1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
use self::builder::ClauseBuilder;
use self::env_elaborator::elaborate_env_clauses;
use self::program_clauses::ToProgramClauses;
use crate::goal_builder::GoalBuilder;
use crate::rust_ir::{Movability, WellKnownTrait};
use crate::split::Split;
use crate::RustIrDatabase;
use chalk_ir::cast::{Cast, Caster};
use chalk_ir::could_match::CouldMatch;
use chalk_ir::interner::Interner;
use chalk_ir::*;
use rustc_hash::FxHashSet;
use std::iter;
use tracing::{debug, instrument};

pub mod builder;
mod builtin_traits;
mod dyn_ty;
mod env_elaborator;
mod generalize;
pub mod program_clauses;
mod super_traits;

// yields the types "contained" in `app_ty`
fn constituent_types<I: Interner>(db: &dyn RustIrDatabase<I>, ty: &TyKind<I>) -> Vec<Ty<I>> {
    let interner = db.interner();

    match ty {
        // For non-phantom_data adts we collect its variants/fields
        TyKind::Adt(adt_id, substitution) if !db.adt_datum(*adt_id).flags.phantom_data => {
            let adt_datum = &db.adt_datum(*adt_id);
            let adt_datum_bound = adt_datum.binders.clone().substitute(interner, substitution);
            adt_datum_bound
                .variants
                .into_iter()
                .flat_map(|variant| variant.fields.into_iter())
                .collect()
        }
        // And for `PhantomData<T>`, we pass `T`.
        TyKind::Adt(_, substitution)
        | TyKind::Tuple(_, substitution)
        | TyKind::FnDef(_, substitution) => substitution
            .iter(interner)
            .filter_map(|x| x.ty(interner))
            .cloned()
            .collect(),

        TyKind::Array(ty, _) | TyKind::Slice(ty) | TyKind::Raw(_, ty) | TyKind::Ref(_, _, ty) => {
            vec![ty.clone()]
        }

        TyKind::Str | TyKind::Never | TyKind::Scalar(_) => Vec::new(),

        TyKind::Generator(generator_id, substitution) => {
            let generator_datum = &db.generator_datum(*generator_id);
            let generator_datum_bound = generator_datum
                .input_output
                .clone()
                .substitute(interner, &substitution);

            let mut tys = generator_datum_bound.upvars;
            tys.push(
                TyKind::GeneratorWitness(*generator_id, substitution.clone()).intern(interner),
            );
            tys
        }

        TyKind::Closure(_, _) => panic!("this function should not be called for closures"),
        TyKind::GeneratorWitness(_, _) => {
            panic!("this function should not be called for generator witnesses")
        }
        TyKind::Function(_) => panic!("this function should not be called for functions"),
        TyKind::InferenceVar(_, _) | TyKind::BoundVar(_) => {
            panic!("this function should not be called for inference or bound vars")
        }
        TyKind::Placeholder(_) => panic!("this function should not be called for placeholders"),
        TyKind::Dyn(_) => panic!("this function should not be called for dyn types"),
        TyKind::Alias(_) => panic!("this function should not be called for alias"),
        TyKind::Foreign(_) => panic!("constituent_types of foreign types are unknown!"),
        TyKind::Error => Vec::new(),
        TyKind::OpaqueType(_, _) => panic!("constituent_types of opaque types are unknown!"),
        TyKind::AssociatedType(_, _) => {
            panic!("constituent_types of associated types are unknown!")
        }
    }
}

/// FIXME(#505) update comments for ADTs
/// For auto-traits, we generate a default rule for every struct,
/// unless there is a manual impl for that struct given explicitly.
///
/// So, if you have `impl Send for MyList<Foo>`, then we would
/// generate no rule for `MyList` at all -- similarly if you have
/// `impl !Send for MyList<Foo>`, or `impl<T> Send for MyList<T>`.
///
/// But if you have no rules at all for `Send` / `MyList`, then we
/// generate an impl based on the field types of `MyList`. For example
/// given the following program:
///
/// ```notrust
/// #[auto] trait Send { }
///
/// struct MyList<T> {
///     data: T,
///     next: Box<Option<MyList<T>>>,
/// }
///
/// ```
///
/// we generate:
///
/// ```notrust
/// forall<T> {
///     Implemented(MyList<T>: Send) :-
///         Implemented(T: Send),
///         Implemented(Box<Option<MyList<T>>>: Send).
/// }
/// ```
#[instrument(level = "debug", skip(builder))]
pub fn push_auto_trait_impls<I: Interner>(
    builder: &mut ClauseBuilder<'_, I>,
    auto_trait_id: TraitId<I>,
    ty: &TyKind<I>,
) -> Result<(), Floundered> {
    let interner = builder.interner();

