rfloor.

fn sshr(self, x: Value, y: Value) -> Value

Signed shift right. Shift bits in x towards the LSB by y places, shifting in sign bits to the MSB. Also called an arithmetic shift.

The shift amount is masked to the size of the register.

fn ishl_imm<T1imm64: Into<Imm64>>(self, x: Value, Y: T1imm64) -> Value

Integer shift left by immediate.

The shift amount is masked to the size of x.

fn ushr_imm<T1imm64: Into<Imm64>>(self, x: Value, Y: T1imm64) -> Value

Unsigned shift right by immediate.

The shift amount is masked to the size of the register.

fn sshr_imm<T1imm64: Into<Imm64>>(self, x: Value, Y: T1imm64) -> Value

Signed shift right by immediate.

The shift amount is masked to the size of the register.

fn bitrev(self, x: Value) -> Value

Reverse the bits of a integer.

Reverses the bits in x.

fn clz(self, x: Value) -> Value

Count leading zero bits.

Starting from the MSB in x, count the number of zero bits before reaching the first one bit. When x is zero, returns the size of x in bits.

fn cls(self, x: Value) -> Value

Count leading sign bits.

Starting from the MSB after the sign bit in x, count the number of consecutive bits identical to the sign bit. When x is 0 or -1, returns one less than the size of x in bits.

fn ctz(self, x: Value) -> Value

Count trailing zeros.

Starting from the LSB in x, count the number of zero bits before reaching the first one bit. When x is zero, returns the size of x in bits.

fn popcnt(self, x: Value) -> Value

Population count

Count the number of one bits in x.

fn fcmp<T1floatcc: Into<FloatCC>>(
    self,
    Cond: T1floatcc,
    x: Value,
    y: Value
) -> Value

Floating point comparison.

Two IEEE 754-2008 floating point numbers, x and y, relate to each other in exactly one of four ways:

== ========================================== UN Unordered when one or both numbers is NaN. EQ When x = y. (And 0.0 = -0.0). LT When x < y. GT When x > y. == ==========================================

The 14 floatcc condition codes each correspond to a subset of the four relations, except for the empty set which would always be false, and the full set which would always be true.

The condition codes are divided into 7 'ordered' conditions which don't include UN, and 7 unordered conditions which all include UN.

+-------+------------+---------+------------+-------------------------+ |Ordered |Unordered |Condition | +=======+============+=========+============+=========================+ |ord |EQ | LT | GT|uno |UN |NaNs absent / present. | +-------+------------+---------+------------+-------------------------+ |eq |EQ |ueq |UN | EQ |Equal | +-------+------------+---------+------------+-------------------------+ |one |LT | GT |ne |UN | LT | GT|Not equal | +-------+------------+---------+------------+-------------------------+ |lt |LT |ult |UN | LT |Less than | +-------+------------+---------+------------+-------------------------+ |le |LT | EQ |ule |UN | LT | EQ|Less than or equal | +-------+------------+---------+------------+-------------------------+ |gt |GT |ugt |UN | GT |Greater than | +-------+------------+---------+------------+-------------------------+ |ge |GT | EQ |uge |UN | GT | EQ|Greater than or equal | +-------+------------+---------+------------+-------------------------+

The standard C comparison operators, <, <=, >, >=, are all ordered, so they are false if either operand is NaN. The C equality operator, ==, is ordered, and since inequality is defined as the logical inverse it is unordered. They map to the floatcc condition codes as follows:

==== ====== ============ C Cond Subset ==== ====== ============ == eq EQ != ne UN | LT | GT < lt LT <= le LT | EQ > gt GT >= ge GT | EQ ==== ====== ============

This subset of condition codes also corresponds to the WebAssembly floating point comparisons of the same name.

When this instruction compares floating point vectors, it returns a boolean vector with the results of lane-wise comparisons.

fn ffcmp(self, x: Value, y: Value) -> Value

Floating point comparison returning flags.

Compares two numbers like fcmp, but returns floating point CPU flags instead of testing a specific condition.

fn fadd(self, x: Value, y: Value) -> Value

Floating point addition.

fn fsub(self, x: Value, y: Value) -> Value

Floating point subtraction.

fn fmul(self, x: Value, y: Value) -> Value

Floating point multiplication.

fn fdiv(self, x: Value, y: Value) -> Value

Floating point division.

