1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
use reexport::*;
use rustc::hir;
use rustc::hir::*;
use rustc::hir::intravisit::{walk_body, walk_expr, walk_ty, FnKind, NestedVisitorMap, Visitor};
use rustc::lint::*;
use rustc::ty::{self, Ty, TyCtxt, TypeckTables};
use rustc::ty::layout::LayoutOf;
use rustc_typeck::hir_ty_to_ty;
use std::cmp::Ordering;
use std::collections::BTreeMap;
use std::borrow::Cow;
use syntax::ast::{FloatTy, IntTy, UintTy};
use syntax::codemap::Span;
use syntax::errors::DiagnosticBuilder;
use utils::{comparisons, higher, in_constant, in_external_macro, in_macro, last_path_segment, match_def_path, match_path,
            multispan_sugg, opt_def_id, same_tys, snippet, snippet_opt, span_help_and_lint, span_lint,
            span_lint_and_sugg, span_lint_and_then, clip, unsext, sext, int_bits};
use utils::paths;
use consts::{constant, Constant};

/// Handles all the linting of funky types
#[allow(missing_copy_implementations)]
pub struct TypePass;

/// **What it does:** Checks for use of `Box<Vec<_>>` anywhere in the code.
///
/// **Why is this bad?** `Vec` already keeps its contents in a separate area on
/// the heap. So if you `Box` it, you just add another level of indirection
/// without any benefit whatsoever.
///
/// **Known problems:** None.
///
/// **Example:**
/// ```rust
/// struct X {
///     values: Box<Vec<Foo>>,
/// }
/// ```
///
/// Better:
///
/// ```rust
/// struct X {
///     values: Vec<Foo>,
/// }
/// ```
declare_clippy_lint! {
    pub BOX_VEC,
    perf,
    "usage of `Box<Vec<T>>`, vector elements are already on the heap"
}

/// **What it does:** Checks for use of `Option<Option<_>>` in function signatures and type
/// definitions
///
/// **Why is this bad?** `Option<_>` represents an optional value. `Option<Option<_>>`
/// represents an optional optional value which is logically the same thing as an optional
/// value but has an unneeded extra level of wrapping.
///
/// **Known problems:** None.
///
/// **Example**
/// ```rust
/// fn x() -> Option<Option<u32>> {
///     None
/// }
declare_clippy_lint! {
    pub OPTION_OPTION,
    complexity,
    "usage of `Option<Option<T>>`"
}

/// **What it does:** Checks for usage of any `LinkedList`, suggesting to use a
/// `Vec` or a `VecDeque` (formerly called `RingBuf`).
///
/// **Why is this bad?** Gankro says:
///
/// > The TL;DR of `LinkedList` is that it's built on a massive amount of
/// pointers and indirection.
/// > It wastes memory, it has terrible cache locality, and is all-around slow.
/// `RingBuf`, while
/// > "only" amortized for push/pop, should be faster in the general case for
/// almost every possible
/// > workload, and isn't even amortized at all if you can predict the capacity
/// you need.
/// >
/// > `LinkedList`s are only really good if you're doing a lot of merging or
/// splitting of lists.
/// > This is because they can just mangle some pointers instead of actually
/// copying the data. Even
/// > if you're doing a lot of insertion in the middle of the list, `RingBuf`
/// can still be better
/// > because of how expensive it is to seek to the middle of a `LinkedList`.
///
/// **Known problems:** False positives – the instances where using a
/// `LinkedList` makes sense are few and far between, but they can still happen.
///
/// **Example:**
/// ```rust
/// let x = LinkedList::new();
/// ```
declare_clippy_lint! {
    pub LINKEDLIST,
    pedantic,
    "usage of LinkedList, usually a vector is faster, or a more specialized data \
     structure like a VecDeque"
}

/// **What it does:** Checks for use of `&Box<T>` anywhere in the code.
///
/// **Why is this bad?** Any `&Box<T>` can also be a `&T`, which is more
/// general.
///
/// **Known problems:** None.
///
/// **Example:**
/// ```rust
/// fn foo(bar: &Box<T>) { ... }
/// ```
///
/// Better:
///
/// ```rust
/// fn foo(bar: &T) { ... }
/// ```
declare_clippy_lint! {
    pub BORROWED_BOX,
    complexity,
    "a borrow of a boxed type"
}

impl LintPass for TypePass {
    fn get_lints(&self) -> LintArray {
        lint_array!(BOX_VEC, OPTION_OPTION, LINKEDLIST, BORROWED_BOX)
    }
}

impl<'a, 'tcx> LateLintPass<'a, 'tcx> for TypePass {
    fn check_fn(&mut self, cx: &LateContext, _: FnKind, decl: &FnDecl, _: &Body, _: Span, id: NodeId) {
        // skip trait implementations, see #605
        if let Some(map::NodeItem(item)) = cx.tcx.hir.find(cx.tcx.hir.get_parent(id)) {
            if let ItemImpl(_, _, _, _, Some(..), _, _) = item.node {
                return;
            }
        }

        check_fn_decl(cx, decl);
    }

    fn check_struct_field(&mut self, cx: &LateContext, field: &StructField) {
        check_ty(cx, &field.ty, false);
    }

    fn check_trait_item(&mut self, cx: &LateContext, item: &TraitItem) {
        match item.node {
            TraitItemKind::Const(ref ty, _) | TraitItemKind::Type(_, Some(ref ty)) => check_ty(cx, ty, false),
            TraitItemKind::Method(ref sig, _) => check_fn_decl(cx, &sig.decl),
            _ => (),
        }
    }

    fn check_local(&mut self, cx: &LateContext, local: &Local) {
        if let Some(ref ty) = local.ty {
            check_ty(cx, ty, true);
        }
    }
}

fn check_fn_decl(cx: &LateContext, decl: &FnDecl) {
    for input in &decl.inputs {
        check_ty(cx, input, false);
    }

    if let FunctionRetTy::Return(ref ty) = decl.output {
        check_ty(cx, ty, false);
    }
}

/// Check if `qpath` has last segment with type parameter matching `path`
fn match_type_parameter(cx: &LateContext, qpath: &QPath, path: &[&str]) -> bool {
    let last = last_path_segment(qpath);
    if_chain! {
        if let Some(ref params) = last.parameters;
        if !params.parenthesized;
        if let Some(ty) = params.types.get(0);
        if let TyPath(ref qpath) = ty.node;
        if let Some(did) = opt_def_id(cx.tables.qpath_def(qpath, cx.tcx.hir.node_to_hir_id(ty.id)));
        if match_def_path(cx.tcx, did, path);
        then {
            return true;
        }
    }
    false
}

