1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
//! Generate sources for instruction encoding.
//!
//! The tables and functions generated here support the `TargetISA::encode()` function which
//! determines if a given instruction is legal, and if so, its `Encoding` data which consists of a
//! *recipe* and some *encoding* bits.
//!
//! The `encode` function doesn't actually generate the binary machine bits. Each recipe has a
//! corresponding hand-written function to do that after registers are allocated.
//!
//! This is the information available to us:
//!
//! - The instruction to be encoded as an `InstructionData` reference.
//! - The controlling type variable.
//! - The data-flow graph giving us access to the types of all values involved. This is needed for
//! testing any secondary type variables.
//! - A `PredicateView` reference for the ISA-specific settings for evaluating ISA predicates.
//! - The currently active CPU mode is determined by the ISA.
//!
//! ## Level 1 table lookup
//!
//! The CPU mode provides the first table. The key is the instruction's controlling type variable.
//! If the instruction is not polymorphic, use `INVALID` for the type variable. The table values
//! are level 2 tables.
//!
//! ## Level 2 table lookup
//!
//! The level 2 table is keyed by the instruction's opcode. The table values are *encoding lists*.
//!
//! The two-level table lookup allows the level 2 tables to be much smaller with good locality.
//! Code in any given function usually only uses a few different types, so many of the level 2
//! tables will be cold.
//!
//! ## Encoding lists
//!
//! An encoding list is a non-empty sequence of list entries. Each entry has one of these forms:
//!
//! 1. Recipe + bits. Use this encoding if the recipe predicate is satisfied.
//! 2. Recipe + bits, final entry. Use this encoding if the recipe predicate is satisfied.
//!    Otherwise, stop with the default legalization code.
//! 3. Stop with legalization code.
//! 4. Predicate + skip count. Test predicate and skip N entries if it is false.
//! 5. Predicate + stop. Test predicate and stop with the default legalization code if it is false.
//!
//! The instruction predicate is also used to distinguish between polymorphic instructions with
//! different types for secondary type variables.

use std::collections::btree_map;
use std::collections::{BTreeMap, HashMap, HashSet};
use std::convert::TryFrom;
use std::iter::FromIterator;

use cranelift_codegen_shared::constant_hash::generate_table;
use cranelift_entity::EntityRef;

use crate::error;
use crate::srcgen::Formatter;

use crate::cdsl::cpu_modes::CpuMode;
use crate::cdsl::encodings::Encoding;
use crate::cdsl::instructions::{Instruction, InstructionPredicate, InstructionPredicateNumber};
use crate::cdsl::isa::TargetIsa;
use crate::cdsl::recipes::{EncodingRecipe, OperandConstraint, Recipes, Register};
use crate::cdsl::regs::IsaRegs;
use crate::cdsl::settings::SettingPredicateNumber;
use crate::cdsl::types::ValueType;
use crate::cdsl::xform::TransformGroupIndex;

use crate::shared::Definitions as SharedDefinitions;

use crate::default_map::MapWithDefault;
use crate::unique_table::UniqueSeqTable;

/// Emit code for matching an instruction predicate against an `InstructionData` reference called
/// `inst`.
///
/// The generated code is an `if let` pattern match that falls through if the instruction has an
/// unexpected format. This should lead to a panic.
fn emit_instp(instp: &InstructionPredicate, has_func: bool, fmt: &mut Formatter) {
    if let Some(type_predicate) = instp.type_predicate("func") {
        fmt.line("let args = inst.arguments(&func.dfg.value_lists);");
        fmt.line(type_predicate);
        return;
    }

    let leaves = instp.collect_leaves();

    let mut has_type_check = false;
    let mut format_name = None;
    let mut field_names = HashSet::new();

    for leaf in leaves {
        if leaf.is_type_predicate() {
            has_type_check = true;
        } else {
            field_names.insert(leaf.format_destructuring_member_name());
            let leaf_format_name = leaf.format_name();
            match format_name {
                None => format_name = Some(leaf_format_name),
                Some(previous_format_name) => {
                    assert!(
                        previous_format_name == leaf_format_name,
                        format!("Format predicate can only operate on a single InstructionFormat; trying to use both {} and {}", previous_format_name, leaf_format_name
                    ));
                }
            }
        }
    }

    let mut fields = Vec::from_iter(field_names);
    fields.sort();
    let fields = fields.join(", ");

    let format_name = format_name.expect("There should be a format name!");

    fmtln!(
        fmt,
        "if let crate::ir::InstructionData::{} {{ {}, .. }} = *inst {{",
        format_name,
        fields
    );
    fmt.indent(|fmt| {
        if has_type_check {
            // We could implement this.
            assert!(has_func, "recipe predicates can't check type variables.");
            fmt.line("let args = inst.arguments(&func.dfg.value_lists);");
        } else if has_func {
            // Silence dead argument.
            fmt.line("let _ = func;");
        }
        fmtln!(fmt, "return {};", instp.rust_predicate("func").unwrap());
    });
    fmtln!(fmt, "}");