    // Must be an auto trait.
    assert!(builder.db.trait_datum(auto_trait_id).is_auto_trait());

    // Auto traits never have generic parameters of their own (apart from `Self`).
    assert_eq!(
        builder.db.trait_datum(auto_trait_id).binders.len(interner),
        1
    );

    // If there is a `impl AutoTrait for Foo<..>` or `impl !AutoTrait
    // for Foo<..>`, where `Foo` is the adt we're looking at, then
    // we don't generate our own rules.
    if builder.db.impl_provided_for(auto_trait_id, ty) {
        debug!("impl provided");
        return Ok(());
    }

    let mk_ref = |ty: Ty<I>| TraitRef {
        trait_id: auto_trait_id,
        substitution: Substitution::from1(interner, ty.cast(interner)),
    };

    let consequence = mk_ref(ty.clone().intern(interner));

    match ty {
        // function-types implement auto traits unconditionally
        TyKind::Function(_) => {
            builder.push_fact(consequence);
            Ok(())
        }
        TyKind::InferenceVar(_, _) | TyKind::BoundVar(_) => Err(Floundered),

        // auto traits are not implemented for foreign types
        TyKind::Foreign(_) => Ok(()),

        // closures require binders, while the other types do not
        TyKind::Closure(closure_id, _) => {
            let binders = builder
                .db
                .closure_upvars(*closure_id, &Substitution::empty(interner));
            builder.push_binders(binders, |builder, upvar_ty| {
                let conditions = iter::once(mk_ref(upvar_ty));
                builder.push_clause(consequence, conditions);
            });
            Ok(())
        }
        TyKind::Generator(generator_id, _) => {
            if Some(auto_trait_id) == builder.db.well_known_trait_id(WellKnownTrait::Unpin) {
                match builder.db.generator_datum(*generator_id).movability {
                    // immovable generators are never `Unpin`
                    Movability::Static => (),
                    // movable generators are always `Unpin`
                    Movability::Movable => builder.push_fact(consequence),
                }
            } else {
                // if trait is not `Unpin`, use regular auto trait clause
                let conditions = constituent_types(builder.db, ty).into_iter().map(mk_ref);
                builder.push_clause(consequence, conditions);
            }
            Ok(())
        }

        TyKind::GeneratorWitness(generator_id, _) => {
            push_auto_trait_impls_generator_witness(builder, auto_trait_id, *generator_id);
            Ok(())
        }

        TyKind::OpaqueType(opaque_ty_id, _) => {
            push_auto_trait_impls_opaque(builder, auto_trait_id, *opaque_ty_id);
            Ok(())
        }

        // No auto traits
        TyKind::AssociatedType(_, _)
        | TyKind::Placeholder(_)
        | TyKind::Dyn(_)
        | TyKind::Alias(_) => Ok(()),

        // app_ty implements AutoTrait if all constituents of app_ty implement AutoTrait
        _ => {
            let conditions = constituent_types(builder.db, ty).into_iter().map(mk_ref);

            builder.push_clause(consequence, conditions);
            Ok(())
        }
    }
}

/// Leak auto traits for opaque types, just like `push_auto_trait_impls` does for structs.
///
/// For example, given the following program:
///
/// ```notrust
/// #[auto] trait Send { }
/// trait Trait { }
/// struct Bar { }
/// opaque type Foo: Trait = Bar
/// ```
/// Checking the goal `Foo: Send` would generate the following:
///
/// ```notrust
/// Foo: Send :- Bar: Send
/// ```
#[instrument(level = "debug", skip(builder))]
pub fn push_auto_trait_impls_opaque<I: Interner>(
    builder: &mut ClauseBuilder<'_, I>,
    auto_trait_id: TraitId<I>,
    opaque_id: OpaqueTyId<I>,
) {
    let opaque_ty_datum = &builder.db.opaque_ty_data(opaque_id);
    let interner = builder.interner();

    // Must be an auto trait.
    assert!(builder.db.trait_datum(auto_trait_id).is_auto_trait());

    // Auto traits never have generic parameters of their own (apart from `Self`).
    assert_eq!(
        builder.db.trait_datum(auto_trait_id).binders.len(interner),
        1
    );

    let hidden_ty = builder.db.hidden_opaque_type(opaque_id);
    let binders = opaque_ty_datum.bound.clone();
    builder.push_binders(binders, |builder, _| {
        let self_ty =
            TyKind::OpaqueType(opaque_id, builder.substitution_in_scope()).intern(interner);

        // trait_ref = `OpaqueType<...>: MyAutoTrait`
        let auto_trait_ref = TraitRef {
            trait_id: auto_trait_id,
            substitution: Substitution::from1(interner, self_ty),
        };