/// Recursively check for `TypePass` lints in the given type. Stop at the first
/// lint found.
///
/// The parameter `is_local` distinguishes the context of the type; types from
/// local bindings should only be checked for the `BORROWED_BOX` lint.
fn check_ty(cx: &LateContext, ast_ty: &hir::Ty, is_local: bool) {
    if in_macro(ast_ty.span) {
        return;
    }
    match ast_ty.node {
        TyPath(ref qpath) if !is_local => {
            let hir_id = cx.tcx.hir.node_to_hir_id(ast_ty.id);
            let def = cx.tables.qpath_def(qpath, hir_id);
            if let Some(def_id) = opt_def_id(def) {
                if Some(def_id) == cx.tcx.lang_items().owned_box() {
                    if match_type_parameter(cx, qpath, &paths::VEC) {
                        span_help_and_lint(
                            cx,
                            BOX_VEC,
                            ast_ty.span,
                            "you seem to be trying to use `Box<Vec<T>>`. Consider using just `Vec<T>`",
                            "`Vec<T>` is already on the heap, `Box<Vec<T>>` makes an extra allocation.",
                        );
                        return; // don't recurse into the type
                    }
                } else if match_def_path(cx.tcx, def_id, &paths::OPTION) {
                    if match_type_parameter(cx, qpath, &paths::OPTION) {
                        span_lint(
                            cx,
                            OPTION_OPTION,
                            ast_ty.span,
                            "consider using `Option<T>` instead of `Option<Option<T>>` or a custom \
                            enum if you need to distinguish all 3 cases",
                        );
                        return; // don't recurse into the type
                    }
                } else if match_def_path(cx.tcx, def_id, &paths::LINKED_LIST) {
                    span_help_and_lint(
                        cx,
                        LINKEDLIST,
                        ast_ty.span,
                        "I see you're using a LinkedList! Perhaps you meant some other data structure?",
                        "a VecDeque might work",
                    );
                    return; // don't recurse into the type
                }
            }
            match *qpath {
                QPath::Resolved(Some(ref ty), ref p) => {
                    check_ty(cx, ty, is_local);
                    for ty in p.segments.iter().flat_map(|seg| {
                        seg.parameters
                            .as_ref()
                            .map_or_else(|| [].iter(), |params| params.types.iter())
                    }) {
                        check_ty(cx, ty, is_local);
                    }
                },
                QPath::Resolved(None, ref p) => for ty in p.segments.iter().flat_map(|seg| {
                    seg.parameters
                        .as_ref()
                        .map_or_else(|| [].iter(), |params| params.types.iter())
                }) {
                    check_ty(cx, ty, is_local);
                },
                QPath::TypeRelative(ref ty, ref seg) => {
                    check_ty(cx, ty, is_local);
                    if let Some(ref params) = seg.parameters {
                        for ty in params.types.iter() {
                            check_ty(cx, ty, is_local);
                        }
                    }
                },
            }
        },
        TyRptr(ref lt, ref mut_ty) => check_ty_rptr(cx, ast_ty, is_local, lt, mut_ty),
        // recurse
        TySlice(ref ty) | TyArray(ref ty, _) | TyPtr(MutTy { ref ty, .. }) => check_ty(cx, ty, is_local),
        TyTup(ref tys) => for ty in tys {
            check_ty(cx, ty, is_local);
        },
        _ => {},
    }
}

fn check_ty_rptr(cx: &LateContext, ast_ty: &hir::Ty, is_local: bool, lt: &Lifetime, mut_ty: &MutTy) {
    match mut_ty.ty.node {
        TyPath(ref qpath) => {
            let hir_id = cx.tcx.hir.node_to_hir_id(mut_ty.ty.id);
            let def = cx.tables.qpath_def(qpath, hir_id);
            if_chain! {
                if let Some(def_id) = opt_def_id(def);
                if Some(def_id) == cx.tcx.lang_items().owned_box();
                if let QPath::Resolved(None, ref path) = *qpath;
                if let [ref bx] = *path.segments;
                if let Some(ref params) = bx.parameters;
                if !params.parenthesized;
                if let [ref inner] = *params.types;
                then {
                    if is_any_trait(inner) {
                        // Ignore `Box<Any>` types, see #1884 for details.
                        return;
                    }

                    let ltopt = if lt.is_elided() {
                        "".to_owned()
                    } else {
                        format!("{} ", lt.name.name().as_str())
                    };
                    let mutopt = if mut_ty.mutbl == Mutability::MutMutable {
                        "mut "
                    } else {
                        ""
                    };
                    span_lint_and_sugg(cx,
                        BORROWED_BOX,
                        ast_ty.span,
                        "you seem to be trying to use `&Box<T>`. Consider using just `&T`",
                        "try",
                        format!("&{}{}{}", ltopt, mutopt, &snippet(cx, inner.span, ".."))
                    );
                    return; // don't recurse into the type
                }
            };
            check_ty(cx, &mut_ty.ty, is_local);
        },
        _ => check_ty(cx, &mut_ty.ty, is_local),
    }
}

// Returns true if given type is `Any` trait.
fn is_any_trait(t: &hir::Ty) -> bool {
    if_chain! {
        if let TyTraitObject(ref traits, _) = t.node;
        if traits.len() >= 1;
        // Only Send/Sync can be used as additional traits, so it is enough to
        // check only the first trait.
        if match_path(&traits[0].trait_ref.path, &paths::ANY_TRAIT);
        then {
            return true;
        }
    }

    false
}

#[allow(missing_copy_implementations)]
pub struct LetPass;

/// **What it does:** Checks for binding a unit value.
///
/// **Why is this bad?** A unit value cannot usefully be used anywhere. So
/// binding one is kind of pointless.
///
/// **Known problems:** None.
///
/// **Example:**
/// ```rust
/// let x = { 1; };
/// ```
declare_clippy_lint! {
    pub LET_UNIT_VALUE,
    style,
    "creating a let binding to a value of unit type, which usually can't be used afterwards"
}

fn check_let_unit(cx: &LateContext, decl: &Decl) {
    if let DeclLocal(ref local) = decl.node {
        if is_unit(cx.tables.pat_ty(&local.pat)) {
            if in_external_macro(cx, decl.span) || in_macro(local.pat.span) {
                return;
            }
            if higher::is_from_for_desugar(decl) {
                return;
            }
            span_lint(
                cx,
                LET_UNIT_VALUE,
                decl.span,
                &format!(
                    "this let-binding has unit value. Consider omitting `let {} =`",
                    snippet(cx, local.pat.span, "..")
                ),
            );
        }
    }
}

impl LintPass for LetPass {
    fn get_lints(&self) -> LintArray {
        lint_array!(LET_UNIT_VALUE)
    }
}

impl<'a, 'tcx> LateLintPass<'a, 'tcx> for LetPass {
    fn check_decl(&mut self, cx: &LateContext<'a, 'tcx>, decl: &'tcx Decl) {
        check_let_unit(cx, decl)
    }
}

/// **What it does:** Checks for comparisons to unit.
///
/// **Why is this bad?** Unit is always equal to itself, and thus is just a
/// clumsily written constant. Mostly this happens when someone accidentally
/// adds semicolons at the end of the operands.
///
/// **Known problems:** None.
///
/// **Example:**
/// ```rust
/// if { foo(); } == { bar(); } { baz(); }
/// ```
/// is equal to
/// ```rust
/// { foo(); bar(); baz(); }
/// ```
declare_clippy_lint! {
    pub UNIT_CMP,
    correctness,
    "comparing unit values"
}

#[allow(missing_copy_implementations)]
pub struct UnitCmp;

impl LintPass for UnitCmp {
    fn get_lints(&self) -> LintArray {
        lint_array!(UNIT_CMP)
    }
}

impl<'a, 'tcx> LateLintPass<'a, 'tcx> for UnitCmp {
    fn check_expr(&mut self, cx: &LateContext<'a, 'tcx>, expr: &'tcx Expr) {
        if in_macro(expr.span) {
            return;
        }
        if let ExprBinary(ref cmp, ref left, _) = expr.node {
            let op = cmp.node;
            if op.is_comparison() && is_unit(cx.tables.expr_ty(left)) {
                let result = match op {
                    BiEq | BiLe | BiGe => "true",
                    _ => "false",
                };
                span_lint(
                    cx,
                    UNIT_CMP,
                    expr.span,
                    &format!(
                        "{}-comparison of unit values detected. This will always be {}",
                        op.as_str(),
                        result
                    ),
                );
            }
        }
    }
}

/// **What it does:** Checks for passing a unit value as an argument to a function without using a unit literal (`()`).
///
/// **Why is this bad?** This is likely the result of an accidental semicolon.
///
/// **Known problems:** None.
///
/// **Example:**
/// ```rust
/// foo({
///   let a = bar();
///   baz(a);
/// })
/// ```
declare_clippy_lint! {
    pub UNIT_ARG,
    complexity,
    "passing unit to a function"
}

pub struct UnitArg;

impl LintPass for UnitArg {
    fn get_lints(&self) -> LintArray {
        lint_array!(UNIT_ARG)
    }
}