    fmt.line("unreachable!();");
}

/// Emit private functions for checking recipe predicates as well as a static `RECIPE_PREDICATES`
/// array indexed by recipe number.
///
/// A recipe predicate is a combination of an ISA predicate and an instruction predicate. Many
/// recipes have identical predicates.
fn emit_recipe_predicates(isa: &TargetIsa, fmt: &mut Formatter) {
    let mut predicate_names = HashMap::new();

    fmt.comment(format!("{} recipe predicates.", isa.name));
    for recipe in isa.recipes.values() {
        let (isap, instp) = match (&recipe.isa_predicate, &recipe.inst_predicate) {
            (None, None) => continue,
            (isap, instp) if predicate_names.contains_key(&(isap, instp)) => continue,
            (isap, instp) => (isap, instp),
        };

        let func_name = format!("recipe_predicate_{}", recipe.name.to_lowercase());
        predicate_names.insert((isap, instp), func_name.clone());

        // Generate the predicate function.
        fmtln!(
            fmt,
            "fn {}({}: crate::settings::PredicateView, {}: &ir::InstructionData) -> bool {{",
            func_name,
            if isap.is_some() { "isap" } else { "_" },
            if instp.is_some() { "inst" } else { "_" }
        );
        fmt.indent(|fmt| {
            match (isap, instp) {
                (Some(isap), None) => {
                    fmtln!(fmt, "isap.test({})", isap);
                }
                (None, Some(instp)) => {
                    emit_instp(instp, /* has func */ false, fmt);
                }
                (Some(isap), Some(instp)) => {
                    fmtln!(fmt, "isap.test({}) &&", isap);
                    emit_instp(instp, /* has func */ false, fmt);
                }
                _ => panic!("skipped above"),
            }
        });
        fmtln!(fmt, "}");
    }
    fmt.empty_line();

    // Generate the static table.
    fmt.doc_comment(format!(
        r#"{} recipe predicate table.

        One entry per recipe, set to Some only when the recipe is guarded by a predicate."#,
        isa.name
    ));
    fmtln!(
        fmt,
        "pub static RECIPE_PREDICATES: [RecipePredicate; {}] = [",
        isa.recipes.len()
    );
    fmt.indent(|fmt| {
        for recipe in isa.recipes.values() {
            match (&recipe.isa_predicate, &recipe.inst_predicate) {
                (None, None) => fmt.line("None,"),
                key => fmtln!(fmt, "Some({}),", predicate_names.get(&key).unwrap()),
            }
        }
    });
    fmtln!(fmt, "];");
    fmt.empty_line();
}

/// Emit private functions for matching instruction predicates as well as a static
/// `INST_PREDICATES` array indexed by predicate number.
fn emit_inst_predicates(isa: &TargetIsa, fmt: &mut Formatter) {
    fmt.comment(format!("{} instruction predicates.", isa.name));
    for (id, instp) in isa.encodings_predicates.iter() {
        fmtln!(fmt, "fn inst_predicate_{}(func: &crate::ir::Function, inst: &crate::ir::InstructionData) -> bool {{", id.index());
        fmt.indent(|fmt| {
            emit_instp(instp, /* has func */ true, fmt);
        });
        fmtln!(fmt, "}");
    }
    fmt.empty_line();

    // Generate the static table.
    fmt.doc_comment(format!(
        r#"{} instruction predicate table.

        One entry per instruction predicate, so the encoding bytecode can embed indexes into this
        table."#,
        isa.name
    ));
    fmtln!(
        fmt,
        "pub static INST_PREDICATES: [InstPredicate; {}] = [",
        isa.encodings_predicates.len()
    );
    fmt.indent(|fmt| {
        for id in isa.encodings_predicates.keys() {
            fmtln!(fmt, "inst_predicate_{},", id.index());
        }
    });
    fmtln!(fmt, "];");
    fmt.empty_line();
}

/// Emit a table of encoding recipe names keyed by recipe number.
///
/// This is used for pretty-printing encodings.
fn emit_recipe_names(isa: &TargetIsa, fmt: &mut Formatter) {
    fmt.doc_comment(format!(
        r#"{} recipe names, using the same recipe index spaces as the one specified by the
        corresponding binemit file."#,
        isa.name
    ));
    fmtln!(
        fmt,
        "static RECIPE_NAMES: [&str; {}] = [",
        isa.recipes.len()
    );
    fmt.indent(|fmt| {
        for recipe in isa.recipes.values() {
            fmtln!(fmt, r#""{}","#, recipe.name);
        }
    });
    fmtln!(fmt, "];");
    fmt.empty_line();
}

