1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
// Those macros should be removed when read()/read_only()/write() are refactored
// to return typed memory. For now they remove a lot of visual clutter and
// lessen probability of stupid mistakes.
macro_rules! read {
    ($x:ident, $slf:ident) => (
        try!($x.read($slf.device()))
    )
}

macro_rules! read_write {
    ($x:ident, $slf:ident) => (
        try!($x.read_write($slf.device()))
    )
}

macro_rules! write_only {
    ($x:ident, $slf:ident) => (
        try!($x.write_only($slf.device()))
    )
}

// trans! cannot be inlined into macros above, because `$mem` would become
// intermidiate variable and `*mut $t` will outlive it.
macro_rules! trans {
    ($mem:ident, $t:ident) => (
        unsafe { ::std::mem::transmute::<u64, *mut $t>(*$mem.id_c()) }
    )
}

macro_rules! exec {
    ($name:ident, $f:expr) => ({
        let res = $f;
        res.map_err(|_| PluginError::Operation(
            stringify!(Unable to execute operation $name)).into())
    })
}


#[macro_export]
macro_rules! iblas_asum_for_cuda {
    ($t:ident) => (
        fn asum(&self, x: &SharedTensor<$t>, result: &mut SharedTensor<$t>)
                -> Result<(), ::coaster::error::Error> {
            let n = x.desc().size() as i32;
            let x_mem = read!(x, self);
            let r_mem = write_only!(result, self);
            exec!(asum, CONTEXT.asum(
                trans!(x_mem, $t),
                trans!(r_mem, $t),
                n, None))
        }
    );
}

#[macro_export]
macro_rules! iblas_axpy_for_cuda {
    ($t:ident) => (
        fn axpy(&self, a: &SharedTensor<$t>, x: &SharedTensor<$t>,
                y: &mut SharedTensor<$t>)
                -> Result<(), ::coaster::error::Error> {
            let n = x.desc().size() as i32;
            let a_mem = read!(a, self);
            let x_mem = read!(x, self);
            let y_mem = read_write!(y, self);
            exec!(axpy, CONTEXT.axpy(
                trans!(a_mem, $t),
                trans!(x_mem, $t),
                trans!(y_mem, $t),
                n, None, None))
        }
    );
}

#[macro_export]
macro_rules! iblas_copy_for_cuda {
    ($t:ident) => (
        fn copy(&self, x: &SharedTensor<$t>, y: &mut SharedTensor<$t>)
                -> Result<(), ::coaster::error::Error> {
            let n = x.desc().size() as i32;
            let x_mem = read!(x, self);
            let y_mem = write_only!(y, self);
            exec!(copy, CONTEXT.copy(
                trans!(x_mem, $t),
                trans!(y_mem, $t),
                n, None, None))
        }
    );
}

#[macro_export]
macro_rules! iblas_dot_for_cuda {
    ($t:ident) => (
        fn dot(&self, x: &SharedTensor<$t>, y: &SharedTensor<$t>,
               result: &mut SharedTensor<$t>)
               -> Result<(), ::coaster::error::Error> {
            let n = x.desc().size() as i32;
            let x_mem = read!(x, self);
            let y_mem = read!(y, self);
            let r_mem = write_only!(result, self);
            exec!(dot, CONTEXT.dot(
                trans!(x_mem, $t),
                trans!(y_mem, $t),
                trans!(r_mem, $t),
                n, None, None))
        }
    );
}

#[macro_export]
macro_rules! iblas_nrm2_for_cuda {
    ($t:ident) => (
        fn nrm2(&self, x: &SharedTensor<$t>, result: &mut SharedTensor<$t>)
                -> Result<(), ::coaster::error::Error> {
            let n = x.desc().size() as i32;
            let x_mem = read!(x, self);
            let r_mem = write_only!(result, self);
            exec!(nrm2, CONTEXT.nrm2(
                trans!(x_mem, $t),
                trans!(r_mem, $t),
                n, None))
        }
    );
}

#[macro_export]
macro_rules! iblas_scal_for_cuda {
    ($t:ident) => (
        fn scal(&self, a: &SharedTensor<$t>, x: &mut SharedTensor<$t>)
                -> Result<(), ::coaster::error::Error> {
            let n = x.desc().size() as i32;
            let a_mem = read!(a, self);
            let x_mem = read_write!(x, self);
            exec!(scal, CONTEXT.scal(
                trans!(a_mem, $t),
                trans!(x_mem, $t),
                n, None))
        }
    );
}

#[macro_export]
macro_rules! iblas_swap_for_cuda {
    ($t:ident) => (
        fn swap(&self, x: &mut SharedTensor<$t>, y: &mut SharedTensor<$t>)
                -> Result<(), ::coaster::error::Error> {
            let n = x.desc().size() as i32;
            let x_mem = read_write!(x, self);
            let y_mem = read_write!(y, self);
            exec!(swap, CONTEXT.swap(
                trans!(x_mem, $t),
                trans!(y_mem, $t),
                n, None, None))
        }
    );
}

#[macro_export]
macro_rules! iblas_gemm_for_cuda {
    ($t:ident) => (
        fn gemm(&self,
                alpha: &SharedTensor<$t>,
                at: Transpose,
                a: &SharedTensor<$t>,
                bt: Transpose,
                b: &SharedTensor<$t>,
                beta: &SharedTensor<$t>,
                c: &mut SharedTensor<$t>
        ) -> Result<(), ::coaster::error::Error> {
            let c_desc = c.desc().clone();
            let alpha_mem = read!(alpha, self);
            let beta_mem = read!(beta, self);
            let a_mem = read!(a, self);
            let b_mem = read!(b, self);
            let c_mem = write_only!(c, self);

            let a_0 = a.desc()[0] as i32;
            let a_1 = a.desc().iter().skip(1).fold(1, |prod, i| prod * i) as i32;
            let b_0 = b.desc()[0] as i32;
            let b_1 = b.desc().iter().skip(1).fold(1, |prod, i| prod * i) as i32;
            let c_1 = c_desc.iter().skip(1).fold(1, |prod, i| prod * i) as i32;
            let n = match bt {
                Transpose::NoTrans => b_1,
                _ => b_0
            };
            let (m, k) = match at {
                Transpose::NoTrans => (a_0, a_1),
                _ => (a_1, a_0)
            };
            let lda = a_1;
            let ldb = b_1;
            let ldc = c_1;
            exec!(gemm, CONTEXT.gemm(
                ::cublas::api::Operation::from(bt),
                ::cublas::api::Operation::from(at),
                n, m, k,
                trans!(alpha_mem, $t),
                trans!(b_mem, $t), // matrix a and b are switched to make it work with row-major memory layout.
                ldb,
                trans!(a_mem, $t),
                lda,
                trans!(beta_mem, $t),
                trans!(c_mem, $t),
                ldc))
        }
    );
}