impl<'a, 'tcx> LateLintPass<'a, 'tcx> for UnitArg {
    fn check_expr(&mut self, cx: &LateContext<'a, 'tcx>, expr: &'tcx Expr) {
        if in_macro(expr.span) {
            return;
        }
        match expr.node {
            ExprCall(_, ref args) | ExprMethodCall(_, _, ref args) => {
                for arg in args {
                    if is_unit(cx.tables.expr_ty(arg)) && !is_unit_literal(arg) {
                        let map = &cx.tcx.hir;
                        // apparently stuff in the desugaring of `?` can trigger this
                        // so check for that here
                        // only the calls to `Try::from_error` is marked as desugared,
                        // so we need to check both the current Expr and its parent.
                        if !is_questionmark_desugar_marked_call(expr) {
                            if_chain!{
                                let opt_parent_node = map.find(map.get_parent_node(expr.id));
                                if let Some(hir::map::NodeExpr(parent_expr)) = opt_parent_node;
                                if is_questionmark_desugar_marked_call(parent_expr);
                                then {}
                                else {
                                    // `expr` and `parent_expr` where _both_ not from
                                    // desugaring `?`, so lint
                                    span_lint_and_sugg(
                                        cx,
                                        UNIT_ARG,
                                        arg.span,
                                        "passing a unit value to a function",
                                        "if you intended to pass a unit value, use a unit literal instead",
                                        "()".to_string(),
                                    );
                                }
                            }
                        }
                    }
                }
            },
            _ => (),
        }
    }
}

fn is_questionmark_desugar_marked_call(expr: &Expr) -> bool {
    use syntax_pos::hygiene::CompilerDesugaringKind;
    if let ExprCall(ref callee, _) = expr.node {
        callee.span.is_compiler_desugaring(CompilerDesugaringKind::QuestionMark)
    } else {
        false
    }
}

fn is_unit(ty: Ty) -> bool {
    match ty.sty {
        ty::TyTuple(slice) if slice.is_empty() => true,
        _ => false,
    }
}

fn is_unit_literal(expr: &Expr) -> bool {
    match expr.node {
        ExprTup(ref slice) if slice.is_empty() => true,
        _ => false,
    }
}

pub struct CastPass;

/// **What it does:** Checks for casts from any numerical to a float type where
/// the receiving type cannot store all values from the original type without
/// rounding errors. This possible rounding is to be expected, so this lint is
/// `Allow` by default.
///
/// Basically, this warns on casting any integer with 32 or more bits to `f32`
/// or any 64-bit integer to `f64`.
///
/// **Why is this bad?** It's not bad at all. But in some applications it can be
/// helpful to know where precision loss can take place. This lint can help find
/// those places in the code.
///
/// **Known problems:** None.
///
/// **Example:**
/// ```rust
/// let x = u64::MAX; x as f64
/// ```
declare_clippy_lint! {
    pub CAST_PRECISION_LOSS,
    pedantic,
    "casts that cause loss of precision, e.g. `x as f32` where `x: u64`"
}

/// **What it does:** Checks for casts from a signed to an unsigned numerical
/// type. In this case, negative values wrap around to large positive values,
/// which can be quite surprising in practice. However, as the cast works as
/// defined, this lint is `Allow` by default.
///
/// **Why is this bad?** Possibly surprising results. You can activate this lint
/// as a one-time check to see where numerical wrapping can arise.
///
/// **Known problems:** None.
///
/// **Example:**
/// ```rust
/// let y: i8 = -1;
/// y as u128  // will return 18446744073709551615
/// ```
declare_clippy_lint! {
    pub CAST_SIGN_LOSS,
    pedantic,
    "casts from signed types to unsigned types, e.g. `x as u32` where `x: i32`"
}

/// **What it does:** Checks for on casts between numerical types that may
/// truncate large values. This is expected behavior, so the cast is `Allow` by
/// default.
///
/// **Why is this bad?** In some problem domains, it is good practice to avoid
/// truncation. This lint can be activated to help assess where additional
/// checks could be beneficial.
///
/// **Known problems:** None.
///
/// **Example:**
/// ```rust
/// fn as_u8(x: u64) -> u8 { x as u8 }
/// ```
declare_clippy_lint! {
    pub CAST_POSSIBLE_TRUNCATION,
    pedantic,
    "casts that may cause truncation of the value, e.g. `x as u8` where `x: u32`, \
     or `x as i32` where `x: f32`"
}

/// **What it does:** Checks for casts from an unsigned type to a signed type of
/// the same size. Performing such a cast is a 'no-op' for the compiler,
/// i.e. nothing is changed at the bit level, and the binary representation of
/// the value is reinterpreted. This can cause wrapping if the value is too big
/// for the target signed type. However, the cast works as defined, so this lint
/// is `Allow` by default.
///
/// **Why is this bad?** While such a cast is not bad in itself, the results can
/// be surprising when this is not the intended behavior, as demonstrated by the
/// example below.
///
/// **Known problems:** None.
///
/// **Example:**
/// ```rust
/// u32::MAX as i32  // will yield a value of `-1`
/// ```
declare_clippy_lint! {
    pub CAST_POSSIBLE_WRAP,
    pedantic,
    "casts that may cause wrapping around the value, e.g. `x as i32` where `x: u32` \
     and `x > i32::MAX`"
}

/// **What it does:** Checks for on casts between numerical types that may
/// be replaced by safe conversion functions.
///
/// **Why is this bad?** Rust's `as` keyword will perform many kinds of
/// conversions, including silently lossy conversions. Conversion functions such
/// as `i32::from` will only perform lossless conversions. Using the conversion
/// functions prevents conversions from turning into silent lossy conversions if
/// the types of the input expressions ever change, and make it easier for
/// people reading the code to know that the conversion is lossless.
///
/// **Known problems:** None.
///
/// **Example:**
/// ```rust
/// fn as_u64(x: u8) -> u64 { x as u64 }
/// ```
///
/// Using `::from` would look like this:
///
/// ```rust
/// fn as_u64(x: u8) -> u64 { u64::from(x) }
/// ```
declare_clippy_lint! {
    pub CAST_LOSSLESS,
    complexity,
    "casts using `as` that are known to be lossless, e.g. `x as u64` where `x: u8`"
}

/// **What it does:** Checks for casts to the same type.
///
/// **Why is this bad?** It's just unnecessary.
///
/// **Known problems:** None.
///
/// **Example:**
/// ```rust
/// let _ = 2i32 as i32
/// ```
declare_clippy_lint! {
    pub UNNECESSARY_CAST,
    complexity,
    "cast to the same type, e.g. `x as i32` where `x: i32`"
}

/// Returns the size in bits of an integral type.
/// Will return 0 if the type is not an int or uint variant
fn int_ty_to_nbits(typ: Ty, tcx: TyCtxt) -> u64 {
    match typ.sty {
        ty::TyInt(i) => match i {
            IntTy::Isize => tcx.data_layout.pointer_size.bits(),
            IntTy::I8 => 8,
            IntTy::I16 => 16,
            IntTy::I32 => 32,
            IntTy::I64 => 64,
            IntTy::I128 => 128,
        },
        ty::TyUint(i) => match i {
            UintTy::Usize => tcx.data_layout.pointer_size.bits(),
            UintTy::U8 => 8,
            UintTy::U16 => 16,
            UintTy::U32 => 32,
            UintTy::U64 => 64,
            UintTy::U128 => 128,
        },
        _ => 0,
    }
}

fn is_isize_or_usize(typ: Ty) -> bool {
    match typ.sty {
        ty::TyInt(IntTy::Isize) | ty::TyUint(UintTy::Usize) => true,
        _ => false,
    }
}

fn span_precision_loss_lint(cx: &LateContext, expr: &Expr, cast_from: Ty, cast_to_f64: bool) {
    let mantissa_nbits = if cast_to_f64 { 52 } else { 23 };
    let arch_dependent = is_isize_or_usize(cast_from) && cast_to_f64;
    let arch_dependent_str = "on targets with 64-bit wide pointers ";
    let from_nbits_str = if arch_dependent {
        "64".to_owned()
    } else if is_isize_or_usize(cast_from) {
        "32 or 64".to_owned()
    } else {
        int_ty_to_nbits(cast_from, cx.tcx).to_string()
    };
    span_lint(
        cx,
        CAST_PRECISION_LOSS,
        expr.span,
        &format!(
            "casting {0} to {1} causes a loss of precision {2}({0} is {3} bits wide, but {1}'s mantissa \
             is only {4} bits wide)",
            cast_from,
            if cast_to_f64 { "f64" } else { "f32" },
            if arch_dependent {
                arch_dependent_str
            } else {
                ""
            },
            from_nbits_str,
            mantissa_nbits
        ),
    );
}