/// Returns a set of all the registers involved in fixed register constraints.
fn get_fixed_registers(operands_in: &[OperandConstraint]) -> HashSet<Register> {
    HashSet::from_iter(
        operands_in
            .iter()
            .map(|constraint| {
                if let OperandConstraint::FixedReg(reg) = &constraint {
                    Some(*reg)
                } else {
                    None
                }
            })
            .filter(|opt| opt.is_some())
            .map(|opt| opt.unwrap()),
    )
}

/// Emit a struct field initializer for an array of operand constraints.
///
/// Note "fixed_registers" must refer to the other kind of operands (i.e. if we're operating on
/// inputs, fixed_registers must contain the fixed output registers).
fn emit_operand_constraints(
    registers: &IsaRegs,
    recipe: &EncodingRecipe,
    constraints: &[OperandConstraint],
    field_name: &'static str,
    tied_operands: &HashMap<usize, usize>,
    fixed_registers: &HashSet<Register>,
    fmt: &mut Formatter,
) {
    if constraints.is_empty() {
        fmtln!(fmt, "{}: &[],", field_name);
        return;
    }

    fmtln!(fmt, "{}: &[", field_name);
    fmt.indent(|fmt| {
        for (n, constraint) in constraints.iter().enumerate() {
            fmt.line("OperandConstraint {");
            fmt.indent(|fmt| {
                match constraint {
                    OperandConstraint::RegClass(reg_class) => {
                        if let Some(tied_input) = tied_operands.get(&n) {
                            fmtln!(fmt, "kind: ConstraintKind::Tied({}),", tied_input);
                        } else {
                            fmt.line("kind: ConstraintKind::Reg,");
                        }
                        fmtln!(
                            fmt,
                            "regclass: &{}_DATA,",
                            registers.classes[*reg_class].name
                        );
                    }
                    OperandConstraint::FixedReg(reg) => {
                        assert!(!tied_operands.contains_key(&n), "can't tie fixed registers");
                        let constraint_kind = if fixed_registers.contains(&reg) {
                            "FixedTied"
                        } else {
                            "FixedReg"
                        };
                        fmtln!(
                            fmt,
                            "kind: ConstraintKind::{}({}),",
                            constraint_kind,
                            reg.unit
                        );
                        fmtln!(
                            fmt,
                            "regclass: &{}_DATA,",
                            registers.classes[reg.regclass].name
                        );
                    }
                    OperandConstraint::TiedInput(tied_input) => {
                        // This is a tied output constraint. It should never happen
                        // for input constraints.
                        assert!(
                            tied_input == tied_operands.get(&n).unwrap(),
                            "invalid tied constraint"
                        );
                        fmtln!(fmt, "kind: ConstraintKind::Tied({}),", tied_input);

                        let tied_class = if let OperandConstraint::RegClass(tied_class) =
                            recipe.operands_in[*tied_input]
                        {
                            tied_class
                        } else {
                            panic!("tied constraints relate only to register inputs");
                        };

                        fmtln!(
                            fmt,
                            "regclass: &{}_DATA,",
                            registers.classes[tied_class].name
                        );
                    }
                    OperandConstraint::Stack(stack) => {
                        assert!(!tied_operands.contains_key(&n), "can't tie stack operand");
                        fmt.line("kind: ConstraintKind::Stack,");
                        fmtln!(
                            fmt,
                            "regclass: &{}_DATA,",
                            registers.classes[stack.regclass].name
                        );
                    }
                }
            });
            fmt.line("},");
        }
    });
    fmtln!(fmt, "],");
}

/// Emit a table of encoding recipe operand constraints keyed by recipe number.
///
/// These are used by the register allocator to pick registers that can be properly encoded.
fn emit_recipe_constraints(isa: &TargetIsa, fmt: &mut Formatter) {
    fmt.doc_comment(format!(
        r#"{} recipe constraints list, using the same recipe index spaces as the one
        specified by the corresponding binemit file. These constraints are used by register
        allocation to select the right location to use for input and output values."#,
        isa.name
    ));
    fmtln!(
        fmt,
        "static RECIPE_CONSTRAINTS: [RecipeConstraints; {}] = [",
        isa.recipes.len()
    );
    fmt.indent(|fmt| {
        for recipe in isa.recipes.values() {
            // Compute a mapping of tied operands in both directions (input tied to outputs and
            // conversely).
            let mut tied_in_to_out = HashMap::new();
            let mut tied_out_to_in = HashMap::new();
            for (out_index, constraint) in recipe.operands_out.iter().enumerate() {
                if let OperandConstraint::TiedInput(in_index) = &constraint {
                    tied_in_to_out.insert(*in_index, out_index);
                    tied_out_to_in.insert(out_index, *in_index);
                }
            }