        // OpaqueType<...>: MyAutoTrait :- HiddenType: MyAutoTrait
        builder.push_clause(
            auto_trait_ref,
            std::iter::once(TraitRef {
                trait_id: auto_trait_id,
                substitution: Substitution::from1(interner, hidden_ty.clone()),
            }),
        );
    });
}

#[instrument(level = "debug", skip(builder))]
pub fn push_auto_trait_impls_generator_witness<I: Interner>(
    builder: &mut ClauseBuilder<'_, I>,
    auto_trait_id: TraitId<I>,
    generator_id: GeneratorId<I>,
) {
    let witness_datum = builder.db.generator_witness_datum(generator_id);
    let interner = builder.interner();

    // Must be an auto trait.
    assert!(builder.db.trait_datum(auto_trait_id).is_auto_trait());

    // Auto traits never have generic parameters of their own (apart from `Self`).
    assert_eq!(
        builder.db.trait_datum(auto_trait_id).binders.len(interner),
        1
    );

    // Push binders for the generator generic parameters. These can be used by
    // both upvars and witness types
    builder.push_binders(witness_datum.inner_types.clone(), |builder, inner_types| {
        let witness_ty = TyKind::GeneratorWitness(generator_id, builder.substitution_in_scope())
            .intern(interner);

        // trait_ref = `GeneratorWitness<...>: MyAutoTrait`
        let auto_trait_ref = TraitRef {
            trait_id: auto_trait_id,
            substitution: Substitution::from1(interner, witness_ty),
        };

        // Create a goal of the form:
        // forall<L0, L1, ..., LN> {
        //     WitnessType1<L0, L1, ... LN, P0, P1, ..., PN>: MyAutoTrait,
        //     ...
        //     WitnessTypeN<L0, L1, ... LN, P0, P1, ..., PN>: MyAutoTrait,
        //
        // }
        //
        // where `L0, L1, ...LN` are our existentially bound witness lifetimes,
        // and `P0, P1, ..., PN` are the normal generator generics.
        //
        // We create a 'forall' goal due to the fact that our witness lifetimes
        // are *existentially* quantified - the precise reigon is erased during
        // type checking, so we just know that the type takes *some* region
        // as a parameter. Therefore, we require that the auto trait bound
        // hold for *all* regions, which guarantees that the bound will
        // hold for the original lifetime (before it was erased).
        //
        // This does not take into account well-formed information from
        // the witness types. For example, if we have the type
        // `struct Foo<'a, 'b> { val: &'a &'b u8 }`
        // then `'b: 'a` must hold for `Foo<'a, 'b>` to be well-formed.
        // If we have `Foo<'a, 'b>` stored as a witness type, we will
        // not currently use this information to determine a more precise
        // relationship between 'a and 'b. In the future, we will likely
        // do this to avoid incorrectly rejecting correct code.
        let gb = &mut GoalBuilder::new(builder.db);
        let witness_goal = gb.forall(
            &inner_types.types,
            auto_trait_id,
            |gb, _subst, types, auto_trait_id| {
                Goal::new(
                    gb.interner(),
                    GoalData::All(Goals::from_iter(
                        gb.interner(),
                        types.iter().map(|witness_ty| TraitRef {
                            trait_id: auto_trait_id,
                            substitution: Substitution::from1(gb.interner(), witness_ty.clone()),
                        }),
                    )),
                )
            },
        );

        // GeneratorWitnessType: AutoTrait :- forall<...> ...
        // where 'forall<...> ...' is the goal described above.
        builder.push_clause(auto_trait_ref, std::iter::once(witness_goal));
    })
}

/// Given some goal `goal` that must be proven, along with
/// its `environment`, figures out the program clauses that apply
/// to this goal from the Rust program. So for example if the goal
/// is `Implemented(T: Clone)`, then this function might return clauses
/// derived from the trait `Clone` and its impls.
#[instrument(level = "debug", skip(db))]
pub fn program_clauses_for_goal<'db, I: Interner>(
    db: &'db dyn RustIrDatabase<I>,
    goal: &UCanonical<InEnvironment<DomainGoal<I>>>,
) -> Result<Vec<ProgramClause<I>>, Floundered> {
    let interner = db.interner();

    let custom_clauses = db.custom_clauses().into_iter();
    let clauses_that_could_match =
        program_clauses_that_could_match(db, goal).map(|cl| cl.into_iter())?;

    let clauses: Vec<ProgramClause<I>> = custom_clauses
        .chain(clauses_that_could_match)
        .chain(
            db.program_clauses_for_env(&goal.canonical.value.environment)
                .iter(interner)
                .cloned(),
        )
        .filter(|c| {
            c.could_match(
                interner,
                db.unification_database(),
                &goal.canonical.value.goal,
            )
        })
        .collect();

    debug!(?clauses);