fn should_strip_parens(op: &Expr, snip: &str) -> bool {
    if let ExprBinary(_, _, _) = op.node {
        if snip.starts_with('(') && snip.ends_with(')') {
            return true;
        }
    }
    false
}

fn span_lossless_lint(cx: &LateContext, expr: &Expr, op: &Expr, cast_from: Ty, cast_to: Ty) {
    // Do not suggest using From in consts/statics until it is valid to do so (see #2267).
    if in_constant(cx, expr.id) { return }
    // The suggestion is to use a function call, so if the original expression
    // has parens on the outside, they are no longer needed.
    let opt = snippet_opt(cx, op.span);
    let sugg = if let Some(ref snip) = opt {
        if should_strip_parens(op, snip) {
            &snip[1..snip.len() - 1]
        } else {
            snip.as_str()
        }
    } else {
        ".."
    };

    span_lint_and_sugg(
        cx,
        CAST_LOSSLESS,
        expr.span,
        &format!("casting {} to {} may become silently lossy if types change", cast_from, cast_to),
        "try",
        format!("{}::from({})", cast_to, sugg),
    );
}

enum ArchSuffix {
    _32,
    _64,
    None,
}

fn check_truncation_and_wrapping(cx: &LateContext, expr: &Expr, cast_from: Ty, cast_to: Ty) {
    let arch_64_suffix = " on targets with 64-bit wide pointers";
    let arch_32_suffix = " on targets with 32-bit wide pointers";
    let cast_unsigned_to_signed = !cast_from.is_signed() && cast_to.is_signed();
    let from_nbits = int_ty_to_nbits(cast_from, cx.tcx);
    let to_nbits = int_ty_to_nbits(cast_to, cx.tcx);
    let (span_truncation, suffix_truncation, span_wrap, suffix_wrap) =
        match (is_isize_or_usize(cast_from), is_isize_or_usize(cast_to)) {
            (true, true) | (false, false) => (
                to_nbits < from_nbits,
                ArchSuffix::None,
                to_nbits == from_nbits && cast_unsigned_to_signed,
                ArchSuffix::None,
            ),
            (true, false) => (
                to_nbits <= 32,
                if to_nbits == 32 {
                    ArchSuffix::_64
                } else {
                    ArchSuffix::None
                },
                to_nbits <= 32 && cast_unsigned_to_signed,
                ArchSuffix::_32,
            ),
            (false, true) => (
                from_nbits == 64,
                ArchSuffix::_32,
                cast_unsigned_to_signed,
                if from_nbits == 64 {
                    ArchSuffix::_64
                } else {
                    ArchSuffix::_32
                },
            ),
        };
    if span_truncation {
        span_lint(
            cx,
            CAST_POSSIBLE_TRUNCATION,
            expr.span,
            &format!(
                "casting {} to {} may truncate the value{}",
                cast_from,
                cast_to,
                match suffix_truncation {
                    ArchSuffix::_32 => arch_32_suffix,
                    ArchSuffix::_64 => arch_64_suffix,
                    ArchSuffix::None => "",
                }
            ),
        );
    }
    if span_wrap {
        span_lint(
            cx,
            CAST_POSSIBLE_WRAP,
            expr.span,
            &format!(
                "casting {} to {} may wrap around the value{}",
                cast_from,
                cast_to,
                match suffix_wrap {
                    ArchSuffix::_32 => arch_32_suffix,
                    ArchSuffix::_64 => arch_64_suffix,
                    ArchSuffix::None => "",
                }
            ),
        );
    }
}

fn check_lossless(cx: &LateContext, expr: &Expr, op: &Expr, cast_from: Ty, cast_to: Ty) {
    let cast_signed_to_unsigned = cast_from.is_signed() && !cast_to.is_signed();
    let from_nbits = int_ty_to_nbits(cast_from, cx.tcx);
    let to_nbits = int_ty_to_nbits(cast_to, cx.tcx);
    if !is_isize_or_usize(cast_from) && !is_isize_or_usize(cast_to) && from_nbits < to_nbits && !cast_signed_to_unsigned
    {
        span_lossless_lint(cx, expr, op, cast_from, cast_to);
    }
}

impl LintPass for CastPass {
    fn get_lints(&self) -> LintArray {
        lint_array!(
            CAST_PRECISION_LOSS,
            CAST_SIGN_LOSS,
            CAST_POSSIBLE_TRUNCATION,
            CAST_POSSIBLE_WRAP,
            CAST_LOSSLESS,
            UNNECESSARY_CAST
        )
    }
}

impl<'a, 'tcx> LateLintPass<'a, 'tcx> for CastPass {
    fn check_expr(&mut self, cx: &LateContext<'a, 'tcx>, expr: &'tcx Expr) {
        if let ExprCast(ref ex, _) = expr.node {
            let (cast_from, cast_to) = (cx.tables.expr_ty(ex), cx.tables.expr_ty(expr));
            if let ExprLit(ref lit) = ex.node {
                use syntax::ast::{LitIntType, LitKind};
                match lit.node {
                    LitKind::Int(_, LitIntType::Unsuffixed) | LitKind::FloatUnsuffixed(_) => {},
                    _ => if cast_from.sty == cast_to.sty && !in_external_macro(cx, expr.span) {
                        span_lint(
                            cx,
                            UNNECESSARY_CAST,
                            expr.span,
                            &format!("casting to the same type is unnecessary (`{}` -> `{}`)", cast_from, cast_to),
                        );
                    },
                }
            }
            if cast_from.is_numeric() && cast_to.is_numeric() && !in_external_macro(cx, expr.span) {
                match (cast_from.is_integral(), cast_to.is_integral()) {
                    (true, false) => {
                        let from_nbits = int_ty_to_nbits(cast_from, cx.tcx);
                        let to_nbits = if let ty::TyFloat(FloatTy::F32) = cast_to.sty {
                            32
                        } else {
                            64
                        };
                        if is_isize_or_usize(cast_from) || from_nbits >= to_nbits {
                            span_precision_loss_lint(cx, expr, cast_from, to_nbits == 64);
                        }
                        if from_nbits < to_nbits {
                            span_lossless_lint(cx, expr, ex, cast_from, cast_to);
                        }
                    },
                    (false, true) => {
                        span_lint(
                            cx,
                            CAST_POSSIBLE_TRUNCATION,
                            expr.span,
                            &format!("casting {} to {} may truncate the value", cast_from, cast_to),
                        );
                        if !cast_to.is_signed() {
                            span_lint(
                                cx,
                                CAST_SIGN_LOSS,
                                expr.span,
                                &format!("casting {} to {} may lose the sign of the value", cast_from, cast_to),
                            );
                        }
                    },
                    (true, true) => {
                        if cast_from.is_signed() && !cast_to.is_signed() {
                            span_lint(
                                cx,
                                CAST_SIGN_LOSS,
                                expr.span,
                                &format!("casting {} to {} may lose the sign of the value", cast_from, cast_to),
                            );
                        }
                        check_truncation_and_wrapping(cx, expr, cast_from, cast_to);
                        check_lossless(cx, expr, ex, cast_from, cast_to);
                    },
                    (false, false) => {
                        if let (&ty::TyFloat(FloatTy::F64), &ty::TyFloat(FloatTy::F32)) = (&cast_from.sty, &cast_to.sty)
                        {
                            span_lint(
                                cx,
                                CAST_POSSIBLE_TRUNCATION,
                                expr.span,
                                "casting f64 to f32 may truncate the value",
                            );
                        }
                        if let (&ty::TyFloat(FloatTy::F32), &ty::TyFloat(FloatTy::F64)) = (&cast_from.sty, &cast_to.sty)
                        {
                            span_lossless_lint(cx, expr, ex, cast_from, cast_to);
                        }
                    },
                }
            }
        }
    }
}

/// **What it does:** Checks for types used in structs, parameters and `let`
/// declarations above a certain complexity threshold.
///
/// **Why is this bad?** Too complex types make the code less readable. Consider
/// using a `type` definition to simplify them.
///
/// **Known problems:** None.
///
/// **Example:**
/// ```rust
/// struct Foo { inner: Rc<Vec<Vec<Box<(u32, u32, u32, u32)>>>> }
/// ```
declare_clippy_lint! {
    pub TYPE_COMPLEXITY,
    complexity,
    "usage of very complex types that might be better factored into `type` definitions"
}