            // Find the sets of registers involved in fixed register constraints.
            let fixed_inputs = get_fixed_registers(&recipe.operands_in);
            let fixed_outputs = get_fixed_registers(&recipe.operands_out);

            fmt.comment(format!("Constraints for recipe {}:", recipe.name));
            fmt.line("RecipeConstraints {");
            fmt.indent(|fmt| {
                emit_operand_constraints(
                    &isa.regs,
                    recipe,
                    &recipe.operands_in,
                    "ins",
                    &tied_in_to_out,
                    &fixed_outputs,
                    fmt,
                );
                emit_operand_constraints(
                    &isa.regs,
                    recipe,
                    &recipe.operands_out,
                    "outs",
                    &tied_out_to_in,
                    &fixed_inputs,
                    fmt,
                );
                fmtln!(
                    fmt,
                    "fixed_ins: {},",
                    if !fixed_inputs.is_empty() {
                        "true"
                    } else {
                        "false"
                    }
                );
                fmtln!(
                    fmt,
                    "fixed_outs: {},",
                    if !fixed_outputs.is_empty() {
                        "true"
                    } else {
                        "false"
                    }
                );
                fmtln!(
                    fmt,
                    "tied_ops: {},",
                    if !tied_in_to_out.is_empty() {
                        "true"
                    } else {
                        "false"
                    }
                );
                fmtln!(
                    fmt,
                    "clobbers_flags: {},",
                    if recipe.clobbers_flags {
                        "true"
                    } else {
                        "false"
                    }
                );
            });
            fmt.line("},");
        }
    });
    fmtln!(fmt, "];");
    fmt.empty_line();
}

/// Emit a table of encoding recipe code size information.
fn emit_recipe_sizing(isa: &TargetIsa, fmt: &mut Formatter) {
    fmt.doc_comment(format!(
        r#"{} recipe sizing descriptors, using the same recipe index spaces as the one
        specified by the corresponding binemit file. These are used to compute the final size of an
        instruction, as well as to compute the range of branches."#,
        isa.name
    ));
    fmtln!(
        fmt,
        "static RECIPE_SIZING: [RecipeSizing; {}] = [",
        isa.recipes.len()
    );
    fmt.indent(|fmt| {
        for recipe in isa.recipes.values() {
            fmt.comment(format!("Code size information for recipe {}:", recipe.name));
            fmt.line("RecipeSizing {");
            fmt.indent(|fmt| {
                fmtln!(fmt, "base_size: {},", recipe.base_size);
                fmtln!(fmt, "compute_size: {},", recipe.compute_size);
                if let Some(range) = &recipe.branch_range {
                    fmtln!(
                        fmt,
                        "branch_range: Some(BranchRange {{ origin: {}, bits: {} }}),",
                        range.inst_size,
                        range.range
                    );
                } else {
                    fmt.line("branch_range: None,");
                }
            });
            fmt.line("},");
        }
    });
    fmtln!(fmt, "];");
    fmt.empty_line();
}

/// Level 1 table mapping types to `Level2` objects.
struct Level1Table<'cpu_mode> {
    cpu_mode: &'cpu_mode CpuMode,
    legalize_code: TransformGroupIndex,

    table_map: HashMap<Option<ValueType>, usize>,
    table_vec: Vec<Level2Table>,
}

impl<'cpu_mode> Level1Table<'cpu_mode> {
    fn new(cpu_mode: &'cpu_mode CpuMode) -> Self {
        Self {
            cpu_mode,
            legalize_code: cpu_mode.get_default_legalize_code(),
            table_map: HashMap::new(),
            table_vec: Vec::new(),
        }
    }

    /// Returns the level2 table for the given type; None means monomorphic, in this context.
    fn l2table_for(&mut self, typ: Option<ValueType>) -> &mut Level2Table {
        let cpu_mode = &self.cpu_mode;
        let index = match self.table_map.get(&typ) {
            Some(&index) => index,
            None => {
                let legalize_code = cpu_mode.get_legalize_code_for(&typ);
                let table = Level2Table::new(typ.clone(), legalize_code);
                let index = self.table_vec.len();
                self.table_map.insert(typ, index);
                self.table_vec.push(table);
                index
            }
        };
        self.table_vec.get_mut(index).unwrap()
    }

    fn l2tables(&mut self) -> Vec<&mut Level2Table> {
        self.table_vec
            .iter_mut()
            .filter(|table| !table.is_empty())
            .collect::<Vec<_>>()
    }
}

struct Level2HashTableEntry {
    inst_name: String,
    offset: usize,
}

/// Level 2 table mapping instruction opcodes to `EncList` objects.
///
/// A level 2 table can be completely empty if it only holds a custom legalization action for `ty`.
struct Level2Table {
    typ: Option<ValueType>,
    legalize_code: TransformGroupIndex,
    inst_to_encodings: BTreeMap<String, EncodingList>,
    hash_table_offset: Option<usize>,
    hash_table_len: Option<usize>,
}

