1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
//! Utilities for tokio runtime.

use ckb_spawn::Spawn;
use core::future::Future;
use std::sync::atomic::{AtomicU32, Ordering};

use tokio::runtime::Builder;
use tokio::runtime::Handle as TokioHandle;

use tokio::task::JoinHandle;

pub use tokio;
pub use tokio::runtime::Runtime;
use tokio::sync::mpsc::{Receiver, Sender};

// Handle is a newtype wrap and unwrap tokio::Handle, it is workaround with Rust Orphan Rules.
// We need `Handle` impl ckb spawn trait decouple tokio dependence

/// Handle to the runtime.
#[derive(Debug, Clone)]
pub struct Handle {
    pub(crate) inner: TokioHandle,
    guard: Option<Sender<()>>,
}

impl Handle {
    /// Create a new Handle
    pub fn new(inner: TokioHandle, guard: Option<Sender<()>>) -> Self {
        Self { inner, guard }
    }

    /// Drop the guard
    pub fn drop_guard(&mut self) {
        let _ = self.guard.take();
    }
}

impl Handle {
    /// Enter the runtime context. This allows you to construct types that must
    /// have an executor available on creation such as [`tokio::time::Sleep`] or [`tokio::net::TcpStream`].
    /// It will also allow you to call methods such as [`tokio::spawn`].
    pub fn enter<F, R>(&self, f: F) -> R
    where
        F: FnOnce() -> R,
    {
        let _enter = self.inner.enter();
        f()
    }

    /// Spawns a future onto the runtime.
    ///
    /// This spawns the given future onto the runtime's executor
    pub fn spawn<F>(&self, future: F) -> JoinHandle<F::Output>
    where
        F: Future + Send + 'static,
        F::Output: Send + 'static,
    {
        let tokio_task_guard = self.guard.clone();

        self.inner.spawn(async move {
            // move tokio_task_guard into the spawned future
            // so that it will be dropped when the future is finished
            let _guard = tokio_task_guard;
            future.await
        })
    }

    /// Run a future to completion on the Tokio runtime from a synchronous context.
    pub fn block_on<F: Future>(&self, future: F) -> F::Output {
        self.inner.block_on(future)
    }

    /// Spawns a future onto the runtime blocking pool.
    ///
    /// This spawns the given future onto the runtime's blocking executor
    pub fn spawn_blocking<F, R>(&self, f: F) -> JoinHandle<R>
    where
        F: FnOnce() -> R + Send + 'static,
        R: Send + 'static,
    {
        self.inner.spawn_blocking(f)
    }

    /// Transform to inner tokio handler
    pub fn into_inner(self) -> TokioHandle {
        self.inner
    }
}

/// Create a new runtime with unique name.
fn new_runtime() -> Runtime {
    Builder::new_multi_thread()
        .enable_all()
        .thread_name_fn(|| {
            static ATOMIC_ID: AtomicU32 = AtomicU32::new(0);
            let id = ATOMIC_ID
                .fetch_update(Ordering::SeqCst, Ordering::SeqCst, |n| {
                    // A long thread name will cut to 15 characters in debug tools.
                    // Such as "top", "htop", "gdb" and so on.
                    // It's a kernel limit.
                    //
                    // So if we want to see the whole name in debug tools,
                    // this number should have 6 digits at most,
                    // since the prefix uses 9 characters in below code.
                    //
                    // There still has a issue:
                    // When id wraps around, we couldn't know whether the old id
                    // is released or not.
                    // But we can ignore this, because it's almost impossible.
                    if n >= 999_999 {
                        Some(0)
                    } else {
                        Some(n + 1)
                    }
                })
                .expect("impossible since the above closure must return Some(number)");
            format!("GlobalRt-{id}")
        })
        .build()
        .expect("ckb runtime initialized")
}

/// Create new threaded_scheduler tokio Runtime, return `Runtime`
pub fn new_global_runtime() -> (Handle, Receiver<()>, Runtime) {
    let runtime = new_runtime();
    let handle = runtime.handle().clone();
    let (guard, handle_stop_rx): (Sender<()>, Receiver<()>) = tokio::sync::mpsc::channel::<()>(1);

    (Handle::new(handle, Some(guard)), handle_stop_rx, runtime)
}

/// Create new threaded_scheduler tokio Runtime, return `Handle` and background thread join handle,
/// NOTICE: This is only used in testing
pub fn new_background_runtime() -> Handle {
    let runtime = new_runtime();
    let handle = runtime.handle().clone();

    let (guard, mut handle_stop_rx): (Sender<()>, Receiver<()>) =
        tokio::sync::mpsc::channel::<()>(1);
    let _thread = std::thread::Builder::new()
        .name("GlobalRtBuilder".to_string())
        .spawn(move || {
            let ret = runtime.block_on(async move { handle_stop_rx.recv().await });
            ckb_logger::debug!("Global runtime finished {:?}", ret);
        })
        .expect("tokio runtime started");

    Handle::new(handle, Some(guard))
}

impl Spawn for Handle {
    fn spawn_task<F>(&self, future: F)
    where
        F: Future<Output = ()> + Send + 'static,
    {
        self.spawn(future);
    }
}