Unlike the integer division instructions andudiv`, this can't trap. Division by zero is infinity or NaN, depending on the dividend.

fn sqrt(self, x: Value) -> Value

Floating point square root.

fn fma(self, x: Value, y: Value, z: Value) -> Value

Floating point fused multiply-and-add.

Computes a := xy+z without any intermediate rounding of the product.

fn fneg(self, x: Value) -> Value

Floating point negation.

Note that this is a pure bitwise operation.

fn fabs(self, x: Value) -> Value

Floating point absolute value.

Note that this is a pure bitwise operation.

fn fcopysign(self, x: Value, y: Value) -> Value

Floating point copy sign.

Note that this is a pure bitwise operation. The sign bit from y is copied to the sign bit of x.

fn fmin(self, x: Value, y: Value) -> Value

Floating point minimum, propagating NaNs.

If either operand is NaN, this returns a NaN.

fn fmax(self, x: Value, y: Value) -> Value

Floating point maximum, propagating NaNs.

If either operand is NaN, this returns a NaN.

fn ceil(self, x: Value) -> Value

Round floating point round to integral, towards positive infinity.

fn floor(self, x: Value) -> Value

Round floating point round to integral, towards negative infinity.

fn trunc(self, x: Value) -> Value

Round floating point round to integral, towards zero.

fn nearest(self, x: Value) -> Value

Round floating point round to integral, towards nearest with ties to even.

fn is_null(self, x: Value) -> Value

Reference verification.

The condition code determines if the reference type in question is null or not.

fn trueif<T1intcc: Into<IntCC>>(self, Cond: T1intcc, f: Value) -> Value

Test integer CPU flags for a specific condition.

Check the CPU flags in f against the Cond condition code and return true when the condition code is satisfied.

fn trueff<T1floatcc: Into<FloatCC>>(self, Cond: T1floatcc, f: Value) -> Value

Test floating point CPU flags for a specific condition.

Check the CPU flags in f against the Cond condition code and return true when the condition code is satisfied.

fn bitcast(self, MemTo: Type, x: Value) -> Value

Reinterpret the bits in x as a different type.

The input and output types must be storable to memory and of the same size. A bitcast is equivalent to storing one type and loading the other type from the same address.

fn raw_bitcast(self, AnyTo: Type, x: Value) -> Value

Cast the bits in x as a different type of the same bit width.

This instruction does not change the data's representation but allows data in registers to be used as different types, e.g. an i32x4 as a b8x16. The only constraint on the result a is that it can be raw_bitcast back to the original type. Also, in a raw_bitcast between vector types with the same number of lanes, the value of each result lane is a raw_bitcast of the corresponding operand lane. TODO there is currently no mechanism for enforcing the bit width constraint.

fn scalar_to_vector(self, TxN: Type, s: Value) -> Value

Scalar To Vector -- move a value out of a scalar register and into a vector register; the scalar will be moved to the lowest-order bits of the vector register and any higher bits will be zeroed.

fn breduce(self, BoolTo: Type, x: Value) -> Value

Convert x to a smaller boolean type in the platform-defined way.

The result type must have the same number of vector lanes as the input, and each lane must not have more bits that the input lanes. If the input and output types are the same, this is a no-op.

fn bextend(self, BoolTo: Type, x: Value) -> Value

Convert x to a larger boolean type in the platform-defined way.

The result type must have the same number of vector lanes as the input, and each lane must not have fewer bits that the input lanes. If the input and output types are the same, this is a no-op.

fn bint(self, IntTo: Type, x: Value) -> Value

Convert x to an integer.

True maps to 1 and false maps to 0. The result type must have the same number of vector lanes as the input.

fn bmask(self, IntTo: Type, x: Value) -> Value

Convert x to an integer mask.

True maps to all 1s and false maps to all 0s. The result type must have the same number of vector lanes as the input.

fn ireduce(self, IntTo: Type, x: Value) -> Value

Convert x to a smaller integer type by dropping high bits.

Each lane in x is converted to a smaller integer type by discarding the most significant bits. This is the same as reducing modulo 2^n.