impl Level2Table {
    fn new(typ: Option<ValueType>, legalize_code: TransformGroupIndex) -> Self {
        Self {
            typ,
            legalize_code,
            inst_to_encodings: BTreeMap::new(),
            hash_table_offset: None,
            hash_table_len: None,
        }
    }

    fn enclist_for(&mut self, inst: &Instruction) -> &mut EncodingList {
        let copied_typ = self.typ.clone();
        self.inst_to_encodings
            .entry(inst.name.clone())
            .or_insert_with(|| EncodingList::new(inst, copied_typ))
    }

    fn enclists(&mut self) -> btree_map::ValuesMut<'_, String, EncodingList> {
        self.inst_to_encodings.values_mut()
    }

    fn is_empty(&self) -> bool {
        self.inst_to_encodings.is_empty()
    }

    fn layout_hashtable(
        &mut self,
        level2_hashtables: &mut Vec<Option<Level2HashTableEntry>>,
        level2_doc: &mut HashMap<usize, Vec<String>>,
    ) {
        let hash_table = generate_table(
            self.inst_to_encodings.values(),
            self.inst_to_encodings.len(),
            // TODO the Python code wanted opcode numbers to start from 1.
            |enc_list| enc_list.inst.opcode_number.index() + 1,
        );

        let hash_table_offset = level2_hashtables.len();
        let hash_table_len = hash_table.len();

        assert!(self.hash_table_offset.is_none());
        assert!(self.hash_table_len.is_none());
        self.hash_table_offset = Some(hash_table_offset);
        self.hash_table_len = Some(hash_table_len);

        level2_hashtables.extend(hash_table.iter().map(|opt_enc_list| {
            opt_enc_list.map(|enc_list| Level2HashTableEntry {
                inst_name: enc_list.inst.camel_name.clone(),
                offset: enc_list.offset.unwrap(),
            })
        }));

        let typ_comment = match &self.typ {
            Some(ty) => ty.to_string(),
            None => "typeless".into(),
        };

        level2_doc.get_or_default(hash_table_offset).push(format!(
            "{:06x}: {}, {} entries",
            hash_table_offset, typ_comment, hash_table_len
        ));
    }
}

/// The u16 values in an encoding list entry are interpreted as follows:
///
/// NR = len(all_recipes)
///
/// entry < 2*NR
///     Try Encoding(entry/2, next_entry) if the recipe predicate is satisfied.
///     If bit 0 is set, stop with the default legalization code.
///     If bit 0 is clear, keep going down the list.
/// entry < PRED_START
///     Stop with legalization code `entry - 2*NR`.
///
/// Remaining entries are interpreted as (skip, pred) pairs, where:
///
/// skip = (entry - PRED_START) >> PRED_BITS
/// pred = (entry - PRED_START) & PRED_MASK
///
/// If the predicate is satisfied, keep going. Otherwise skip over the next
/// `skip` entries. If skip == 0, stop with the default legalization code.
///
/// The `pred` predicate number is interpreted as an instruction predicate if it
/// is in range, otherwise an ISA predicate.

/// Encoding lists are represented as u16 arrays.
const CODE_BITS: usize = 16;

/// Beginning of the predicate code words.
const PRED_START: u16 = 0x1000;

/// Number of bits used to hold a predicate number (instruction + ISA predicates).
const PRED_BITS: usize = 12;

/// Mask for extracting the predicate number.
const PRED_MASK: usize = (1 << PRED_BITS) - 1;

/// Encoder for the list format above.
struct Encoder {
    num_instruction_predicates: usize,

    /// u16 encoding list words.
    words: Vec<u16>,

    /// Documentation comments: Index into `words` + comment.
    docs: Vec<(usize, String)>,
}

impl Encoder {
    fn new(num_instruction_predicates: usize) -> Self {
        Self {
            num_instruction_predicates,
            words: Vec::new(),
            docs: Vec::new(),
        }
    }