#[allow(missing_copy_implementations)]
pub struct TypeComplexityPass {
    threshold: u64,
}

impl TypeComplexityPass {
    pub fn new(threshold: u64) -> Self {
        Self {
            threshold,
        }
    }
}

impl LintPass for TypeComplexityPass {
    fn get_lints(&self) -> LintArray {
        lint_array!(TYPE_COMPLEXITY)
    }
}

impl<'a, 'tcx> LateLintPass<'a, 'tcx> for TypeComplexityPass {
    fn check_fn(
        &mut self,
        cx: &LateContext<'a, 'tcx>,
        _: FnKind<'tcx>,
        decl: &'tcx FnDecl,
        _: &'tcx Body,
        _: Span,
        _: NodeId,
    ) {
        self.check_fndecl(cx, decl);
    }

    fn check_struct_field(&mut self, cx: &LateContext<'a, 'tcx>, field: &'tcx StructField) {
        // enum variants are also struct fields now
        self.check_type(cx, &field.ty);
    }

    fn check_item(&mut self, cx: &LateContext<'a, 'tcx>, item: &'tcx Item) {
        match item.node {
            ItemStatic(ref ty, _, _) | ItemConst(ref ty, _) => self.check_type(cx, ty),
            // functions, enums, structs, impls and traits are covered
            _ => (),
        }
    }

    fn check_trait_item(&mut self, cx: &LateContext<'a, 'tcx>, item: &'tcx TraitItem) {
        match item.node {
            TraitItemKind::Const(ref ty, _) | TraitItemKind::Type(_, Some(ref ty)) => self.check_type(cx, ty),
            TraitItemKind::Method(MethodSig { ref decl, .. }, TraitMethod::Required(_)) => self.check_fndecl(cx, decl),
            // methods with default impl are covered by check_fn
            _ => (),
        }
    }

    fn check_impl_item(&mut self, cx: &LateContext<'a, 'tcx>, item: &'tcx ImplItem) {
        match item.node {
            ImplItemKind::Const(ref ty, _) | ImplItemKind::Type(ref ty) => self.check_type(cx, ty),
            // methods are covered by check_fn
            _ => (),
        }
    }

    fn check_local(&mut self, cx: &LateContext<'a, 'tcx>, local: &'tcx Local) {
        if let Some(ref ty) = local.ty {
            self.check_type(cx, ty);
        }
    }
}

impl<'a, 'tcx> TypeComplexityPass {
    fn check_fndecl(&self, cx: &LateContext<'a, 'tcx>, decl: &'tcx FnDecl) {
        for arg in &decl.inputs {
            self.check_type(cx, arg);
        }
        if let Return(ref ty) = decl.output {
            self.check_type(cx, ty);
        }
    }

    fn check_type(&self, cx: &LateContext, ty: &hir::Ty) {
        if in_macro(ty.span) {
            return;
        }
        let score = {
            let mut visitor = TypeComplexityVisitor { score: 0, nest: 1 };
            visitor.visit_ty(ty);
            visitor.score
        };

        if score > self.threshold {
            span_lint(
                cx,
                TYPE_COMPLEXITY,
                ty.span,
                "very complex type used. Consider factoring parts into `type` definitions",
            );
        }
    }
}

/// Walks a type and assigns a complexity score to it.
struct TypeComplexityVisitor {
    /// total complexity score of the type
    score: u64,
    /// current nesting level
    nest: u64,
}

impl<'tcx> Visitor<'tcx> for TypeComplexityVisitor {
    fn visit_ty(&mut self, ty: &'tcx hir::Ty) {
        let (add_score, sub_nest) = match ty.node {
            // _, &x and *x have only small overhead; don't mess with nesting level
            TyInfer | TyPtr(..) | TyRptr(..) => (1, 0),

            // the "normal" components of a type: named types, arrays/tuples
            TyPath(..) | TySlice(..) | TyTup(..) | TyArray(..) => (10 * self.nest, 1),

            // function types bring a lot of overhead
            TyBareFn(..) => (50 * self.nest, 1),

            TyTraitObject(ref param_bounds, _) => {
                let has_lifetime_parameters = param_bounds
                    .iter()
                    .any(|bound| bound.bound_generic_params.iter().any(|gen| gen.is_lifetime_param()));
                if has_lifetime_parameters {
                    // complex trait bounds like A<'a, 'b>
                    (50 * self.nest, 1)
                } else {
                    // simple trait bounds like A + B
                    (20 * self.nest, 0)
                }
            },

            _ => (0, 0),
        };
        self.score += add_score;
        self.nest += sub_nest;
        walk_ty(self, ty);
        self.nest -= sub_nest;
    }
    fn nested_visit_map<'this>(&'this mut self) -> NestedVisitorMap<'this, 'tcx> {
        NestedVisitorMap::None
    }
}

/// **What it does:** Checks for expressions where a character literal is cast
/// to `u8` and suggests using a byte literal instead.
///
/// **Why is this bad?** In general, casting values to smaller types is
/// error-prone and should be avoided where possible. In the particular case of
/// converting a character literal to u8, it is easy to avoid by just using a
/// byte literal instead. As an added bonus, `b'a'` is even slightly shorter
/// than `'a' as u8`.
///
/// **Known problems:** None.
///
/// **Example:**
/// ```rust
/// 'x' as u8
/// ```
///
/// A better version, using the byte literal:
///
/// ```rust
/// b'x'
/// ```
declare_clippy_lint! {
    pub CHAR_LIT_AS_U8,
    complexity,
    "casting a character literal to u8"
}

pub struct CharLitAsU8;

impl LintPass for CharLitAsU8 {
    fn get_lints(&self) -> LintArray {
        lint_array!(CHAR_LIT_AS_U8)
    }
}

impl<'a, 'tcx> LateLintPass<'a, 'tcx> for CharLitAsU8 {
    fn check_expr(&mut self, cx: &LateContext<'a, 'tcx>, expr: &'tcx Expr) {
        use syntax::ast::{LitKind, UintTy};

        if let ExprCast(ref e, _) = expr.node {
            if let ExprLit(ref l) = e.node {
                if let LitKind::Char(_) = l.node {
                    if ty::TyUint(UintTy::U8) == cx.tables.expr_ty(expr).sty && !in_macro(expr.span) {
                        let msg = "casting character literal to u8. `char`s \
                                   are 4 bytes wide in rust, so casting to u8 \
                                   truncates them";
                        let help = format!("Consider using a byte literal instead:\nb{}", snippet(cx, e.span, "'x'"));
                        span_help_and_lint(cx, CHAR_LIT_AS_U8, expr.span, msg, &help);
                    }
                }
            }
        }
    }
}

/// **What it does:** Checks for comparisons where one side of the relation is
/// either the minimum or maximum value for its type and warns if it involves a
/// case that is always true or always false. Only integer and boolean types are
/// checked.
///
/// **Why is this bad?** An expression like `min <= x` may misleadingly imply
/// that is is possible for `x` to be less than the minimum. Expressions like
/// `max < x` are probably mistakes.
///
/// **Known problems:** For `usize` the size of the current compile target will
/// be assumed (e.g. 64 bits on 64 bit systems). This means code that uses such
/// a comparison to detect target pointer width will trigger this lint. One can
/// use `mem::sizeof` and compare its value or conditional compilation
/// attributes
/// like `#[cfg(target_pointer_width = "64")] ..` instead.
///
/// **Example:**
/// ```rust
/// vec.len() <= 0
/// 100 > std::i32::MAX
/// ```
declare_clippy_lint! {
    pub ABSURD_EXTREME_COMPARISONS,
    correctness,
    "a comparison with a maximum or minimum value that is always true or false"
}

pub struct AbsurdExtremeComparisons;

impl LintPass for AbsurdExtremeComparisons {
    fn get_lints(&self) -> LintArray {
        lint_array!(ABSURD_EXTREME_COMPARISONS)
    }
}

enum ExtremeType {
    Minimum,
    Maximum,
}

struct ExtremeExpr<'a> {
    which: ExtremeType,
    expr: &'a Expr,
}

enum AbsurdComparisonResult {
    AlwaysFalse,
    AlwaysTrue,
    InequalityImpossible,
}


fn is_cast_between_fixed_and_target<'a, 'tcx>(
    cx: &LateContext<'a, 'tcx>,
    expr: &'tcx Expr
) -> bool {

    if let ExprCast(ref cast_exp, _) = expr.node {
        let precast_ty = cx.tables.expr_ty(cast_exp);
        let cast_ty = cx.tables.expr_ty(expr);

        return is_isize_or_usize(precast_ty) != is_isize_or_usize(cast_ty)
    }

    false
}

fn detect_absurd_comparison<'a, 'tcx>(
    cx: &LateContext<'a, 'tcx>,
    op: BinOp_,
    lhs: &'tcx Expr,
    rhs: &'tcx Expr,
) -> Option<(ExtremeExpr<'tcx>, AbsurdComparisonResult)> {
    use types::ExtremeType::*;
    use types::AbsurdComparisonResult::*;
    use utils::comparisons::*;