The result type must have the same number of vector lanes as the input, and each lane must not have more bits that the input lanes. If the input and output types are the same, this is a no-op.

fn uextend(self, IntTo: Type, x: Value) -> Value

Convert x to a larger integer type by zero-extending.

Each lane in x is converted to a larger integer type by adding zeroes. The result has the same numerical value as x when both are interpreted as unsigned integers.

The result type must have the same number of vector lanes as the input, and each lane must not have fewer bits that the input lanes. If the input and output types are the same, this is a no-op.

fn sextend(self, IntTo: Type, x: Value) -> Value

Convert x to a larger integer type by sign-extending.

Each lane in x is converted to a larger integer type by replicating the sign bit. The result has the same numerical value as x when both are interpreted as signed integers.

The result type must have the same number of vector lanes as the input, and each lane must not have fewer bits that the input lanes. If the input and output types are the same, this is a no-op.

fn fpromote(self, FloatTo: Type, x: Value) -> Value

Convert x to a larger floating point format.

Each lane in x is converted to the destination floating point format. This is an exact operation.

Cranelift currently only supports two floating point formats

  • f32 and f64. This may change in the future.

The result type must have the same number of vector lanes as the input, and the result lanes must not have fewer bits than the input lanes. If the input and output types are the same, this is a no-op.

fn fdemote(self, FloatTo: Type, x: Value) -> Value

Convert x to a smaller floating point format.

Each lane in x is converted to the destination floating point format by rounding to nearest, ties to even.

Cranelift currently only supports two floating point formats

  • f32 and f64. This may change in the future.

The result type must have the same number of vector lanes as the input, and the result lanes must not have more bits than the input lanes. If the input and output types are the same, this is a no-op.

fn fcvt_to_uint(self, IntTo: Type, x: Value) -> Value

Convert floating point to unsigned integer.

Each lane in x is converted to an unsigned integer by rounding towards zero. If x is NaN or if the unsigned integral value cannot be represented in the result type, this instruction traps.

The result type must have the same number of vector lanes as the input.

fn fcvt_to_uint_sat(self, IntTo: Type, x: Value) -> Value

Convert floating point to unsigned integer as fcvt_to_uint does, but saturates the input instead of trapping. NaN and negative values are converted to 0.

fn fcvt_to_sint(self, IntTo: Type, x: Value) -> Value

Convert floating point to signed integer.

Each lane in x is converted to a signed integer by rounding towards zero. If x is NaN or if the signed integral value cannot be represented in the result type, this instruction traps.

The result type must have the same number of vector lanes as the input.

fn fcvt_to_sint_sat(self, IntTo: Type, x: Value) -> Value

Convert floating point to signed integer as fcvt_to_sint does, but saturates the input instead of trapping. NaN values are converted to 0.

fn fcvt_from_uint(self, FloatTo: Type, x: Value) -> Value

Convert unsigned integer to floating point.

Each lane in x is interpreted as an unsigned integer and converted to floating point using round to nearest, ties to even.

The result type must have the same number of vector lanes as the input.

fn fcvt_from_sint(self, FloatTo: Type, x: Value) -> Value

Convert signed integer to floating point.

Each lane in x is interpreted as a signed integer and converted to floating point using round to nearest, ties to even.

The result type must have the same number of vector lanes as the input.

fn isplit(self, x: Value) -> (Value, Value)

Split an integer into low and high parts.

Vectors of integers are split lane-wise, so the results have the same number of lanes as the input, but the lanes are half the size.

Returns the low half of x and the high half of x as two independent values.

fn iconcat(self, lo: Value, hi: Value) -> Value

Concatenate low and high bits to form a larger integer type.

Vectors of integers are concatenated lane-wise such that the result has the same number of lanes as the inputs, but the lanes are twice the size.

fn x86_udivmodx(self, nlo: Value, nhi: Value, d: Value) -> (Value, Value)

Extended unsigned division.

Concatenate the bits in nhi and nlo to form the numerator. Interpret the bits as an unsigned number and divide by the unsigned denominator d. Trap when d is zero or if the quotient is larger than the range of the output.

Return both quotient and remainder.

fn x86_sdivmodx(self, nlo: Value, nhi: Value, d: Value) -> (Value, Value)

Extended signed division.