    /// Add a recipe+bits entry to the list.
    fn recipe(&mut self, recipes: &Recipes, enc: &Encoding, is_final: bool) {
        let code = (2 * enc.recipe.index() + if is_final { 1 } else { 0 }) as u16;
        assert!(code < PRED_START);

        let doc = format!(
            "--> {}{}",
            enc.to_rust_comment(recipes),
            if is_final { " and stop" } else { "" }
        );
        self.docs.push((self.words.len(), doc));

        self.words.push(code);
        self.words.push(enc.encbits);
    }

    /// Add a predicate entry.
    fn pred(&mut self, pred_comment: String, skip: usize, n: usize) {
        assert!(n <= PRED_MASK);
        let entry = (PRED_START as usize) + (n | (skip << PRED_BITS));
        assert!(entry < (1 << CODE_BITS));
        let entry = entry as u16;

        let doc = if skip == 0 {
            "stop".to_string()
        } else {
            format!("skip {}", skip)
        };
        let doc = format!("{} unless {}", doc, pred_comment);

        self.docs.push((self.words.len(), doc));
        self.words.push(entry);
    }

    /// Add an instruction predicate entry.
    fn inst_predicate(&mut self, pred: InstructionPredicateNumber, skip: usize) {
        let number = pred.index();
        let pred_comment = format!("inst_predicate_{}", number);
        self.pred(pred_comment, skip, number);
    }

    /// Add an ISA predicate entry.
    fn isa_predicate(&mut self, pred: SettingPredicateNumber, skip: usize) {
        // ISA predicates follow the instruction predicates.
        let n = self.num_instruction_predicates + (pred as usize);
        let pred_comment = format!("PredicateView({})", pred);
        self.pred(pred_comment, skip, n);
    }
}

/// List of instructions for encoding a given type + opcode pair.
///
/// An encoding list contains a sequence of predicates and encoding recipes, all encoded as u16
/// values.
struct EncodingList {
    inst: Instruction,
    typ: Option<ValueType>,
    encodings: Vec<Encoding>,
    offset: Option<usize>,
}

impl EncodingList {
    fn new(inst: &Instruction, typ: Option<ValueType>) -> Self {
        Self {
            inst: inst.clone(),
            typ,
            encodings: Default::default(),
            offset: None,
        }
    }

    /// Encode this list as a sequence of u16 numbers.
    ///
    /// Adds the sequence to `enc_lists` and records the returned offset as
    /// `self.offset`.
    ///
    /// Adds comment lines to `enc_lists_doc` keyed by enc_lists offsets.
    fn encode(
        &mut self,
        isa: &TargetIsa,
        cpu_mode: &CpuMode,
        enc_lists: &mut UniqueSeqTable<u16>,
        enc_lists_doc: &mut HashMap<usize, Vec<String>>,
    ) {
        assert!(!self.encodings.is_empty());

        let mut encoder = Encoder::new(isa.encodings_predicates.len());

        let mut index = 0;
        while index < self.encodings.len() {
            let encoding = &self.encodings[index];

            // Try to see how many encodings are following and have the same ISA predicate and
            // instruction predicate, so as to reduce the number of tests carried out by the
            // encoding list interpreter..
            //
            // Encodings with similar tests are hereby called a group. The group includes the
            // current encoding we're looking at.
            let (isa_predicate, inst_predicate) =
                (&encoding.isa_predicate, &encoding.inst_predicate);

            let group_size = {
                let mut group_size = 1;
                while index + group_size < self.encodings.len() {
                    let next_encoding = &self.encodings[index + group_size];
                    if &next_encoding.inst_predicate != inst_predicate
                        || &next_encoding.isa_predicate != isa_predicate
                    {
                        break;
                    }
                    group_size += 1;
                }
                group_size
            };

            let is_last_group = index + group_size == self.encodings.len();

            // The number of entries to skip when a predicate isn't satisfied is the size of both
            // predicates + the size of the group, minus one (for this predicate). Each recipe
            // entry has a size of two u16 (recipe index + bits).
            let mut skip = if is_last_group {
                0
            } else {
                let isap_size = match isa_predicate {
                    Some(_) => 1,
                    None => 0,
                };
                let instp_size = match inst_predicate {
                    Some(_) => 1,
                    None => 0,
                };
                isap_size + instp_size + group_size * 2 - 1
            };

            if let Some(pred) = isa_predicate {
                encoder.isa_predicate(*pred, skip);
                if !is_last_group {
                    skip -= 1;
                }
            }

            if let Some(pred) = inst_predicate {
                encoder.inst_predicate(*pred, skip);
                // No need to update skip, it's dead after this point.
            }

            for i in 0..group_size {
                let encoding = &self.encodings[index + i];
                let is_last_encoding = index + i == self.encodings.len() - 1;
                encoder.recipe(&isa.recipes, encoding, is_last_encoding);
            }

            index += group_size;
        }

        assert!(self.offset.is_none());
        let offset = enc_lists.add(&encoder.words);
        self.offset = Some(offset);