    // absurd comparison only makes sense on primitive types
    // primitive types don't implement comparison operators with each other
    if cx.tables.expr_ty(lhs) != cx.tables.expr_ty(rhs) {
        return None;
    }

    // comparisons between fix sized types and target sized types are considered unanalyzable
    if is_cast_between_fixed_and_target(cx, lhs) || is_cast_between_fixed_and_target(cx, rhs) {
        return None;
    }

    let normalized = normalize_comparison(op, lhs, rhs);
    let (rel, normalized_lhs, normalized_rhs) = if let Some(val) = normalized {
        val
    } else {
        return None;
    };

    let lx = detect_extreme_expr(cx, normalized_lhs);
    let rx = detect_extreme_expr(cx, normalized_rhs);

    Some(match rel {
        Rel::Lt => {
            match (lx, rx) {
                (Some(l @ ExtremeExpr { which: Maximum, .. }), _) => (l, AlwaysFalse), // max < x
                (_, Some(r @ ExtremeExpr { which: Minimum, .. })) => (r, AlwaysFalse), // x < min
                _ => return None,
            }
        },
        Rel::Le => {
            match (lx, rx) {
                (Some(l @ ExtremeExpr { which: Minimum, .. }), _) => (l, AlwaysTrue), // min <= x
                (Some(l @ ExtremeExpr { which: Maximum, .. }), _) => (l, InequalityImpossible), // max <= x
                (_, Some(r @ ExtremeExpr { which: Minimum, .. })) => (r, InequalityImpossible), // x <= min
                (_, Some(r @ ExtremeExpr { which: Maximum, .. })) => (r, AlwaysTrue), // x <= max
                _ => return None,
            }
        },
        Rel::Ne | Rel::Eq => return None,
    })
}

fn detect_extreme_expr<'a, 'tcx>(cx: &LateContext<'a, 'tcx>, expr: &'tcx Expr) -> Option<ExtremeExpr<'tcx>> {
    use types::ExtremeType::*;

    let ty = cx.tables.expr_ty(expr);

    let cv = constant(cx, expr)?.0;

    let which = match (&ty.sty, cv) {
        (&ty::TyBool, Constant::Bool(false)) |
        (&ty::TyUint(_), Constant::Int(0)) => Minimum,
        (&ty::TyInt(ity), Constant::Int(i)) if i == unsext(cx.tcx, i128::min_value() >> (128 - int_bits(cx.tcx, ity)), ity) => Minimum,

        (&ty::TyBool, Constant::Bool(true)) => Maximum,
        (&ty::TyInt(ity), Constant::Int(i)) if i == unsext(cx.tcx, i128::max_value() >> (128 - int_bits(cx.tcx, ity)), ity) => Maximum,
        (&ty::TyUint(uty), Constant::Int(i)) if clip(cx.tcx, u128::max_value(), uty) == i => Maximum,

        _ => return None,
    };
    Some(ExtremeExpr {
        which,
        expr,
    })
}

impl<'a, 'tcx> LateLintPass<'a, 'tcx> for AbsurdExtremeComparisons {
    fn check_expr(&mut self, cx: &LateContext<'a, 'tcx>, expr: &'tcx Expr) {
        use types::ExtremeType::*;
        use types::AbsurdComparisonResult::*;

        if let ExprBinary(ref cmp, ref lhs, ref rhs) = expr.node {
            if let Some((culprit, result)) = detect_absurd_comparison(cx, cmp.node, lhs, rhs) {
                if !in_macro(expr.span) {
                    let msg = "this comparison involving the minimum or maximum element for this \
                               type contains a case that is always true or always false";

                    let conclusion = match result {
                        AlwaysFalse => "this comparison is always false".to_owned(),
                        AlwaysTrue => "this comparison is always true".to_owned(),
                        InequalityImpossible => format!(
                            "the case where the two sides are not equal never occurs, consider using {} == {} \
                             instead",
                            snippet(cx, lhs.span, "lhs"),
                            snippet(cx, rhs.span, "rhs")
                        ),
                    };

                    let help = format!(
                        "because {} is the {} value for this type, {}",
                        snippet(cx, culprit.expr.span, "x"),
                        match culprit.which {
                            Minimum => "minimum",
                            Maximum => "maximum",
                        },
                        conclusion
                    );

                    span_help_and_lint(cx, ABSURD_EXTREME_COMPARISONS, expr.span, msg, &help);
                }
            }
        }
    }
}

/// **What it does:** Checks for comparisons where the relation is always either
/// true or false, but where one side has been upcast so that the comparison is
/// necessary. Only integer types are checked.
///
/// **Why is this bad?** An expression like `let x : u8 = ...; (x as u32) > 300`
/// will mistakenly imply that it is possible for `x` to be outside the range of
/// `u8`.
///
/// **Known problems:**
/// https://github.com/rust-lang-nursery/rust-clippy/issues/886
///
/// **Example:**
/// ```rust
/// let x : u8 = ...; (x as u32) > 300
/// ```
declare_clippy_lint! {
    pub INVALID_UPCAST_COMPARISONS,
    pedantic,
    "a comparison involving an upcast which is always true or false"
}

pub struct InvalidUpcastComparisons;

impl LintPass for InvalidUpcastComparisons {
    fn get_lints(&self) -> LintArray {
        lint_array!(INVALID_UPCAST_COMPARISONS)
    }
}

#[derive(Copy, Clone, Debug, Eq)]
enum FullInt {
    S(i128),
    U(u128),
}

impl FullInt {
    #[allow(cast_sign_loss)]
    fn cmp_s_u(s: i128, u: u128) -> Ordering {
        if s < 0 {
            Ordering::Less
        } else if u > (i128::max_value() as u128) {
            Ordering::Greater
        } else {
            (s as u128).cmp(&u)
        }
    }
}

impl PartialEq for FullInt {
    fn eq(&self, other: &Self) -> bool {
        self.partial_cmp(other)
            .expect("partial_cmp only returns Some(_)") == Ordering::Equal
    }
}

impl PartialOrd for FullInt {
    fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
        Some(match (self, other) {
            (&FullInt::S(s), &FullInt::S(o)) => s.cmp(&o),
            (&FullInt::U(s), &FullInt::U(o)) => s.cmp(&o),
            (&FullInt::S(s), &FullInt::U(o)) => Self::cmp_s_u(s, o),
            (&FullInt::U(s), &FullInt::S(o)) => Self::cmp_s_u(o, s).reverse(),
        })
    }
}
impl Ord for FullInt {
    fn cmp(&self, other: &Self) -> Ordering {
        self.partial_cmp(other)
            .expect("partial_cmp for FullInt can never return None")
    }
}


fn numeric_cast_precast_bounds<'a>(cx: &LateContext, expr: &'a Expr) -> Option<(FullInt, FullInt)> {
    use syntax::ast::{IntTy, UintTy};
    use std::*;