    Ok(clauses)
}

/// Returns a set of program clauses that could possibly match
/// `goal`. This can be any superset of the correct set, but the
/// more precise you can make it, the more efficient solving will
/// be.
#[instrument(level = "debug", skip(db))]
pub fn program_clauses_that_could_match<I: Interner>(
    db: &dyn RustIrDatabase<I>,
    goal: &UCanonical<InEnvironment<DomainGoal<I>>>,
) -> Result<Vec<ProgramClause<I>>, Floundered> {
    let interner = db.interner();
    let mut clauses: Vec<ProgramClause<I>> = vec![];
    let builder = &mut ClauseBuilder::new(db, &mut clauses);

    let UCanonical {
        canonical:
            Canonical {
                value: InEnvironment { environment, goal },
                binders,
            },
        universes: _,
    } = goal;

    match goal {
        DomainGoal::Holds(WhereClause::Implemented(trait_ref)) => {
            let self_ty = trait_ref.self_type_parameter(interner);

            let trait_id = trait_ref.trait_id;
            let trait_datum = db.trait_datum(trait_id);

            match self_ty.kind(interner) {
                TyKind::InferenceVar(_, _) => {
                    panic!("Inference vars not allowed when getting program clauses")
                }
                TyKind::Alias(alias) => {
                    // An alias could normalize to anything, including `dyn trait`
                    // or an opaque type, so push a clause that asks for the
                    // self type to be normalized and return.
                    push_alias_implemented_clause(builder, trait_ref.clone(), alias.clone());
                    return Ok(clauses);
                }

                _ if self_ty.is_general_var(interner, binders) => {
                    if trait_datum.is_non_enumerable_trait() || trait_datum.is_auto_trait() {
                        return Err(Floundered);
                    }
                }

                TyKind::OpaqueType(opaque_ty_id, _) => {
                    db.opaque_ty_data(*opaque_ty_id)
                        .to_program_clauses(builder, environment);
                }

                TyKind::Dyn(_) => {
                    // If the self type is a `dyn trait` type, generate program-clauses
                    // that indicates that it implements its own traits.
                    // FIXME: This is presently rather wasteful, in that we don't check that the
                    // these program clauses we are generating are actually relevant to the goal
                    // `goal` that we are actually *trying* to prove (though there is some later
                    // code that will screen out irrelevant stuff).
                    //
                    // In other words, if we were trying to prove `Implemented(dyn
                    // Fn(&u8): Clone)`, we would still generate two clauses that are
                    // totally irrelevant to that goal, because they let us prove other
                    // things but not `Clone`.
                    dyn_ty::build_dyn_self_ty_clauses(db, builder, self_ty.clone())
                }

                // We don't actually do anything here, but we need to record the types when logging
                TyKind::Adt(adt_id, _) => {
                    let _ = db.adt_datum(*adt_id);
                }

                TyKind::FnDef(fn_def_id, _) => {
                    let _ = db.fn_def_datum(*fn_def_id);
                }

                _ => {}
            }

            // This is needed for the coherence related impls, as well
            // as for the `Implemented(Foo) :- FromEnv(Foo)` rule.
            trait_datum.to_program_clauses(builder, environment);

            for impl_id in db.impls_for_trait(
                trait_ref.trait_id,
                trait_ref.substitution.as_slice(interner),
                binders,
            ) {
                db.impl_datum(impl_id)
                    .to_program_clauses(builder, environment);
            }

            // If this is a `Foo: Send` (or any auto-trait), then add
            // the automatic impls for `Foo`.
            let trait_datum = db.trait_datum(trait_id);
            if trait_datum.is_auto_trait() {
                let generalized = generalize::Generalize::apply(db.interner(), trait_ref.clone());
                builder.push_binders(generalized, |builder, trait_ref| {
                    let ty = trait_ref.self_type_parameter(interner);
                    push_auto_trait_impls(builder, trait_id, &ty.kind(interner))
                })?;
            }

            if let Some(well_known) = trait_datum.well_known {
                builtin_traits::add_builtin_program_clauses(
                    db,
                    builder,
                    well_known,
                    trait_ref.clone(),
                    binders,
                )?;
            }
        }
        DomainGoal::Holds(WhereClause::AliasEq(alias_eq)) => match &alias_eq.alias {
            AliasTy::Projection(proj) => {
                let trait_self_ty = db
                    .trait_ref_from_projection(proj)
                    .self_type_parameter(interner);