Concatenate the bits in nhi and nlo to form the numerator. Interpret the bits as a signed number and divide by the signed denominator d. Trap when d is zero or if the quotient is outside the range of the output.

Return both quotient and remainder.

fn x86_umulx(self, argL: Value, argR: Value) -> (Value, Value)

Unsigned integer multiplication, producing a double-length result.

Polymorphic over all scalar integer types, but does not support vector types.

fn x86_smulx(self, argL: Value, argR: Value) -> (Value, Value)

Signed integer multiplication, producing a double-length result.

Polymorphic over all scalar integer types, but does not support vector types.

fn x86_cvtt2si(self, IntTo: Type, x: Value) -> Value

Convert with truncation floating point to signed integer.

The source floating point operand is converted to a signed integer by rounding towards zero. If the result can't be represented in the output type, returns the smallest signed value the output type can represent.

This instruction does not trap.

fn x86_fmin(self, x: Value, y: Value) -> Value

Floating point minimum with x86 semantics.

This is equivalent to the C ternary operator x < y ? x : y which differs from fmin when either operand is NaN or when comparing +0.0 to -0.0.

When the two operands don't compare as LT, y is returned unchanged, even if it is a signalling NaN.

fn x86_fmax(self, x: Value, y: Value) -> Value

Floating point maximum with x86 semantics.

This is equivalent to the C ternary operator x > y ? x : y which differs from fmax when either operand is NaN or when comparing +0.0 to -0.0.

When the two operands don't compare as GT, y is returned unchanged, even if it is a signalling NaN.

fn x86_push(self, x: Value) -> Inst

Pushes a value onto the stack.

Decrements the stack pointer and stores the specified value on to the top.

This is polymorphic in i32 and i64. However, it is only implemented for i64 in 64-bit mode, and only for i32 in 32-bit mode.

fn x86_pop(self, iWord: Type) -> Value

Pops a value from the stack.

Loads a value from the top of the stack and then increments the stack pointer.

This is polymorphic in i32 and i64. However, it is only implemented for i64 in 64-bit mode, and only for i32 in 32-bit mode.

fn x86_bsr(self, x: Value) -> (Value, Value)

Bit Scan Reverse -- returns the bit-index of the most significant 1 in the word. Result is undefined if the argument is zero. However, it sets the Z flag depending on the argument, so it is at least easy to detect and handle that case.

This is polymorphic in i32 and i64. It is implemented for both i64 and i32 in 64-bit mode, and only for i32 in 32-bit mode.

fn x86_bsf(self, x: Value) -> (Value, Value)

Bit Scan Forwards -- returns the bit-index of the least significant 1 in the word. Is otherwise identical to 'bsr', just above.

fn x86_pshufd<T1uimm8: Into<Uimm8>>(self, a: Value, i: T1uimm8) -> Value

Packed Shuffle Doublewords -- copies data from either memory or lanes in an extended register and re-orders the data according to the passed immediate byte.

fn x86_pshufb(self, a: Value, b: Value) -> Value

Packed Shuffle Bytes -- re-orders data in an extended register using a shuffle mask from either memory or another extended register

fn Unary(
    self,
    opcode: Opcode,
    ctrl_typevar: Type,
    arg0: Value
) -> (Inst, &'f mut DataFlowGraph)

Unary(imms=(), vals=1)

fn UnaryImm(
    self,
    opcode: Opcode,
    ctrl_typevar: Type,
    imm: Imm64
) -> (Inst, &'f mut DataFlowGraph)

UnaryImm(imms=(imm: imm64), vals=0)

fn UnaryImm128(
    self,
    opcode: Opcode,
    ctrl_typevar: Type,
    imm: Constant
) -> (Inst, &'f mut DataFlowGraph)

UnaryImm128(imms=(imm: uimm128), vals=0)

fn UnaryIeee32(
    self,
    opcode: Opcode,
    ctrl_typevar: Type,
    imm: Ieee32
) -> (Inst, &'f mut DataFlowGraph)

UnaryIeee32(imms=(imm: ieee32), vals=0)

fn UnaryIeee64(
    self,
    opcode: Opcode,
    ctrl_typevar: Type,
    imm: Ieee64
) -> (Inst, &'f mut DataFlowGraph)

