1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
use concurrent_help::to_concurrent_on_section;
use num_cpus;
use primal_sieve;

pub fn prime_filter_concurrently(max_num: usize, threads: usize) -> Vec<bool>{
    prime_filter_section_concurrently(0, max_num, threads)
}
pub fn prime_filter_section_concurrently(min_num:usize, max_num: usize, threads: usize) -> Vec<bool>{
    to_concurrent_on_section(prime_filter_section_sequentially, min_num, max_num, threads, 12)
}

fn int_sqrt(n:usize) -> usize{
    if n < (1 << 52) {
        (n as f64).sqrt() as usize
    }else{
        let mut x = (n as f64).sqrt() as usize;
        loop{
                x = match (x + n/x) >> 1 {
                    new_x if new_x == x => break,
                    new_x if new_x*new_x == n + 1 => {x = new_x - 1; break},
                    new_x => new_x,
                };
            }
        x
    }
}

#[test]
fn private_filter_test(){
    assert_eq!(5, ceil_sqrt(24));
    assert_eq!(2, int_sqrt(4));
    assert_eq!(4, int_sqrt(24));
    assert_eq!(10, int_sqrt(101));
    assert_eq!(1, int_sqrt(1));
    assert_eq!(10, int_sqrt(100));
    assert_eq!(3, int_sqrt(13));
    assert_eq!(1_000_000_000, int_sqrt(10_00_000_000_000_000_000));
    assert_eq!(1<<27, ceil_sqrt((1<<54) - 1));
    assert_eq!(94906265, int_sqrt((1<<53) + 1));
    assert_eq!(1<<26, int_sqrt((1<<52) + 1 ));
    assert_eq!(1<<25, int_sqrt((1<<50) + 1 ));
    assert_eq!(100000000, ceil_sqrt(9999999999989999));
    for i in (10000000000000000-100000000)..10000000000000000{
        assert_eq!(100000000, ceil_sqrt(i));
    }
    for i in 10000000000000000..(10000000000000000+100000000){
        assert_eq!(100000000, int_sqrt(i));
    }
}

fn ceil_sqrt(n:usize) -> usize{
    if n == 0{
        return 0;
    }
    match int_sqrt(n){
        sqrt if sqrt*sqrt == n => sqrt,
        sqrt => sqrt+1,
    }
}
pub fn prime_filter(max_num: usize) -> Vec<bool>{
    prime_filter_concurrently(max_num, num_cpus::get())
}

pub fn prime_filter_section(min_num:usize, max_num: usize) -> Vec<bool>{
    prime_filter_section_concurrently(min_num, max_num, num_cpus::get())
}
fn primal_sieve_to_vec(min_num:usize, max_num:usize) -> Vec<bool>{
    let ps = primal_sieve::Sieve::new(max_num);
    (min_num..max_num).map(|i| ps.is_prime(i)).collect()
}
pub fn prime_filter_sequentially(max_num: usize) -> Vec<bool>{
    primal_sieve_to_vec(0, max_num)
}

pub fn prime_filter_section_sequentially(min_num:usize, max_num: usize) -> Vec<bool>{

    assert!(min_num<max_num);

    if min_num <= 210{
        return primal_sieve_to_vec(min_num, max_num);
    }
    
    sieve_of_atkin(min_num, max_num)
}

fn sieve_of_atkin(min_num:usize, max_num: usize) -> Vec<bool>{
    //Sieve of Atkin
    let mut prime_filter = vec![false; max_num-min_num];

    // set_true_if_in_range!(2, 3, 5 => prime_filter + min_num, min_num, max_num);
    //Macro equivilent:
    // if (min_num <= 2) & (max_num > 2) {prime_filter[2-min_num] = true;}
    // if (min_num <= 3) & (max_num > 3) {prime_filter[3-min_num] = true;}
    // if (min_num <= 5) & (max_num > 5) {prime_filter[5-min_num] = true;}

    let (mut y_sq, mut to_next_y_sq) = (1, 3);