                match trait_self_ty.kind(interner) {
                    TyKind::Alias(alias) => {
                        // An alias could normalize to anything, including an
                        // opaque type, so push a clause that asks for the self
                        // type to be normalized and return.
                        push_alias_alias_eq_clause(
                            builder,
                            proj.clone(),
                            alias_eq.ty.clone(),
                            alias.clone(),
                        );
                        return Ok(clauses);
                    }
                    TyKind::OpaqueType(opaque_ty_id, _) => {
                        db.opaque_ty_data(*opaque_ty_id)
                            .to_program_clauses(builder, environment);
                    }
                    // If the self type is a `dyn trait` type, generate program-clauses
                    // for any associated type bindings it contains.
                    // FIXME: see the fixme for the analogous code for Implemented goals.
                    TyKind::Dyn(_) => {
                        dyn_ty::build_dyn_self_ty_clauses(db, builder, trait_self_ty.clone())
                    }
                    _ => {}
                }

                db.associated_ty_data(proj.associated_ty_id)
                    .to_program_clauses(builder, environment)
            }
            AliasTy::Opaque(opaque_ty) => db
                .opaque_ty_data(opaque_ty.opaque_ty_id)
                .to_program_clauses(builder, environment),
        },
        DomainGoal::Holds(WhereClause::LifetimeOutlives(..)) => {
            builder.push_bound_lifetime(|builder, a| {
                builder.push_bound_lifetime(|builder, b| {
                    builder.push_fact_with_constraints(
                        DomainGoal::Holds(WhereClause::LifetimeOutlives(LifetimeOutlives {
                            a: a.clone(),
                            b: b.clone(),
                        })),
                        Some(InEnvironment::new(
                            &Environment::new(interner),
                            Constraint::LifetimeOutlives(a, b),
                        )),
                    );
                })
            });
        }
        DomainGoal::Holds(WhereClause::TypeOutlives(..)) => {
            builder.push_bound_ty(|builder, ty| {
                builder.push_bound_lifetime(|builder, lifetime| {
                    builder.push_fact_with_constraints(
                        DomainGoal::Holds(WhereClause::TypeOutlives(TypeOutlives {
                            ty: ty.clone(),
                            lifetime: lifetime.clone(),
                        })),
                        Some(InEnvironment::new(
                            &Environment::new(interner),
                            Constraint::TypeOutlives(ty, lifetime),
                        )),
                    )
                })
            });
        }
        DomainGoal::WellFormed(WellFormed::Trait(trait_ref))
        | DomainGoal::LocalImplAllowed(trait_ref) => {
            db.trait_datum(trait_ref.trait_id)
                .to_program_clauses(builder, environment);
        }
        DomainGoal::ObjectSafe(trait_id) => {
            if builder.db.is_object_safe(*trait_id) {
                builder.push_fact(DomainGoal::ObjectSafe(*trait_id));
            }
        }
        DomainGoal::WellFormed(WellFormed::Ty(ty))
        | DomainGoal::IsUpstream(ty)
        | DomainGoal::DownstreamType(ty)
        | DomainGoal::IsFullyVisible(ty)
        | DomainGoal::IsLocal(ty) => match_ty(builder, environment, ty)?,
        DomainGoal::FromEnv(_) => (), // Computed in the environment
        DomainGoal::Normalize(Normalize { alias, ty: _ }) => match alias {
            AliasTy::Projection(proj) => {
                // Normalize goals derive from `AssociatedTyValue` datums,
                // which are found in impls. That is, if we are
                // normalizing (e.g.) `<T as Iterator>::Item>`, then
                // search for impls of iterator and, within those impls,
                // for associated type values:
                //
                // ```ignore
                // impl Iterator for Foo {
                //     type Item = Bar; // <-- associated type value
                // }
                // ```
                let associated_ty_datum = db.associated_ty_data(proj.associated_ty_id);
                let trait_id = associated_ty_datum.trait_id;
                let trait_parameters = db.trait_parameters_from_projection(proj);

                let trait_datum = db.trait_datum(trait_id);

                let self_ty = proj.self_type_parameter(interner);
                if let TyKind::InferenceVar(_, _) = self_ty.kind(interner) {
                    panic!("Inference vars not allowed when getting program clauses");
                }

                // Flounder if the self-type is unknown and the trait is non-enumerable.
                //
                // e.g., Normalize(<?X as Iterator>::Item = u32)
                if (self_ty.is_general_var(interner, binders))
                    && trait_datum.is_non_enumerable_trait()
                {
                    return Err(Floundered);
                }

                if let Some(well_known) = trait_datum.well_known {
                    builtin_traits::add_builtin_assoc_program_clauses(
                        db, builder, well_known, self_ty,
                    )?;
                }

                push_program_clauses_for_associated_type_values_in_impls_of(
                    builder,
                    environment,
                    trait_id,
                    trait_parameters,
                    binders,
                );

                if environment.has_compatible_clause(interner) {
                    push_clauses_for_compatible_normalize(
                        db,
                        builder,
                        interner,
                        trait_id,
                        proj.associated_ty_id,
                    );
                }
            }
            AliasTy::Opaque(_) => (),
        },
        DomainGoal::Compatible | DomainGoal::Reveal => (),
    };

