1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
//! Convenience type for ergonomically pursuing an exponential back-off busy
//! waiting strategy in order to reduce contention on shared memory and caches
//! in a concurrent environment.

#[deny(unsafe_code)]
#[cfg(feature = "std")]
use std::time::{Duration, Instant};

use core::cell::RefCell;
use core::fmt;
use core::sync::atomic::{self, AtomicUsize, Ordering};

#[cfg(feature = "random")]
use rand::rngs::SmallRng;
#[cfg(feature = "random")]
use rand::{Rng, SeedableRng};

////////////////////////////////////////////////////////////////////////////////////////////////////
// BackOff
////////////////////////////////////////////////////////////////////////////////////////////////////

/// A type for exponential back-off in tight loops.
///
/// In concurrent environments it can often be beneficial to back off from
/// accessing shared variables in loops in order to reduce contention and
/// improve performance for all participating threads by spinning for a short
/// amount of time.
#[derive(Clone)]
pub struct BackOff {
    strategy: RefCell<Strategy>,
}

/********** impl inherent *************************************************************************/

impl Default for BackOff {
    #[inline]
    fn default() -> Self {
        Self::new()
    }
}

/********** impl inherent *************************************************************************/

impl BackOff {
    /// Creates a new [`BackOff`] instance with a fixed exponential back-off
    /// strategy.
    #[inline]
    pub const fn new() -> Self {
        Self { strategy: RefCell::new(Strategy::constant()) }
    }

    #[cfg(feature = "rand")]
    /// Creates a new [`BackOff`] instance with a randomized exponential
    /// back-off strategy.
    pub fn random() -> Self {
        Self { strategy: RefCell::new(Strategy::random()) }
    }

    #[cfg(feature = "rand")]
    /// Creates a new [`BackOff`] instance with a randomized exponential
    /// back-off strategy using the given `seed`.
    pub fn random_with_seed(seed: u64) -> Self {
        Self { strategy: RefCell::new(Strategy::random_with_seed(seed)) }
    }

    /// Resets the [`BackOff`] instance to its initial state.
    #[inline]
    pub fn reset(&self) {
        self.strategy.borrow_mut().reset();
    }

    /// Spins for a bounded number of steps
    ///
    /// On CPUs that support such instructions, in each step the processor will
    /// be instructed to deliberately slow down, e.g. using the `pause`
    /// instruction on x86, which can also save energy.
    ///
    /// Each invocation of this method exponentially increases the number of
    /// spin cycles until a point at which further spinning is no longer
    /// advisable and other strategies, such as yielding the current thread to
    /// the OS, should be preferred.
    /// From this point on, the number of spin cycles remains constant with each
    /// further invocation of [`spin`][BackOff::spin].
    ///
    /// Whether this point has been reached can be determined through the
    /// [`advise_yield`][BackOff::advise_yield] method.
    #[inline]
    pub fn spin(&self) {
        let steps = self.strategy.borrow_mut().exponential_backoff();

        // this uses a forced function call to prevent optimizing the loop away
        for _ in 0..steps {
            #[inline(never)]
            fn spin() {
                atomic::spin_loop_hint();
            }

            spin();
        }
    }

    /// Returns `true` if further spinning is not advisable and other means such
    /// as voluntarily yielding the current thread could be more efficient.
    ///
    /// # Examples
    ///
    /// Back-off exponentially until it is no longer advisable.
    ///
    /// ```
    /// use conquer_util::BackOff;
    ///
    /// let mut backoff = BackOff::new();
    /// while !backoff.advise_yield() {
    ///     backoff.spin();
    /// }
    /// ```
    ///
    /// Repedeatly check a condition and either back-off exponentially or yield
    /// the current thread, if the condition is not yet met.
    ///
    /// ```
    /// use conquer_util::BackOff;
    ///
    /// # let cond = true;
    ///
    /// let mut backoff = BackOff::new();
    /// while !cond {
    ///     if backoff.advise_yield() {
    ///         BackOff::yield_now();
    ///     } else {
    ///         backoff.spin();
    ///     }
    /// }
    /// ```
    ///
    /// # Notes
    ///
    /// On an Intel(R) i5 with 2.60 GHz a full back-off cycle has been measured
    /// to take approximately 750 nanoseconds
    #[inline]
    pub fn advise_yield(&self) -> bool {
        self.strategy.borrow().advise_yield()
    }