        // Doc comments.
        let recipe_typ_mode_name = format!(
            "{}{} ({})",
            self.inst.name,
            if let Some(typ) = &self.typ {
                format!(".{}", typ.to_string())
            } else {
                "".into()
            },
            cpu_mode.name
        );

        enc_lists_doc
            .get_or_default(offset)
            .push(format!("{:06x}: {}", offset, recipe_typ_mode_name));
        for (pos, doc) in encoder.docs {
            enc_lists_doc.get_or_default(offset + pos).push(doc);
        }
        enc_lists_doc
            .get_or_default(offset + encoder.words.len())
            .insert(0, format!("end of {}", recipe_typ_mode_name));
    }
}

fn make_tables(cpu_mode: &CpuMode) -> Level1Table {
    let mut table = Level1Table::new(cpu_mode);

    for encoding in &cpu_mode.encodings {
        table
            .l2table_for(encoding.bound_type.clone())
            .enclist_for(encoding.inst())
            .encodings
            .push(encoding.clone());
    }

    // Ensure there are level 1 table entries for all types with a custom legalize action.
    for value_type in cpu_mode.get_legalized_types() {
        table.l2table_for(Some(value_type.clone()));
    }
    // ... and also for monomorphic instructions.
    table.l2table_for(None);

    table
}

/// Compute encodings and doc comments for encoding lists in `level1`.
fn encode_enclists(
    isa: &TargetIsa,
    cpu_mode: &CpuMode,
    level1: &mut Level1Table,
    enc_lists: &mut UniqueSeqTable<u16>,
    enc_lists_doc: &mut HashMap<usize, Vec<String>>,
) {
    for level2 in level1.l2tables() {
        for enclist in level2.enclists() {
            enclist.encode(isa, cpu_mode, enc_lists, enc_lists_doc);
        }
    }
}

fn encode_level2_hashtables<'a>(
    level1: &'a mut Level1Table,
    level2_hashtables: &mut Vec<Option<Level2HashTableEntry>>,
    level2_doc: &mut HashMap<usize, Vec<String>>,
) {
    for level2 in level1.l2tables() {
        level2.layout_hashtable(level2_hashtables, level2_doc);
    }
}

fn emit_encoding_tables(defs: &SharedDefinitions, isa: &TargetIsa, fmt: &mut Formatter) {
    // Level 1 tables, one per CPU mode.
    let mut level1_tables: HashMap<&'static str, Level1Table> = HashMap::new();

    // Single table containing all the level2 hash tables.
    let mut level2_hashtables = Vec::new();
    let mut level2_doc: HashMap<usize, Vec<String>> = HashMap::new();

    // Tables for encoding lists with comments.
    let mut enc_lists = UniqueSeqTable::new();
    let mut enc_lists_doc = HashMap::new();

    for cpu_mode in &isa.cpu_modes {
        level2_doc
            .get_or_default(level2_hashtables.len())
            .push(cpu_mode.name.into());

        let mut level1 = make_tables(cpu_mode);

        encode_enclists(
            isa,
            cpu_mode,
            &mut level1,
            &mut enc_lists,
            &mut enc_lists_doc,
        );
        encode_level2_hashtables(&mut level1, &mut level2_hashtables, &mut level2_doc);

        level1_tables.insert(cpu_mode.name, level1);
    }

    // Compute an appropriate Rust integer type to use for offsets into a table of the given length.
    let offset_type = |length: usize| {
        if length <= 0x10000 {
            "u16"
        } else {
            assert!(u32::try_from(length).is_ok(), "table too big!");
            "u32"
        }
    };

    let level1_offset_type = offset_type(level2_hashtables.len());
    let level2_offset_type = offset_type(enc_lists.len());

    // Emit encoding lists.
    fmt.doc_comment(
        format!(r#"{} encoding lists.

        This contains the entire encodings bytecode for every single instruction; the encodings
        interpreter knows where to start from thanks to the initial lookup in the level 1 and level 2
        table entries below."#, isa.name)
    );
    fmtln!(fmt, "pub static ENCLISTS: [u16; {}] = [", enc_lists.len());
    fmt.indent(|fmt| {
        let mut line = Vec::new();
        for (index, entry) in enc_lists.iter().enumerate() {
            if let Some(comments) = enc_lists_doc.get(&index) {
                if !line.is_empty() {
                    fmtln!(fmt, "{},", line.join(", "));
                    line.clear();
                }
                for comment in comments {
                    fmt.comment(comment);
                }
            }
            line.push(format!("{:#06x}", entry));
        }
        if !line.is_empty() {
            fmtln!(fmt, "{},", line.join(", "));
        }
    });
    fmtln!(fmt, "];");
    fmt.empty_line();

    // Emit the full concatenation of level 2 hash tables.
    fmt.doc_comment(format!(
        r#"{} level 2 hash tables.

