1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
//! Rewrites sequence rules into production rules.

// #[cfg(feature = "nightly")]
// use collections::range::RangeArgument;
use std::collections::HashMap;
use std::collections::hash_map::Entry;

use history::{RewriteSequence, HistorySource, NullHistory};
use rule::builder::RuleBuilder;
use rule::container::RuleContainer;
use sequence::{Separator, Sequence};
use sequence::Separator::{Trailing, Proper, Liberal};
use sequence::builder::SequenceRuleBuilder;
use sequence::destination::SequenceDestination;
use symbol::Symbol;

/// Rewrites sequence rules into production rules.
pub struct SequencesToProductions<H, D>
    where H: RewriteSequence,
          D: RuleContainer
{
    destination: D,
    stack: Vec<Sequence<NullHistory>>,
    map: HashMap<PartialSequence, Symbol>,
    top_history: Option<H>,
    at_top: bool,
    rhs: Option<Symbol>,
    separator: Option<Symbol>,
}

// A key into a private map.
#[derive(Clone, Debug, Eq, Hash, PartialEq)]
struct PartialSequence {
    rhs: Symbol,
    start: u32,
    end: Option<u32>,
    separator: Separator,
}

impl<H, D> SequenceDestination<H> for SequencesToProductions<H, D>
    where D: RuleContainer<History = H::Rewritten>,
          H: Clone + RewriteSequence,
          H::Rewritten: Clone
{
    fn add_sequence(&mut self, seq: Sequence<H>) {
        self.rewrite(seq);
    }
}

impl<H, D> SequencesToProductions<H, D>
    where D: RuleContainer<History = H::Rewritten>,
          H: Clone + RewriteSequence,
          H::Rewritten: Clone
{
    /// Initializes a rewrite.
    pub fn new(destination: D) -> Self {
        SequencesToProductions {
            destination: destination,
            stack: vec![],
            map: HashMap::new(),
            top_history: None,
            at_top: false,
            rhs: None,
            separator: None,
        }
    }

    /// Rewrites sequence rules.
    pub fn rewrite_sequences(sequence_rules: &[Sequence<H>], rules: D) {
        let mut rewrite = SequenceRuleBuilder::new(SequencesToProductions::new(rules));
        for rule in sequence_rules {
            rewrite = rewrite.sequence(rule.lhs)
                             .separator(rule.separator)
                             .inclusive(rule.start, rule.end)
                             .rhs_with_history(rule.rhs, &rule.history);
        }
    }

    /// Rewrites a sequence rule.
    pub fn rewrite(&mut self, top: Sequence<H>) {
        self.stack.clear();
        self.map.clear();
        self.top_history = Some(top.history);
        let top = Sequence {
            lhs: top.lhs,
            rhs: top.rhs,
            start: top.start,
            end: top.end,
            separator: top.separator,
            history: NullHistory,
        };
        self.rhs = Some(top.rhs);
        self.separator = top.separator.into();
        self.at_top = true;
        self.reduce(top);
        self.at_top = false;
        while let Some(seq) = self.stack.pop() {
            assert!(seq.start <= seq.end.unwrap_or(!0));
            self.reduce(seq);
        }
    }

    fn rule(&mut self, lhs: Symbol) -> RuleBuilder<&mut D, DefaultSeqHistory<H>> {
        let default = DefaultSeqHistory {
            top_history: self.top_history.as_ref().unwrap(),
            at_top: self.at_top,
            elem: self.rhs.unwrap(),
            separator: self.separator,
        };
        RuleBuilder::new(&mut self.destination).rule(lhs).default_history(default)
    }

    fn recurse(&mut self, seq: &Sequence<NullHistory>) -> Symbol {
        let sym_source = &mut self.destination;
        // As a placeholder
        let partial = PartialSequence {
            rhs: seq.rhs,
            separator: seq.separator,
            start: seq.start,
            end: seq.end,
        };

        match self.map.entry(partial) {
            Entry::Vacant(vacant) => {
                let lhs = sym_source.sym();
                vacant.insert(lhs);
                self.stack.push(Sequence {
                    lhs: lhs,
                    rhs: seq.rhs,
                    start: seq.start,
                    end: seq.end,
                    separator: seq.separator,
                    history: seq.history,
                });
                lhs
            }
            Entry::Occupied(lhs) => *lhs.get(),
        }
    }