    #[cfg(feature = "std")]
    /// Spins *at least* for the specified `dur`.
    ///
    /// If a very short duration is specified, this function may spin for a
    /// longer, platform-specific minimum time.
    pub fn spin_for(dur: Duration) {
        let now = Instant::now();
        let end = now + dur;

        while Instant::now() < end {
            atomic::spin_loop_hint();
        }
    }

    #[cfg(feature = "std")]
    /// Cooperatively yields the current thread.
    ///
    /// This is merely a convenience wrapper for
    /// [`thread::yield_now`][std::thread::yield_now]
    #[inline]
    pub fn yield_now() {
        std::thread::yield_now();
    }
}

/********** impl Debug ****************************************************************************/

impl fmt::Debug for BackOff {
    #[inline]
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        f.debug_struct("BackOff").field("advise_yield", &self.advise_yield()).finish()
    }
}

/********** impl Display **************************************************************************/

impl fmt::Display for BackOff {
    #[inline]
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "advise yield: {}", self.advise_yield())
    }
}

////////////////////////////////////////////////////////////////////////////////////////////////////
// Strategy
////////////////////////////////////////////////////////////////////////////////////////////////////

#[derive(Clone, Debug)]
enum Strategy {
    Const {
        pow: u32,
    },
    #[cfg(feature = "random")]
    Random {
        pow: u32,
        rng: SmallRng,
    },
}

impl Strategy {
    const INIT_POW: u32 = 1;
    const SPIN_LIMIT_POW: u32 = 7;

    #[inline]
    const fn constant() -> Self {
        Strategy::Const { pow: Self::INIT_POW }
    }

    #[cfg(feature = "random")]
    #[inline]
    fn random() -> Self {
        #[cfg(target_pointer_width = "32")]
        const INIT_SEED: usize = 0x608c_dbfc;
        #[cfg(target_pointer_width = "64")]
        const INIT_SEED: usize = 0xd1dc_dceb_2fb4_70f3;
        const SEED_INCREMENT: usize = 51;

        static GLOBAL_SEED: AtomicUsize = AtomicUsize::new(INIT_SEED);
        let seed = GLOBAL_SEED.fetch_add(SEED_INCREMENT, Ordering::Relaxed) as u64;

        Strategy::Random { pow: Self::INIT_POW, rng: SmallRng::seed_from_u64(seed) }
    }

    #[cfg(feature = "random")]
    #[inline]
    fn random_with_seed(seed: u64) -> Self {
        Strategy::Random { pow: Self::INIT_POW, rng: SmallRng::seed_from_u64(seed) }
    }

    #[inline]
    fn exponential_backoff(&mut self) -> u32 {
        match self {
            Strategy::Const { pow } => {
                let steps = 1 << *pow;

                if *pow < Self::SPIN_LIMIT_POW {
                    *pow += 1;
                }

                steps
            }
            #[cfg(feature = "random")]
            Strategy::Random { pow, rng } => {
                let low = 1 << (*pow - 1);
                let high = 1 << *pow;

                if *pow < Self::SPIN_LIMIT_POW {
                    *pow += 1;
                }

                rng.gen_range(low, high)
            }
        }
    }

    #[inline]
    fn reset(&mut self) {
        let pow = match self {
            Strategy::Const { pow } => pow,
            #[cfg(feature = "random")]
            Strategy::Random { pow, .. } => pow,
        };

        *pow = Self::INIT_POW;
    }

    #[inline]
    fn advise_yield(&self) -> bool {
        let pow = match self {
            Strategy::Const { pow } => *pow,
            #[cfg(feature = "random")]
            Strategy::Random { pow, .. } => *pow,
        };

        pow == Self::SPIN_LIMIT_POW
    }
}

#[cfg(test)]
mod tests {
    use super::{BackOff, Strategy};

    #[test]
    fn spin_full_const() {
        let backoff = BackOff::new();
        let mut steps = 1;
        while !backoff.advise_yield() {
            backoff.spin();
            steps += 1;
        }

        assert_eq!(steps, Strategy::SPIN_LIMIT_POW);
    }

    #[test]
    fn spin_full_random() {
        let backoff = BackOff::random();
        let mut steps = 1;
        while !backoff.advise_yield() {
            backoff.spin();
            steps += 1;
        }

        assert_eq!(steps, Strategy::SPIN_LIMIT_POW);
    }
}