    if let ExprCast(ref cast_exp, _) = expr.node {
        let pre_cast_ty = cx.tables.expr_ty(cast_exp);
        let cast_ty = cx.tables.expr_ty(expr);
        // if it's a cast from i32 to u32 wrapping will invalidate all these checks
        if cx.layout_of(pre_cast_ty).ok().map(|l| l.size) == cx.layout_of(cast_ty).ok().map(|l| l.size) {
            return None;
        }
        match pre_cast_ty.sty {
            ty::TyInt(int_ty) => Some(match int_ty {
                IntTy::I8 => (FullInt::S(i128::from(i8::min_value())), FullInt::S(i128::from(i8::max_value()))),
                IntTy::I16 => (
                    FullInt::S(i128::from(i16::min_value())),
                    FullInt::S(i128::from(i16::max_value())),
                ),
                IntTy::I32 => (
                    FullInt::S(i128::from(i32::min_value())),
                    FullInt::S(i128::from(i32::max_value())),
                ),
                IntTy::I64 => (
                    FullInt::S(i128::from(i64::min_value())),
                    FullInt::S(i128::from(i64::max_value())),
                ),
                IntTy::I128 => (FullInt::S(i128::min_value() as i128), FullInt::S(i128::max_value() as i128)),
                IntTy::Isize => (FullInt::S(isize::min_value() as i128), FullInt::S(isize::max_value() as i128)),
            }),
            ty::TyUint(uint_ty) => Some(match uint_ty {
                UintTy::U8 => (FullInt::U(u128::from(u8::min_value())), FullInt::U(u128::from(u8::max_value()))),
                UintTy::U16 => (
                    FullInt::U(u128::from(u16::min_value())),
                    FullInt::U(u128::from(u16::max_value())),
                ),
                UintTy::U32 => (
                    FullInt::U(u128::from(u32::min_value())),
                    FullInt::U(u128::from(u32::max_value())),
                ),
                UintTy::U64 => (
                    FullInt::U(u128::from(u64::min_value())),
                    FullInt::U(u128::from(u64::max_value())),
                ),
                UintTy::U128 => (FullInt::U(u128::min_value() as u128), FullInt::U(u128::max_value() as u128)),
                UintTy::Usize => (FullInt::U(usize::min_value() as u128), FullInt::U(usize::max_value() as u128)),
            }),
            _ => None,
        }
    } else {
        None
    }
}

fn node_as_const_fullint<'a, 'tcx>(cx: &LateContext<'a, 'tcx>, expr: &'tcx Expr) -> Option<FullInt> {
    let val = constant(cx, expr)?.0;
    if let Constant::Int(const_int) = val {
        match cx.tables.expr_ty(expr).sty {
            ty::TyInt(ity) => Some(FullInt::S(sext(cx.tcx, const_int, ity))),
            ty::TyUint(_) => Some(FullInt::U(const_int)),
            _ => None,
        }
    } else {
        None
    }
}

fn err_upcast_comparison(cx: &LateContext, span: &Span, expr: &Expr, always: bool) {
    if let ExprCast(ref cast_val, _) = expr.node {
        span_lint(
            cx,
            INVALID_UPCAST_COMPARISONS,
            *span,
            &format!(
                "because of the numeric bounds on `{}` prior to casting, this expression is always {}",
                snippet(cx, cast_val.span, "the expression"),
                if always { "true" } else { "false" },
            ),
        );
    }
}

fn upcast_comparison_bounds_err<'a, 'tcx>(
    cx: &LateContext<'a, 'tcx>,
    span: &Span,
    rel: comparisons::Rel,
    lhs_bounds: Option<(FullInt, FullInt)>,
    lhs: &'tcx Expr,
    rhs: &'tcx Expr,
    invert: bool,
) {
    use utils::comparisons::*;

    if let Some((lb, ub)) = lhs_bounds {
        if let Some(norm_rhs_val) = node_as_const_fullint(cx, rhs) {
            if rel == Rel::Eq || rel == Rel::Ne {
                if norm_rhs_val < lb || norm_rhs_val > ub {
                    err_upcast_comparison(cx, span, lhs, rel == Rel::Ne);
                }
            } else if match rel {
                Rel::Lt => if invert {
                    norm_rhs_val < lb
                } else {
                    ub < norm_rhs_val
                },
                Rel::Le => if invert {
                    norm_rhs_val <= lb
                } else {
                    ub <= norm_rhs_val
                },
                Rel::Eq | Rel::Ne => unreachable!(),
            } {
                err_upcast_comparison(cx, span, lhs, true)
            } else if match rel {
                Rel::Lt => if invert {
                    norm_rhs_val >= ub
                } else {
                    lb >= norm_rhs_val
                },
                Rel::Le => if invert {
                    norm_rhs_val > ub
                } else {
                    lb > norm_rhs_val
                },
                Rel::Eq | Rel::Ne => unreachable!(),
            } {
                err_upcast_comparison(cx, span, lhs, false)
            }
        }
    }
}

impl<'a, 'tcx> LateLintPass<'a, 'tcx> for InvalidUpcastComparisons {
    fn check_expr(&mut self, cx: &LateContext<'a, 'tcx>, expr: &'tcx Expr) {
        if let ExprBinary(ref cmp, ref lhs, ref rhs) = expr.node {
            let normalized = comparisons::normalize_comparison(cmp.node, lhs, rhs);
            let (rel, normalized_lhs, normalized_rhs) = if let Some(val) = normalized {
                val
            } else {
                return;
            };

            let lhs_bounds = numeric_cast_precast_bounds(cx, normalized_lhs);
            let rhs_bounds = numeric_cast_precast_bounds(cx, normalized_rhs);

            upcast_comparison_bounds_err(cx, &expr.span, rel, lhs_bounds, normalized_lhs, normalized_rhs, false);
            upcast_comparison_bounds_err(cx, &expr.span, rel, rhs_bounds, normalized_rhs, normalized_lhs, true);
        }
    }
}

/// **What it does:** Checks for public `impl` or `fn` missing generalization
/// over different hashers and implicitly defaulting to the default hashing
/// algorithm (SipHash).
///
/// **Why is this bad?** `HashMap` or `HashSet` with custom hashers cannot be
/// used with them.
///
/// **Known problems:** Suggestions for replacing constructors can contain
/// false-positives. Also applying suggestions can require modification of other
/// pieces of code, possibly including external crates.
///
/// **Example:**
/// ```rust
/// impl<K: Hash + Eq, V> Serialize for HashMap<K, V> { ... }
///
/// pub foo(map: &mut HashMap<i32, i32>) { .. }
/// ```
declare_clippy_lint! {
    pub IMPLICIT_HASHER,
    style,
    "missing generalization over different hashers"
}

pub struct ImplicitHasher;

impl LintPass for ImplicitHasher {
    fn get_lints(&self) -> LintArray {
        lint_array!(IMPLICIT_HASHER)
    }
}

impl<'a, 'tcx> LateLintPass<'a, 'tcx> for ImplicitHasher {
    #[allow(cast_possible_truncation)]
    fn check_item(&mut self, cx: &LateContext<'a, 'tcx>, item: &'tcx Item) {
        use syntax_pos::BytePos;

        fn suggestion<'a, 'tcx>(
            cx: &LateContext<'a, 'tcx>,
            db: &mut DiagnosticBuilder,
            generics_span: Span,
            generics_suggestion_span: Span,
            target: &ImplicitHasherType,
            vis: ImplicitHasherConstructorVisitor,
        ) {
            let generics_snip = snippet(cx, generics_span, "");
            // trim `<` `>`
            let generics_snip = if generics_snip.is_empty() {
                ""
            } else {
                &generics_snip[1..generics_snip.len() - 1]
            };

            multispan_sugg(
                db,
                "consider adding a type parameter".to_string(),
                vec![
                    (
                        generics_suggestion_span,
                        format!(
                            "<{}{}S: ::std::hash::BuildHasher{}>",
                            generics_snip,
                            if generics_snip.is_empty() { "" } else { ", " },
                            if vis.suggestions.is_empty() {
                                ""
                            } else {
                                // request users to add `Default` bound so that generic constructors can be used
                                " + Default"
                            },
                        ),
                    ),
                    (
                        target.span(),
                        format!("{}<{}, S>", target.type_name(), target.type_arguments(),),
                    ),
                ],
            );

            if !vis.suggestions.is_empty() {
                multispan_sugg(db, "...and use generic constructor".into(), vis.suggestions);
            }
        }

        if !cx.access_levels.is_exported(item.id) {
            return;
        }

        match item.node {
            ItemImpl(_, _, _, ref generics, _, ref ty, ref items) => {
                let mut vis = ImplicitHasherTypeVisitor::new(cx);
                vis.visit_ty(ty);