UnaryIeee64(imms=(imm: ieee64), vals=0)

fn UnaryBool(
    self,
    opcode: Opcode,
    ctrl_typevar: Type,
    imm: bool
) -> (Inst, &'f mut DataFlowGraph)

UnaryBool(imms=(imm: boolean), vals=0)

fn UnaryGlobalValue(
    self,
    opcode: Opcode,
    ctrl_typevar: Type,
    global_value: GlobalValue
) -> (Inst, &'f mut DataFlowGraph)

UnaryGlobalValue(imms=(global_value: global_value), vals=0)

fn Binary(
    self,
    opcode: Opcode,
    ctrl_typevar: Type,
    arg0: Value,
    arg1: Value
) -> (Inst, &'f mut DataFlowGraph)

Binary(imms=(), vals=2)

fn BinaryImm(
    self,
    opcode: Opcode,
    ctrl_typevar: Type,
    imm: Imm64,
    arg0: Value
) -> (Inst, &'f mut DataFlowGraph)

BinaryImm(imms=(imm: imm64), vals=1)

fn Ternary(
    self,
    opcode: Opcode,
    ctrl_typevar: Type,
    arg0: Value,
    arg1: Value,
    arg2: Value
) -> (Inst, &'f mut DataFlowGraph)

Ternary(imms=(), vals=3)

fn MultiAry(
    self,
    opcode: Opcode,
    ctrl_typevar: Type,
    args: ValueList
) -> (Inst, &'f mut DataFlowGraph)

MultiAry(imms=(), vals=0)

fn NullAry(
    self,
    opcode: Opcode,
    ctrl_typevar: Type
) -> (Inst, &'f mut DataFlowGraph)

NullAry(imms=(), vals=0)

fn InsertLane(
    self,
    opcode: Opcode,
    ctrl_typevar: Type,
    lane: Uimm8,
    arg0: Value,
    arg1: Value
) -> (Inst, &'f mut DataFlowGraph)

InsertLane(imms=(lane: uimm8), vals=2)

fn ExtractLane(
    self,
    opcode: Opcode,
    ctrl_typevar: Type,
    lane: Uimm8,
    arg0: Value
) -> (Inst, &'f mut DataFlowGraph)

ExtractLane(imms=(lane: uimm8), vals=1)

fn IntCompare(
    self,
    opcode: Opcode,
    ctrl_typevar: Type,
    cond: IntCC,
    arg0: Value,
    arg1: Value
) -> (Inst, &'f mut DataFlowGraph)

IntCompare(imms=(cond: intcc), vals=2)

fn IntCompareImm(
    self,
    opcode: Opcode,
    ctrl_typevar: Type,
    cond: IntCC,
    imm: Imm64,
    arg0: Value
) -> (Inst, &'f mut DataFlowGraph)

IntCompareImm(imms=(cond: intcc, imm: imm64), vals=1)

fn IntCond(
    self,
    opcode: Opcode,
    ctrl_typevar: Type,
    cond: IntCC,
    arg0: Value
) -> (Inst, &'f mut DataFlowGraph)

IntCond(imms=(cond: intcc), vals=1)

fn FloatCompare(
    self,
    opcode: Opcode,
    ctrl_typevar: Type,
    cond: FloatCC,
    arg0: Value,
    arg1: Value
) -> (Inst, &'f mut DataFlowGraph)

FloatCompare(imms=(cond: floatcc), vals=2)

fn FloatCond(
    self,
    opcode: Opcode,
    ctrl_typevar: Type,
    cond: FloatCC,
    arg0: Value
) -> (Inst, &'f mut DataFlowGraph)

FloatCond(imms=(cond: floatcc), vals=1)

fn IntSelect(
    self,
    opcode: Opcode,
    ctrl_typevar: Type,
    cond: IntCC,
    arg0: Value,
    arg1: Value,
    arg2: Value
) -> (Inst, &'f mut DataFlowGraph)

IntSelect(imms=(cond: intcc), vals=3)

fn Jump(
    self,
    opcode: Opcode,
    ctrl_typevar: Type,
    destination: Ebb,
    args: ValueList
) -> (Inst, &'f mut DataFlowGraph)

