1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
//! Tools for converting the [`ast`] (syntax tree) into an [`ivt`]
//! (intermediate validation tree).
//!
//! This module is called "flatten" because its goal is to flatten syntax
//! tree detail that's not useful for validation.
//!
//! [`ivt`]: crate::ivt
//! [`ast`]: crate::ast

use crate::ast;
use crate::ivt::*;
use crate::parser::{parse_cddl, slice_parse_cddl};
use crate::util::ValidateError;
use std::convert::TryInto;

/// The result of a flatten operation.
pub type FlattenResult<T> = std::result::Result<T, ValidateError>;

/// Convert a CDDL schema in UTF-8 form into a structured rule set.
pub fn flatten_from_str(cddl_input: &str) -> FlattenResult<RulesByName> {
    let cddl = parse_cddl(cddl_input).map_err(ValidateError::ParseError)?;
    flatten(&cddl)
}

/// Convert a CDDL schema in UTF-8 form into a structured rule set, preserving the CDDL text.
///
/// This works the same as `flatten_from_str`, but preserves a copy of the original
/// CDDL text alongside the IVT.
pub fn slice_flatten_from_str(cddl_input: &str) -> FlattenResult<RulesWithStrings> {
    let cddl = slice_parse_cddl(cddl_input).map_err(ValidateError::ParseError)?;
    slice_flatten(&cddl)
}

/// Convert an already-parsed cddl AST into a `(name, rules)` map.
pub fn flatten(cddl: &ast::Cddl) -> FlattenResult<RulesByName> {
    // This first pass generates a tree of Nodes from the AST.
    cddl.rules.iter().map(|rule| flatten_rule(rule)).collect()
}

/// Convert an already-parsed cddl AST into a `(name, (rule, rule-string))` map.
///
/// This works the same as `flatten`, but preserves a copy of the original
/// CDDL text alongside the IVT.
pub fn slice_flatten(cddl: &ast::CddlSlice) -> FlattenResult<RulesWithStrings> {
    // This first pass generates a tree of Nodes from the AST.
    cddl.rules
        .iter()
        .map(|(rule, s)| {
            let (name, flat) = flatten_rule(rule)?;
            // key = name, value = (Node, copy of cddl text slice)
            Ok((name, (flat, s.clone())))
        })
        .collect()
}

/// flatten an ast::Rule to an ivt::Node
///
/// Returns (name, node) where the name is the name of the rule (which may
/// be referenced in other places.
fn flatten_rule(rule: &ast::Rule) -> FlattenResult<(String, RuleDef)> {
    use ast::RuleVal;
    let node = match &rule.val {
        RuleVal::AssignType(t) => flatten_type(&t)?,
        RuleVal::AssignGroup(g) => flatten_groupentry(&g)?,
    };
    let ruledef = RuleDef {
        generic_parms: rule.generic_parms.clone(),
        node,
    };
    Ok((rule.name.clone(), ruledef))
}

fn flatten_type(ty: &ast::Type) -> FlattenResult<Node> {
    let options: FlattenResult<Vec<Node>> = ty.0.iter().map(|type1| flatten_type1(type1)).collect();
    let options = options?;

    match options.len() {
        0 => Err(ValidateError::Unsupported(
            "flatten type with 0 options".into(),
        )),
        1 => Ok(options.into_iter().next().unwrap()),
        _ => Ok(Node::Choice(Choice { options })),
    }
}

fn flatten_type1(ty1: &ast::Type1) -> FlattenResult<Node> {
    use ast::Type1::*;
    match ty1 {
        Simple(ty2) => flatten_type2(ty2),
        Range(r) => flatten_range(r),
        Control(_) => Err(ValidateError::Unsupported("control operator".into())),
    }
}

// The only way a range start or end can be specified is with a literal
// value, or with a typename.  We will accept either of those, and throw
// an error otherwise.  Let the validator worry about whether a typename
// resolves to a literal.
fn range_point(point: &ast::Type2) -> FlattenResult<Node> {
    let node = match point {
        ast::Type2::Value(v) => flatten_value(v),
        ast::Type2::Typename(t) => flatten_name_generic(t),
        _ => Err(ValidateError::Structural(
            "bad type on range operator".into(),
        )),
    }?;
    // Check that the node that came back is a Rule or Literal.
    // Anything else (i.e. PreludeType) should cause an error.
    match node {
        Node::Rule(_) | Node::Literal(_) => Ok(node),
        _ => Err(ValidateError::Structural(
            "bad type on range operator".into(),
        )),
    }
}

fn flatten_range(range: &ast::TypeRange) -> FlattenResult<Node> {
    let start = range_point(&range.start)?;
    let end = range_point(&range.end)?;