        This hash table, keyed by instruction opcode, contains all the starting offsets for the
        encodings interpreter, for all the CPU modes. It is jumped to after a lookup on the
        instruction's controlling type in the level 1 hash table."#,
        isa.name
    ));
    fmtln!(
        fmt,
        "pub static LEVEL2: [Level2Entry<{}>; {}] = [",
        level2_offset_type,
        level2_hashtables.len()
    );
    fmt.indent(|fmt| {
        for (offset, entry) in level2_hashtables.iter().enumerate() {
            if let Some(comments) = level2_doc.get(&offset) {
                for comment in comments {
                    fmt.comment(comment);
                }
            }
            if let Some(entry) = entry {
                fmtln!(
                    fmt,
                    "Level2Entry {{ opcode: Some(crate::ir::Opcode::{}), offset: {:#08x} }},",
                    entry.inst_name,
                    entry.offset
                );
            } else {
                fmt.line("Level2Entry { opcode: None, offset: 0 },");
            }
        }
    });
    fmtln!(fmt, "];");
    fmt.empty_line();

    // Emit a level 1 hash table for each CPU mode.
    for cpu_mode in &isa.cpu_modes {
        let level1 = &level1_tables.get(cpu_mode.name).unwrap();
        let hash_table = generate_table(
            level1.table_vec.iter(),
            level1.table_vec.len(),
            |level2_table| {
                if let Some(typ) = &level2_table.typ {
                    typ.number().expect("type without a number") as usize
                } else {
                    0
                }
            },
        );

        fmt.doc_comment(format!(
            r#"{} level 1 hash table for the CPU mode {}.

            This hash table, keyed by instruction controlling type, contains all the level 2
            hash-tables offsets for the given CPU mode, as well as a legalization identifier indicating
            which legalization scheme to apply when the instruction doesn't have any valid encoding for
            this CPU mode.
        "#,
            isa.name, cpu_mode.name
        ));
        fmtln!(
            fmt,
            "pub static LEVEL1_{}: [Level1Entry<{}>; {}] = [",
            cpu_mode.name.to_uppercase(),
            level1_offset_type,
            hash_table.len()
        );
        fmt.indent(|fmt| {
            for opt_level2 in hash_table {
                let level2 = match opt_level2 {
                    None => {
                        // Empty hash table entry. Include the default legalization action.
                        fmtln!(fmt, "Level1Entry {{ ty: ir::types::INVALID, log2len: !0, offset: 0, legalize: {} }},",
                               isa.translate_group_index(level1.legalize_code));
                        continue;
                    }
                    Some(level2) => level2,
                };

                let legalize_comment = defs.transform_groups.get(level2.legalize_code).name;
                let legalize_code = isa.translate_group_index(level2.legalize_code);

                let typ_name = if let Some(typ) = &level2.typ {
                    typ.rust_name()
                } else {
                    "ir::types::INVALID".into()
                };

                if level2.is_empty() {
                    // Empty level 2 table: Only a specialized legalization action, no actual
                    // table.
                    // Set an offset that is out of bounds, but make sure it doesn't overflow its
                    // type when adding `1<<log2len`.
                    fmtln!(fmt, "Level1Entry {{ ty: {}, log2len: 0, offset: !0 - 1, legalize: {} }}, // {}",
                           typ_name, legalize_code, legalize_comment);
                    continue;
                }

                // Proper level 2 hash table.
                let l2l = (level2.hash_table_len.unwrap() as f64).log2() as i32;
                assert!(l2l > 0, "Level2 hash table was too small.");
                fmtln!(fmt, "Level1Entry {{ ty: {}, log2len: {}, offset: {:#08x}, legalize: {} }}, // {}",
                       typ_name, l2l, level2.hash_table_offset.unwrap(), legalize_code, legalize_comment);
            }
        });
        fmtln!(fmt, "];");
        fmt.empty_line();
    }
}

fn gen_isa(defs: &SharedDefinitions, isa: &TargetIsa, fmt: &mut Formatter) {
    // Make the `RECIPE_PREDICATES` table.
    emit_recipe_predicates(isa, fmt);

    // Make the `INST_PREDICATES` table.
    emit_inst_predicates(isa, fmt);

    emit_encoding_tables(defs, isa, fmt);

    emit_recipe_names(isa, fmt);
    emit_recipe_constraints(isa, fmt);
    emit_recipe_sizing(isa, fmt);

    // Finally, tie it all together in an `EncInfo`.
    fmt.line("pub static INFO: isa::EncInfo = isa::EncInfo {");
    fmt.indent(|fmt| {
        fmt.line("constraints: &RECIPE_CONSTRAINTS,");
        fmt.line("sizing: &RECIPE_SIZING,");
        fmt.line("names: &RECIPE_NAMES,");
    });
    fmt.line("};");
}

pub(crate) fn generate(
    defs: &SharedDefinitions,
    isa: &TargetIsa,
    filename: &str,
    out_dir: &str,
) -> Result<(), error::Error> {
    let mut fmt = Formatter::new();
    gen_isa(defs, isa, &mut fmt);
    fmt.update_file(filename, out_dir)?;
    Ok(())
}