                for target in &vis.found {
                    let generics_suggestion_span = generics.span.substitute_dummy({
                        let pos = snippet_opt(cx, item.span.until(target.span()))
                            .and_then(|snip| Some(item.span.lo() + BytePos(snip.find("impl")? as u32 + 4)))
                            .expect("failed to create span for type arguments");
                        Span::new(pos, pos, item.span.data().ctxt)
                    });

                    let mut ctr_vis = ImplicitHasherConstructorVisitor::new(cx, target);
                    for item in items.iter().map(|item| cx.tcx.hir.impl_item(item.id)) {
                        ctr_vis.visit_impl_item(item);
                    }

                    span_lint_and_then(
                        cx,
                        IMPLICIT_HASHER,
                        target.span(),
                        &format!("impl for `{}` should be generalized over different hashers", target.type_name()),
                        move |db| {
                            suggestion(cx, db, generics.span, generics_suggestion_span, target, ctr_vis);
                        },
                    );
                }
            },
            ItemFn(ref decl, .., ref generics, body_id) => {
                let body = cx.tcx.hir.body(body_id);

                for ty in &decl.inputs {
                    let mut vis = ImplicitHasherTypeVisitor::new(cx);
                    vis.visit_ty(ty);

                    for target in &vis.found {
                        let generics_suggestion_span = generics.span.substitute_dummy({
                            let pos = snippet_opt(cx, item.span.until(body.arguments[0].pat.span))
                                .and_then(|snip| {
                                    let i = snip.find("fn")?;
                                    Some(item.span.lo() + BytePos((i + (&snip[i..]).find('(')?) as u32))
                                })
                                .expect("failed to create span for type parameters");
                            Span::new(pos, pos, item.span.data().ctxt)
                        });

                        let mut ctr_vis = ImplicitHasherConstructorVisitor::new(cx, target);
                        ctr_vis.visit_body(body);

                        span_lint_and_then(
                            cx,
                            IMPLICIT_HASHER,
                            target.span(),
                            &format!(
                                "parameter of type `{}` should be generalized over different hashers",
                                target.type_name()
                            ),
                            move |db| {
                                suggestion(cx, db, generics.span, generics_suggestion_span, target, ctr_vis);
                            },
                        );
                    }
                }
            },
            _ => {},
        }
    }
}

enum ImplicitHasherType<'tcx> {
    HashMap(Span, Ty<'tcx>, Cow<'static, str>, Cow<'static, str>),
    HashSet(Span, Ty<'tcx>, Cow<'static, str>),
}

impl<'tcx> ImplicitHasherType<'tcx> {
    /// Checks that `ty` is a target type without a BuildHasher.
    fn new<'a>(cx: &LateContext<'a, 'tcx>, hir_ty: &hir::Ty) -> Option<Self> {
        if let TyPath(QPath::Resolved(None, ref path)) = hir_ty.node {
            let params = &path.segments.last().as_ref()?.parameters.as_ref()?.types;
            let params_len = params.len();

            let ty = hir_ty_to_ty(cx.tcx, hir_ty);

            if match_path(path, &paths::HASHMAP) && params_len == 2 {
                Some(ImplicitHasherType::HashMap(
                    hir_ty.span,
                    ty,
                    snippet(cx, params[0].span, "K"),
                    snippet(cx, params[1].span, "V"),
                ))
            } else if match_path(path, &paths::HASHSET) && params_len == 1 {
                Some(ImplicitHasherType::HashSet(hir_ty.span, ty, snippet(cx, params[0].span, "T")))
            } else {
                None
            }
        } else {
            None
        }
    }

    fn type_name(&self) -> &'static str {
        match *self {
            ImplicitHasherType::HashMap(..) => "HashMap",
            ImplicitHasherType::HashSet(..) => "HashSet",
        }
    }

    fn type_arguments(&self) -> String {
        match *self {
            ImplicitHasherType::HashMap(.., ref k, ref v) => format!("{}, {}", k, v),
            ImplicitHasherType::HashSet(.., ref t) => format!("{}", t),
        }
    }

    fn ty(&self) -> Ty<'tcx> {
        match *self {
            ImplicitHasherType::HashMap(_, ty, ..) | ImplicitHasherType::HashSet(_, ty, ..) => ty,
        }
    }

    fn span(&self) -> Span {
        match *self {
            ImplicitHasherType::HashMap(span, ..) | ImplicitHasherType::HashSet(span, ..) => span,
        }
    }
}

struct ImplicitHasherTypeVisitor<'a, 'tcx: 'a> {
    cx: &'a LateContext<'a, 'tcx>,
    found: Vec<ImplicitHasherType<'tcx>>,
}

impl<'a, 'tcx: 'a> ImplicitHasherTypeVisitor<'a, 'tcx> {
    fn new(cx: &'a LateContext<'a, 'tcx>) -> Self {
        Self { cx, found: vec![] }
    }
}

impl<'a, 'tcx: 'a> Visitor<'tcx> for ImplicitHasherTypeVisitor<'a, 'tcx> {
    fn visit_ty(&mut self, t: &'tcx hir::Ty) {
        if let Some(target) = ImplicitHasherType::new(self.cx, t) {
            self.found.push(target);
        }

        walk_ty(self, t);
    }

    fn nested_visit_map<'this>(&'this mut self) -> NestedVisitorMap<'this, 'tcx> {
        NestedVisitorMap::None
    }
}

/// Looks for default-hasher-dependent constructors like `HashMap::new`.
struct ImplicitHasherConstructorVisitor<'a, 'b, 'tcx: 'a + 'b> {
    cx: &'a LateContext<'a, 'tcx>,
    body: &'a TypeckTables<'tcx>,
    target: &'b ImplicitHasherType<'tcx>,
    suggestions: BTreeMap<Span, String>,
}

impl<'a, 'b, 'tcx: 'a + 'b> ImplicitHasherConstructorVisitor<'a, 'b, 'tcx> {
    fn new(cx: &'a LateContext<'a, 'tcx>, target: &'b ImplicitHasherType<'tcx>) -> Self {
        Self {
            cx,
            body: cx.tables,
            target,
            suggestions: BTreeMap::new(),
        }
    }
}

impl<'a, 'b, 'tcx: 'a + 'b> Visitor<'tcx> for ImplicitHasherConstructorVisitor<'a, 'b, 'tcx> {
    fn visit_body(&mut self, body: &'tcx Body) {
        self.body = self.cx.tcx.body_tables(body.id());
        walk_body(self, body);
    }

    fn visit_expr(&mut self, e: &'tcx Expr) {
        if_chain! {
            if let ExprCall(ref fun, ref args) = e.node;
            if let ExprPath(QPath::TypeRelative(ref ty, ref method)) = fun.node;
            if let TyPath(QPath::Resolved(None, ref ty_path)) = ty.node;
            then {
                if !same_tys(self.cx, self.target.ty(), self.body.expr_ty(e)) {
                    return;
                }

                if match_path(ty_path, &paths::HASHMAP) {
                    if method.name == "new" {
                        self.suggestions
                            .insert(e.span, "HashMap::default()".to_string());
                    } else if method.name == "with_capacity" {
                        self.suggestions.insert(
                            e.span,
                            format!(
                                "HashMap::with_capacity_and_hasher({}, Default::default())",
                                snippet(self.cx, args[0].span, "capacity"),
                            ),
                        );
                    }
                } else if match_path(ty_path, &paths::HASHSET) {
                    if method.name == "new" {
                        self.suggestions
                            .insert(e.span, "HashSet::default()".to_string());
                    } else if method.name == "with_capacity" {
                        self.suggestions.insert(
                            e.span,
                            format!(
                                "HashSet::with_capacity_and_hasher({}, Default::default())",
                                snippet(self.cx, args[0].span, "capacity"),
                            ),
                        );
                    }
                }
            }
        }

        walk_expr(self, e);
    }

    fn nested_visit_map<'this>(&'this mut self) -> NestedVisitorMap<'this, 'tcx> {
        NestedVisitorMap::OnlyBodies(&self.cx.tcx.hir)
    }
}