    fn reduce(&mut self, sequence: Sequence<NullHistory>) {
        let Sequence { lhs, rhs, start, end, separator, .. } = sequence;
        // TODO optimize reductions
        match (separator, start, end) {
            (Liberal(sep), _, _) => {
                let sym1 = self.recurse(&sequence.clone().separator(Proper(sep)));
                let sym2 = self.recurse(&sequence.clone().separator(Trailing(sep)));
                // seq ::= sym1 | sym2
                self.rule(lhs)
                    .rhs([sym1])
                    .rhs([sym2]);
            }
            (_, _, _) if start == 0 => {
                // seq ::= epsilon | sym
                self.rule(lhs).rhs([]);
                if end != Some(0) {
                    let sym = self.recurse(&sequence.inclusive(1, end));
                    self.rule(lhs).rhs([sym]);
                }
            }
            (Trailing(sep), _, _) => {
                let sym = self.recurse(&sequence.separator(Proper(sep)));
                // seq ::= sym sep
                self.rule(lhs).rhs([sym, sep]);
            }
            (_, _, _) if start == 1 && end == None => {
                if self.at_top {
                    let rec = self.recurse(&sequence);
                    self.rule(lhs).rhs([rec]);
                } else {
                    // seq ::= item
                    self.rule(lhs).rhs([rhs]);
                    // Left recursive
                    // seq ::= seq sep item
                    if let Proper(sep) = separator {
                        self.rule(lhs).rhs([lhs, sep, rhs]);
                    } else {
                        self.rule(lhs).rhs([lhs, rhs]);
                    }
                }
            }
            (_, _, _) if (start, end) == (1, Some(1)) => {
                self.rule(lhs).rhs([rhs]);
            }
            (_, _, _) if (start, end) == (1, Some(2)) => {
                let sym1 = self.recurse(&sequence.clone().inclusive(1, Some(1)));
                let sym2 = self.recurse(&sequence.clone().inclusive(2, Some(2)));
                // seq ::= sym1 | sym2
                self.rule(lhs)
                    .rhs([sym1])
                    .rhs([sym2]);
            }
            (_, _, Some(end)) if start == 1 => {
                // end >= 3
                let pow2 = end.next_power_of_two() / 2;
                let (seq1, block, seq2) = (sequence.clone().inclusive(1, Some(pow2)),
                                           sequence.clone().inclusive(pow2, Some(pow2)),
                                           sequence.clone().inclusive(1, Some(end - pow2)));
                let rhs1 = self.recurse(&seq1);
                let block = self.recurse(&block.separator(separator.prefix_separator()));
                let rhs2 = self.recurse(&seq2);
                // seq ::= sym1 sym2
                self.rule(lhs).rhs([rhs1])
                              .rhs([block, rhs2]);
            }
            // Bug in rustc. Must use comparison.
            (Proper(sep), start, end) if start == 2 && end == Some(2) => {
                self.rule(lhs).rhs([rhs, sep, rhs]);
            }
            (_, _, _) if start == 2 && end == Some(2) => {
                self.rule(lhs).rhs([rhs, rhs]);
            }
            (_, _, end) if start >= 2 => {
                // to do infinity
                let (seq1, seq2) = if Some(start) == end {
                    // A "block"
                    let pow2 = start.next_power_of_two() / 2;
                    (sequence.clone().inclusive(pow2, Some(pow2)),
                     sequence.clone().inclusive(start - pow2, Some(start - pow2)))
                } else {
                    // A "span"
                    (sequence.clone().inclusive(start - 1, Some(start - 1)),
                     sequence.clone().inclusive(1, end.map(|end| end - start + 1)))
                };
                let (rhs1, rhs2) = (self.recurse(&seq1.separator(separator.prefix_separator())),
                                    self.recurse(&seq2.separator(separator)));
                // seq ::= sym1 sym2
                self.rule(lhs).rhs([rhs1, rhs2]);
            }
            _ => panic!(),
        }
    }
}

struct DefaultSeqHistory<'a, H: 'a>
    where H: RewriteSequence
{
    top_history: &'a H,
    at_top: bool,
    elem: Symbol,
    separator: Option<Symbol>,
}

impl<'a, H> HistorySource<H::Rewritten> for DefaultSeqHistory<'a, H>
    where H: RewriteSequence,
          H::Rewritten: Clone
{
    fn build(&mut self, _lhs: Symbol, rhs: &[Symbol]) -> H::Rewritten {
        if self.at_top {
            self.top_history.top(self.elem, self.separator, rhs)
        } else {
            self.top_history.bottom(self.elem, self.separator, rhs)
        }
    }
}