    //O(sqrt(max_num)*(sqrt(max_num) - sqrt(min_num)))
    while y_sq<max_num {
        if y_sq%2 == 1 {
            //CASE 1
            //n_1 = 4x^2 + y^2 === 1 (mod 4)
            let (mut n_1, mut to_next_n_1) = match y_sq < min_num {
                false => (y_sq+4, 12),
                _ => {
                    let min_num_x = (ceil_sqrt(min_num - y_sq) +1)/2;
                    (4*min_num_x*min_num_x + y_sq, 8*min_num_x + 4)
                },
            };
            loop{
                //While n_1<max_num,
                //When n_1 % 60 === 1, 13, 17, 29, 37, 41, 49, or 53, do
                // prime_filter[n_1-min_num] ^= true
                do_if_mod_60_match_pat!( 1 | 13 | 17 | 29 | 37 | 41 | 49 | 53, n_1 < max_num,
                    prime_filter[n_1-min_num] ^= true);
                n_1 += to_next_n_1;
                to_next_n_1 += 8;
            };
        };
        if y_sq%3 == 1 {
            //CASE 2
            //n_2 = 3x^2 + y^2 === 1 (mod 6)
            let (mut n_2, mut to_next_n_2) = match y_sq < min_num {
                false => (y_sq+3, 9),
                _ => {
                    let min_num_x = (ceil_sqrt((min_num - y_sq)*3)+2)/3;
                    (3*min_num_x*min_num_x + y_sq, 6*min_num_x + 3)
                },
            };
            loop {
                //While n_2<max_num,
                //When n_2 % 60 === 7, 19, 31, or 43, do
                // prime_filter[n_2-min_num] ^= true
                do_if_mod_60_match_pat!(7 | 19 | 31 | 43, n_2 < max_num,
                    prime_filter[n_2-min_num] ^= true);
                n_2 += to_next_n_2;
                to_next_n_2 += 6;
            };
            //CASE 3
            //n_3 = 3x^2 - y^2 === 11 (mod 12)
            //Initially, we set x = y+1 -> n_3 = 3(y+1)^2 - y^2 = 2*y^2 + 6*y + 3
            //Amd then hop x by 2 each iteration.
            let (mut n_3, mut to_next_n_3) = match (y_sq << 1) < min_num {
                false => (2*y_sq+3*to_next_y_sq, 6*to_next_y_sq+18),
                _ => {
                    let min_num_x = match (ceil_sqrt((min_num + y_sq)*3) +2)/3{
                        mx if (mx+y_sq)%2 == 0 => mx + 1,
                        mx => mx,
                    };
                    (3*min_num_x*min_num_x - y_sq, 12*min_num_x + 12)
                },
            };
            loop {
                //While n_3<max_num,
                //When n_3 % 60 === 11, 23, 47, or 59, do
                // prime_filter[n_3-min_num] ^= true
                do_if_mod_60_match_pat!(11 | 23 | 47 | 59, n_3 < max_num,
                    prime_filter[n_3-min_num] ^= true);
                n_3 += to_next_n_3;
                to_next_n_3 += 24;
            };
        };
        do_while!({
            y_sq += to_next_y_sq;
            to_next_y_sq += 2;
        } y_sq%6 == 0 );
    };

    //Eliminate non-squarefree numbers

    //O(max_num - min_num + sqrt(max_num))

    //This is because the inner loop
    //will iterate floor((max_num - min_num)/n^2) + 1 times for each n
    //Since the number of n's is proportional to sqrt(max_num),
    //And since the series of 1/n^2 converges, we obtain the above complexity.

    let mut n_sq = 49; // 7^2
    let mut next_n_sq = 32; //9^2 - 7^2, skip even numbers.
    while n_sq < max_num {
        let mut non_sq_free =  n_sq * match min_num/n_sq{
            k if k%2 == 1 => k,
            k => k + 1,
        };
        while non_sq_free < max_num {
            if non_sq_free >= min_num {
                prime_filter[non_sq_free - min_num] = false;
            }
            do_while!({
                non_sq_free += n_sq + n_sq;
            } (non_sq_free%3==0) | (non_sq_free%5==0));

        };
        do_while!({
            n_sq += next_n_sq;
            next_n_sq += 8;
        }(n_sq%3==0) | (n_sq%5 == 0));
    }
    prime_filter
}

#[cfg(test)]
pub fn old_prime_filter(max_num: usize) -> Vec<bool>{
    slow_prime_filter(max_num)
}



#[cfg(test)]
fn slow_prime_filter(max_num: usize) -> Vec<bool>{
    if max_num < 5 {
         let mut ret = vec![false, false, true, true];
         ret.truncate(max_num);
         return ret
     }
    let mut prime_filter = vec![true; max_num];
    prime_filter[0] = false;
    prime_filter[1] = false;
    let mut cur_num = 2;
    'outer: loop{
        for i in (cur_num+1)..max_num{
            if 0 == i%cur_num { prime_filter[i] = false; }
        }
        cur_num += 1;
        while !prime_filter[cur_num]{
            if cur_num*cur_num > max_num {
                break 'outer
            }
            cur_num += 1;
        }
    };
    prime_filter
}