    Ok(clauses)
}

/// Adds clauses to allow normalizing possible downstream associated type
/// implementations when in the "compatible" mode. Example clauses:
///
/// ```notrust
/// for<type, type, type> Normalize(<^0.0 as Trait<^0.1>>::Item -> ^0.2)
///     :- Compatible, Implemented(^0.0: Trait<^0.1>), DownstreamType(^0.1), CannotProve
/// for<type, type, type> Normalize(<^0.0 as Trait<^0.1>>::Item -> ^0.2)
///     :- Compatible, Implemented(^0.0: Trait<^0.1>), IsFullyVisible(^0.0), DownstreamType(^0.1), CannotProve
/// ```
fn push_clauses_for_compatible_normalize<I: Interner>(
    db: &dyn RustIrDatabase<I>,
    builder: &mut ClauseBuilder<'_, I>,
    interner: &I,
    trait_id: TraitId<I>,
    associated_ty_id: AssocTypeId<I>,
) {
    let trait_datum = db.trait_datum(trait_id);
    let trait_binders = trait_datum.binders.map_ref(|b| &b.where_clauses).cloned();
    builder.push_binders(trait_binders, |builder, where_clauses| {
        let projection = ProjectionTy {
            associated_ty_id,
            substitution: builder.substitution_in_scope(),
        };
        let trait_ref = TraitRef {
            trait_id,
            substitution: builder.substitution_in_scope(),
        };
        let type_parameters: Vec<_> = trait_ref.type_parameters(interner).collect();

        builder.push_bound_ty(|builder, target_ty| {
            for i in 0..type_parameters.len() {
                builder.push_clause(
                    DomainGoal::Normalize(Normalize {
                        ty: target_ty.clone(),
                        alias: AliasTy::Projection(projection.clone()),
                    }),
                    where_clauses
                        .iter()
                        .cloned()
                        .casted(interner)
                        .chain(iter::once(DomainGoal::Compatible.cast(interner)))
                        .chain(iter::once(
                            WhereClause::Implemented(trait_ref.clone()).cast(interner),
                        ))
                        .chain((0..i).map(|j| {
                            DomainGoal::IsFullyVisible(type_parameters[j].clone()).cast(interner)
                        }))
                        .chain(iter::once(
                            DomainGoal::DownstreamType(type_parameters[i].clone()).cast(interner),
                        ))
                        .chain(iter::once(GoalData::CannotProve.intern(interner))),
                );
            }
        });
    });
}

/// Generate program clauses from the associated-type values
/// found in impls of the given trait. i.e., if `trait_id` = Iterator,
/// then we would generate program clauses from each `type Item = ...`
/// found in any impls of `Iterator`:
/// which are found in impls. That is, if we are
/// normalizing (e.g.) `<T as Iterator>::Item>`, then
/// search for impls of iterator and, within those impls,
/// for associated type values:
///
/// ```ignore
/// impl Iterator for Foo {
///     type Item = Bar; // <-- associated type value
/// }
/// ```
#[instrument(level = "debug", skip(builder))]
fn push_program_clauses_for_associated_type_values_in_impls_of<I: Interner>(
    builder: &mut ClauseBuilder<'_, I>,
    environment: &Environment<I>,
    trait_id: TraitId<I>,
    trait_parameters: &[GenericArg<I>],
    binders: &CanonicalVarKinds<I>,
) {
    for impl_id in builder
        .db
        .impls_for_trait(trait_id, trait_parameters, binders)
    {
        let impl_datum = builder.db.impl_datum(impl_id);
        if !impl_datum.is_positive() {
            continue;
        }

        debug!(?impl_id);

        for &atv_id in &impl_datum.associated_ty_value_ids {
            let atv = builder.db.associated_ty_value(atv_id);
            debug!(?atv_id, ?atv);
            atv.to_program_clauses(builder, environment);
        }
    }
}

fn push_alias_implemented_clause<I: Interner>(
    builder: &mut ClauseBuilder<'_, I>,
    trait_ref: TraitRef<I>,
    alias: AliasTy<I>,
) {
    let interner = builder.interner();
    assert_eq!(
        *trait_ref.self_type_parameter(interner).kind(interner),
        TyKind::Alias(alias.clone())
    );

    // TODO: instead generate clauses without reference to the specific type parameters of the goal?
    let generalized = generalize::Generalize::apply(interner, (trait_ref, alias));
    builder.push_binders(generalized, |builder, (trait_ref, alias)| {
        let binders = Binders::with_fresh_type_var(interner, |ty_var| ty_var);

