1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
// Copyright 2013-2014 The CGMath Developers. For a full listing of the authors,
// refer to the Cargo.toml file at the top-level directory of this distribution.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

use std::fmt;

use cgmath::{ApproxEq, BaseFloat};
use cgmath::{Point3};
use cgmath::{Vector3, Vector4};
use cgmath::{EuclideanSpace, InnerSpace};
use cgmath::{Zero};


/// A 3-dimensional plane formed from the equation: `A*x + B*y + C*z - D = 0`.
///
/// # Fields
///
/// - `n`: a unit vector representing the normal of the plane where:
///   - `n.x`: corresponds to `A` in the plane equation
///   - `n.y`: corresponds to `B` in the plane equation
///   - `n.z`: corresponds to `C` in the plane equation
/// - `d`: the distance value, corresponding to `D` in the plane equation
///
/// # Notes
///
/// The `A*x + B*y + C*z - D = 0` form is preferred over the other common
/// alternative, `A*x + B*y + C*z + D = 0`, because it tends to avoid
/// superfluous negations (see _Real Time Collision Detection_, p. 55).
#[derive(Copy, Clone, PartialEq)]
#[cfg_attr(feature = "rustc-serialize", derive(RustcEncodable, RustcDecodable))]
pub struct Plane<S> {
    pub n: Vector3<S>,
    pub d: S,
}

impl<S: BaseFloat> Plane<S> {
    /// Construct a plane from a normal vector and a scalar distance. The
    /// plane will be perpendicular to `n`, and `d` units offset from the
    /// origin.
    pub fn new(n: Vector3<S>, d: S) -> Plane<S> {
        Plane { n: n, d: d }
    }

    /// # Arguments
    ///
    /// - `a`: the `x` component of the normal
    /// - `b`: the `y` component of the normal
    /// - `c`: the `z` component of the normal
    /// - `d`: the plane's distance value
    pub fn from_abcd(a: S, b: S, c: S, d: S) -> Plane<S> {
        Plane { n: Vector3::new(a, b, c), d: d }
    }

    /// Construct a plane from the components of a four-dimensional vector
    pub fn from_vector4(v: Vector4<S>) -> Plane<S> {
        Plane { n: Vector3::new(v.x, v.y, v.z), d: v.w }
    }

    /// Construct a plane from the components of a four-dimensional vector
    /// Assuming alternative representation: `A*x + B*y + C*z + D = 0`
    pub fn from_vector4_alt(v: Vector4<S>) -> Plane<S> {
        Plane { n: Vector3::new(v.x, v.y, v.z), d: -v.w }
    }

    /// Constructs a plane that passes through the the three points `a`, `b` and `c`
    pub fn from_points(a: Point3<S>, b: Point3<S>, c: Point3<S>) -> Option<Plane<S>> {
        // create two vectors that run parallel to the plane
        let v0 = b - a;
        let v1 = c - a;

        // find the normal vector that is perpendicular to v1 and v2
        let n = v0.cross(v1);

        if ulps_eq!(n, &Vector3::zero()) { None }
        else {
            // compute the normal and the distance to the plane
            let n = n.normalize();
            let d = -a.dot(n);

            Some(Plane::new(n, d))
        }
    }

    /// Construct a plane from a point and a normal vector.
    /// The plane will contain the point `p` and be perpendicular to `n`.
    pub fn from_point_normal(p: Point3<S>, n: Vector3<S>) -> Plane<S> {
        Plane { n: n, d: p.dot(n) }
    }

    /// Normalize a plane.
    pub fn normalize(&self) -> Option<Plane<S>> {
        if ulps_eq!(self.n, &Vector3::zero()) { None }
        else {
            let denom = S::one() / self.n.magnitude();
            Some(Plane::new(self.n * denom, self.d*denom))
        }
    }
}

impl<S> ApproxEq for Plane<S>
    // where S: BaseFloat + ApproxEq<Epsilon=S>
    where S: BaseFloat
{
    type Epsilon = S::Epsilon;

    #[inline]
    fn default_epsilon() -> S::Epsilon {
        S::default_epsilon()
    }

    #[inline]
    fn default_max_relative() -> S::Epsilon {
        S::default_max_relative()
    }

    #[inline]
    fn default_max_ulps() -> u32 {
        S::default_max_ulps()
    }

    #[inline]
    fn relative_eq(&self, other: &Self, epsilon: S::Epsilon, max_relative: S::Epsilon) -> bool {
        Vector3::relative_eq(&self.n, &other.n, epsilon, max_relative) &&
        S::relative_eq(&self.d, &other.d, epsilon, max_relative)
    }

    #[inline]
    fn ulps_eq(&self, other: &Self, epsilon: S::Epsilon, max_ulps: u32) -> bool {
        Vector3::ulps_eq(&self.n, &other.n, epsilon, max_ulps) &&
        S::ulps_eq(&self.d, &other.d, epsilon, max_ulps)
    }
}

impl<S: BaseFloat> fmt::Debug for Plane<S> {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "{:?}x + {:?}y + {:?}z - {:?} = 0",
               self.n.x, self.n.y, self.n.z, self.d)
    }
}