Jump(imms=(destination: ebb), vals=0)

fn Branch(
    self,
    opcode: Opcode,
    ctrl_typevar: Type,
    destination: Ebb,
    args: ValueList
) -> (Inst, &'f mut DataFlowGraph)

Branch(imms=(destination: ebb), vals=1)

fn BranchInt(
    self,
    opcode: Opcode,
    ctrl_typevar: Type,
    cond: IntCC,
    destination: Ebb,
    args: ValueList
) -> (Inst, &'f mut DataFlowGraph)

BranchInt(imms=(cond: intcc, destination: ebb), vals=1)

fn BranchFloat(
    self,
    opcode: Opcode,
    ctrl_typevar: Type,
    cond: FloatCC,
    destination: Ebb,
    args: ValueList
) -> (Inst, &'f mut DataFlowGraph)

BranchFloat(imms=(cond: floatcc, destination: ebb), vals=1)

fn BranchIcmp(
    self,
    opcode: Opcode,
    ctrl_typevar: Type,
    cond: IntCC,
    destination: Ebb,
    args: ValueList
) -> (Inst, &'f mut DataFlowGraph)

BranchIcmp(imms=(cond: intcc, destination: ebb), vals=2)

fn BranchTable(
    self,
    opcode: Opcode,
    ctrl_typevar: Type,
    destination: Ebb,
    table: JumpTable,
    arg0: Value
) -> (Inst, &'f mut DataFlowGraph)

BranchTable(imms=(destination: ebb, table: jump_table), vals=1)

fn BranchTableEntry(
    self,
    opcode: Opcode,
    ctrl_typevar: Type,
    imm: Uimm8,
    table: JumpTable,
    arg0: Value,
    arg1: Value
) -> (Inst, &'f mut DataFlowGraph)

BranchTableEntry(imms=(imm: uimm8, table: jump_table), vals=2)

fn BranchTableBase(
    self,
    opcode: Opcode,
    ctrl_typevar: Type,
    table: JumpTable
) -> (Inst, &'f mut DataFlowGraph)

BranchTableBase(imms=(table: jump_table), vals=0)

fn IndirectJump(
    self,
    opcode: Opcode,
    ctrl_typevar: Type,
    table: JumpTable,
    arg0: Value
) -> (Inst, &'f mut DataFlowGraph)

IndirectJump(imms=(table: jump_table), vals=1)

fn Call(
    self,
    opcode: Opcode,
    ctrl_typevar: Type,
    func_ref: FuncRef,
    args: ValueList
) -> (Inst, &'f mut DataFlowGraph)

Call(imms=(func_ref: func_ref), vals=0)

fn CallIndirect(
    self,
    opcode: Opcode,
    ctrl_typevar: Type,
    sig_ref: SigRef,
    args: ValueList
) -> (Inst, &'f mut DataFlowGraph)

CallIndirect(imms=(sig_ref: sig_ref), vals=1)

fn FuncAddr(
    self,
    opcode: Opcode,
    ctrl_typevar: Type,
    func_ref: FuncRef
) -> (Inst, &'f mut DataFlowGraph)

FuncAddr(imms=(func_ref: func_ref), vals=0)

fn Load(
    self,
    opcode: Opcode,
    ctrl_typevar: Type,
    flags: MemFlags,
    offset: Offset32,
    arg0: Value
) -> (Inst, &'f mut DataFlowGraph)

Load(imms=(flags: memflags, offset: offset32), vals=1)

fn LoadComplex(
    self,
    opcode: Opcode,
    ctrl_typevar: Type,
    flags: MemFlags,
    offset: Offset32,
    args: ValueList
) -> (Inst, &'f mut DataFlowGraph)

LoadComplex(imms=(flags: memflags, offset: offset32), vals=0)

fn Store(
    self,
    opcode: Opcode,
    ctrl_typevar: Type,
    flags: MemFlags,
    offset: Offset32,
    arg0: Value,
    arg1: Value
) -> (Inst, &'f mut DataFlowGraph)