        // forall<..., T> {
        //      <X as Y>::Z: Trait :- T: Trait, <X as Y>::Z == T
        // }
        builder.push_binders(binders, |builder, bound_var| {
            let fresh_self_subst = Substitution::from_iter(
                interner,
                std::iter::once(bound_var.clone().cast(interner)).chain(
                    trait_ref.substitution.as_slice(interner)[1..]
                        .iter()
                        .cloned(),
                ),
            );
            let fresh_self_trait_ref = TraitRef {
                trait_id: trait_ref.trait_id,
                substitution: fresh_self_subst,
            };
            builder.push_clause(
                DomainGoal::Holds(WhereClause::Implemented(trait_ref.clone())),
                &[
                    DomainGoal::Holds(WhereClause::Implemented(fresh_self_trait_ref)),
                    DomainGoal::Holds(WhereClause::AliasEq(AliasEq {
                        alias: alias.clone(),
                        ty: bound_var,
                    })),
                ],
            );
        });
    });
}

fn push_alias_alias_eq_clause<I: Interner>(
    builder: &mut ClauseBuilder<'_, I>,
    projection_ty: ProjectionTy<I>,
    ty: Ty<I>,
    alias: AliasTy<I>,
) {
    let interner = builder.interner();
    assert_eq!(
        *projection_ty.self_type_parameter(interner).kind(interner),
        TyKind::Alias(alias.clone())
    );

    // TODO: instead generate clauses without reference to the specific type parameters of the goal?
    let generalized = generalize::Generalize::apply(interner, (projection_ty, ty, alias));
    builder.push_binders(generalized, |builder, (projection_ty, ty, alias)| {
        let binders = Binders::with_fresh_type_var(interner, |ty_var| ty_var);

        // forall<..., T> {
        //      <<X as Y>::A as Z>::B == U :- <T as Z>::B == U, <X as Y>::A == T
        // }
        builder.push_binders(binders, |builder, bound_var| {
            let fresh_self_subst = Substitution::from_iter(
                interner,
                std::iter::once(bound_var.clone().cast(interner)).chain(
                    projection_ty.substitution.as_slice(interner)[1..]
                        .iter()
                        .cloned(),
                ),
            );
            let fresh_alias = AliasTy::Projection(ProjectionTy {
                associated_ty_id: projection_ty.associated_ty_id,
                substitution: fresh_self_subst,
            });
            builder.push_clause(
                DomainGoal::Holds(WhereClause::AliasEq(AliasEq {
                    alias: AliasTy::Projection(projection_ty.clone()),
                    ty: ty.clone(),
                })),
                &[
                    DomainGoal::Holds(WhereClause::AliasEq(AliasEq {
                        alias: fresh_alias,
                        ty: ty.clone(),
                    })),
                    DomainGoal::Holds(WhereClause::AliasEq(AliasEq {
                        alias: alias.clone(),
                        ty: bound_var,
                    })),
                ],
            );
        });
    });
}

/// Examine `T` and push clauses that may be relevant to proving the
/// following sorts of goals (and maybe others):
///
/// * `DomainGoal::WellFormed(T)`
/// * `DomainGoal::IsUpstream(T)`
/// * `DomainGoal::DownstreamType(T)`
/// * `DomainGoal::IsFullyVisible(T)`
/// * `DomainGoal::IsLocal(T)`
///
/// Note that the type `T` must not be an unbound inference variable;
/// earlier parts of the logic should "flounder" in that case.
fn match_ty<I: Interner>(
    builder: &mut ClauseBuilder<'_, I>,
    environment: &Environment<I>,
    ty: &Ty<I>,
) -> Result<(), Floundered> {
    let interner = builder.interner();
    Ok(match ty.kind(interner) {
        TyKind::InferenceVar(_, _) => {
            panic!("Inference vars not allowed when getting program clauses")
        }
        TyKind::Adt(adt_id, _) => builder
            .db
            .adt_datum(*adt_id)
            .to_program_clauses(builder, environment),
        TyKind::OpaqueType(opaque_ty_id, _) => builder
            .db
            .opaque_ty_data(*opaque_ty_id)
            .to_program_clauses(builder, environment),
        TyKind::Error => {}
        TyKind::AssociatedType(type_id, _) => builder
            .db
            .associated_ty_data(*type_id)
            .to_program_clauses(builder, environment),
        TyKind::FnDef(fn_def_id, _) => builder
            .db
            .fn_def_datum(*fn_def_id)
            .to_program_clauses(builder, environment),
        TyKind::Str | TyKind::Never | TyKind::Scalar(_) | TyKind::Foreign(_) => {
            // These have no substitutions, so they are trivially WF
            builder.push_fact(WellFormed::Ty(ty.clone()));
        }
        TyKind::Raw(mutbl, _) => {
            builder.push_bound_ty(|builder, ty| {
                builder.push_fact(WellFormed::Ty(
                    TyKind::Raw(*mutbl, ty).intern(builder.interner()),
                ));
            });
        }
        TyKind::Ref(mutbl, _, _) => {
            builder.push_bound_ty(|builder, ty| {
                builder.push_bound_lifetime(|builder, lifetime| {
                    builder.push_fact(WellFormed::Ty(
                        TyKind::Ref(*mutbl, lifetime, ty).intern(builder.interner()),
                    ));
                })
            });
        }
        TyKind::Slice(_) => {
            builder.push_bound_ty(|builder, ty| {
                builder.push_fact(WellFormed::Ty(TyKind::Slice(ty).intern(builder.interner())));
            });
        }
        TyKind::Tuple(_, _)
        | TyKind::Array(_, _)
        | TyKind::Closure(_, _)
        | TyKind::Generator(_, _)
        | TyKind::GeneratorWitness(_, _) => {
            let ty = generalize::Generalize::apply(builder.db.interner(), ty.clone());
            builder.push_binders(ty, |builder, ty| {
                builder.push_fact(WellFormed::Ty(ty.clone()));
            });
        }
        TyKind::Placeholder(_) => {
            builder.push_clause(WellFormed::Ty(ty.clone()), Some(FromEnv::Ty(ty.clone())));
        }
        TyKind::Alias(AliasTy::Projection(proj)) => builder
            .db
            .associated_ty_data(proj.associated_ty_id)
            .to_program_clauses(builder, environment),
        TyKind::Alias(AliasTy::Opaque(opaque_ty)) => builder
            .db
            .opaque_ty_data(opaque_ty.opaque_ty_id)
            .to_program_clauses(builder, environment),
        TyKind::Function(_quantified_ty) => {
            let ty = generalize::Generalize::apply(builder.db.interner(), ty.clone());
            builder.push_binders(ty, |builder, ty| {
                builder.push_fact(WellFormed::Ty(ty.clone()))
            });
        }
        TyKind::BoundVar(_) => return Err(Floundered),
        TyKind::Dyn(dyn_ty) => {
            // FIXME(#203)
            // - Object safety? (not needed with RFC 2027)
            // - Implied bounds
            // - Bounds on the associated types
            // - Checking that all associated types are specified, including
            //   those on supertraits.
            // - For trait objects with GATs, check that the bounds are fully
            //   general (`dyn for<'a> StreamingIterator<Item<'a> = &'a ()>` is OK,
            //   `dyn StreamingIterator<Item<'static> = &'static ()>` is not).
            let bounds = dyn_ty
                .bounds
                .clone()
                .substitute(interner, &[ty.clone().cast::<GenericArg<I>>(interner)]);

            let mut wf_goals = Vec::new();

            wf_goals.extend(bounds.iter(interner).flat_map(|bound| {
                bound.map_ref(|bound| -> Vec<_> {
                    match bound {
                        WhereClause::Implemented(trait_ref) => {
                            vec![DomainGoal::WellFormed(WellFormed::Trait(trait_ref.clone()))]
                        }
                        WhereClause::AliasEq(_)
                        | WhereClause::LifetimeOutlives(_)
                        | WhereClause::TypeOutlives(_) => vec![],
                    }
                })
            }));

            builder.push_clause(WellFormed::Ty(ty.clone()), wf_goals);
        }
    })
}

fn match_alias_ty<I: Interner>(
    builder: &mut ClauseBuilder<'_, I>,
    environment: &Environment<I>,
    alias: &AliasTy<I>,
) {
    match alias {
        AliasTy::Projection(projection_ty) => builder
            .db
            .associated_ty_data(projection_ty.associated_ty_id)
            .to_program_clauses(builder, environment),
        _ => (),
    }
}

#[instrument(level = "debug", skip(db))]
pub fn program_clauses_for_env<'db, I: Interner>(
    db: &'db dyn RustIrDatabase<I>,
    environment: &Environment<I>,
) -> ProgramClauses<I> {
    let mut last_round = environment
        .clauses
        .as_slice(db.interner())
        .iter()
        .cloned()
        .collect::<FxHashSet<_>>();
    let mut closure = last_round.clone();
    let mut next_round = FxHashSet::default();
    while !last_round.is_empty() {
        elaborate_env_clauses(
            db,
            &last_round.drain().collect::<Vec<_>>(),
            &mut next_round,
            environment,
        );
        last_round.extend(
            next_round
                .drain()
                .filter(|clause| closure.insert(clause.clone())),
        );
    }

    ProgramClauses::from_iter(db.interner(), closure)
}