Store(imms=(flags: memflags, offset: offset32), vals=2)

fn StoreComplex(
    self,
    opcode: Opcode,
    ctrl_typevar: Type,
    flags: MemFlags,
    offset: Offset32,
    args: ValueList
) -> (Inst, &'f mut DataFlowGraph)

StoreComplex(imms=(flags: memflags, offset: offset32), vals=1)

fn StackLoad(
    self,
    opcode: Opcode,
    ctrl_typevar: Type,
    stack_slot: StackSlot,
    offset: Offset32
) -> (Inst, &'f mut DataFlowGraph)

StackLoad(imms=(stack_slot: stack_slot, offset: offset32), vals=0)

fn StackStore(
    self,
    opcode: Opcode,
    ctrl_typevar: Type,
    stack_slot: StackSlot,
    offset: Offset32,
    arg0: Value
) -> (Inst, &'f mut DataFlowGraph)

StackStore(imms=(stack_slot: stack_slot, offset: offset32), vals=1)

fn HeapAddr(
    self,
    opcode: Opcode,
    ctrl_typevar: Type,
    heap: Heap,
    imm: Uimm32,
    arg0: Value
) -> (Inst, &'f mut DataFlowGraph)

HeapAddr(imms=(heap: heap, imm: uimm32), vals=1)

fn TableAddr(
    self,
    opcode: Opcode,
    ctrl_typevar: Type,
    table: Table,
    offset: Offset32,
    arg0: Value
) -> (Inst, &'f mut DataFlowGraph)

TableAddr(imms=(table: table, offset: offset32), vals=1)

fn RegMove(
    self,
    opcode: Opcode,
    ctrl_typevar: Type,
    src: RegUnit,
    dst: RegUnit,
    arg0: Value
) -> (Inst, &'f mut DataFlowGraph)

RegMove(imms=(src: regunit, dst: regunit), vals=1)

fn CopySpecial(
    self,
    opcode: Opcode,
    ctrl_typevar: Type,
    src: RegUnit,
    dst: RegUnit
) -> (Inst, &'f mut DataFlowGraph)

CopySpecial(imms=(src: regunit, dst: regunit), vals=0)

fn CopyToSsa(
    self,
    opcode: Opcode,
    ctrl_typevar: Type,
    src: RegUnit
) -> (Inst, &'f mut DataFlowGraph)

CopyToSsa(imms=(src: regunit), vals=0)

fn RegSpill(
    self,
    opcode: Opcode,
    ctrl_typevar: Type,
    src: RegUnit,
    dst: StackSlot,
    arg0: Value
) -> (Inst, &'f mut DataFlowGraph)

RegSpill(imms=(src: regunit, dst: stack_slot), vals=1)

fn RegFill(
    self,
    opcode: Opcode,
    ctrl_typevar: Type,
    src: StackSlot,
    dst: RegUnit,
    arg0: Value
) -> (Inst, &'f mut DataFlowGraph)

RegFill(imms=(src: stack_slot, dst: regunit), vals=1)

fn Trap(
    self,
    opcode: Opcode,
    ctrl_typevar: Type,
    code: TrapCode
) -> (Inst, &'f mut DataFlowGraph)

Trap(imms=(code: trapcode), vals=0)

fn CondTrap(
    self,
    opcode: Opcode,
    ctrl_typevar: Type,
    code: TrapCode,
    arg0: Value
) -> (Inst, &'f mut DataFlowGraph)

CondTrap(imms=(code: trapcode), vals=1)

fn IntCondTrap(
    self,
    opcode: Opcode,
    ctrl_typevar: Type,
    cond: IntCC,
    code: TrapCode,
    arg0: Value
) -> (Inst, &'f mut DataFlowGraph)

IntCondTrap(imms=(cond: intcc, code: trapcode), vals=1)

fn FloatCondTrap(
    self,
    opcode: Opcode,
    ctrl_typevar: Type,
    cond: FloatCC,
    code: TrapCode,
    arg0: Value
) -> (Inst, &'f mut DataFlowGraph)

FloatCondTrap(imms=(cond: floatcc, code: trapcode), vals=1)

Loading content...

Implementors

impl<'f, T: InstBuilderBase<'f>> InstBuilder<'f> for T[src]

Any type implementing InstBuilderBase gets all the InstBuilder methods for free.

Loading content...