    Ok(Node::Range(Range {
        start: start.into(),
        end: end.into(),
        inclusive: range.inclusive,
    }))
}

fn flatten_value(value: &ast::Value) -> FlattenResult<Node> {
    use ast::Value;
    match value {
        Value::Text(s) => Ok(literal_text(s)),
        Value::Uint(u) => {
            let value = num_to_i128(*u)?;
            Ok(literal_int(value))
        }
        Value::Nint(n) => {
            let value = num_to_i128(*n)?;
            Ok(literal_int(value))
        }
        Value::Float(f) => Ok(literal_float(*f)),
        Value::Bytes(b) => Ok(literal_bytes(b.clone())),
    }
}

fn flatten_type2(ty2: &ast::Type2) -> FlattenResult<Node> {
    use ast::Type2;
    match ty2 {
        Type2::Value(v) => flatten_value(v),
        Type2::Typename(s) => flatten_name_generic(s),
        Type2::Parethesized(t) => flatten_type(t),
        Type2::Map(g) => flatten_map(&g),
        Type2::Array(g) => flatten_array(&g),
        Type2::Unwrap(r) => Ok(Node::Unwrap(flatten_rule_generic(r)?)),
    }
}

fn flatten_typename(name: &str) -> FlattenResult<Node> {
    let unsupported = |s: &str| -> FlattenResult<Node> {
        let msg = format!("prelude type '{}'", s);
        Err(ValidateError::Unsupported(msg))
    };

    let result = match name {
        "any" => Node::PreludeType(PreludeType::Any),
        "nil" | "null" => Node::PreludeType(PreludeType::Nil),
        "bool" => Node::PreludeType(PreludeType::Bool),
        "false" => literal_bool(false),
        "true" => literal_bool(true),
        "int" => Node::PreludeType(PreludeType::Int),
        "uint" => Node::PreludeType(PreludeType::Uint),
        "nint" => Node::PreludeType(PreludeType::Nint),
        "float" => Node::PreludeType(PreludeType::Float),
        "tstr" | "text" => Node::PreludeType(PreludeType::Tstr),
        "bstr" | "bytes" => Node::PreludeType(PreludeType::Bstr),

        // FIXME: need to store the "additional information" bits that will
        // preserve the expected floating-point size.  For now, just pretend
        // that all floats are the same.
        "float16" | "float32" | "float64" | "float16-32" | "float32-64" => {
            Node::PreludeType(PreludeType::Float)
        }

        // The remaining prelude types are specified using CBOR (major, ai)
        // pairs.  These types can only be used with CBOR (not JSON).

        // FIXME: preserve more information about these types so that a JSON
        // validator knows to reject them, and a CBOR validator has some chance
        // at further validation.

        // CBOR types that are stored as "tstr":
        // tdate = #6.0(tstr)
        // uri = #6.32(tstr)
        // b64url = #6.33(tstr)
        // b64legacy = #6.34(tstr)
        // regexp = #6.35(tstr)
        // mime-message = #6.36(tstr)
        "tdate" | "uri" | "b64url" | "b64legacy" | "regexp" | "mime-message" => {
            Node::PreludeType(PreludeType::Tstr)
        }

        // CBOR types that are stored as "bstr":
        // biguint = #6.2(bstr)
        // bignint = #6.3(bstr)
        // encoded-cbor = #6.24(bstr)
        "biguint" | "bignint" | "encoded-cbor" => Node::PreludeType(PreludeType::Bstr),

        // CBOR types that are stored as "any":
        // eb64url = #6.21(any)
        // eb64legacy = #6.22(any)
        // eb16 = #6.23(any)
        // cbor-any = #6.55799(any)
        "eb64url" | "eb64legacy" | "eb16" | "cbor-any" => Node::PreludeType(PreludeType::Any),

        // CBOR types that are stored as "number":
        // time = #6.1(number)
        "time" => return unsupported(name),

        // CBOR types that are choices of other types:
        // bigint = biguint / bignint
        // integer = int / bigint
        // unsigned = uint / biguint
        // number = int / float
        "bigint" | "integer" | "unsigned" | "number" => return unsupported(name),

        // Other miscellaneous prelude types:
        // decfrac = #6.4([e10: int, m: integer])
        // bigfloat = #6.5([e2: int, m: integer])
        // undefined = #7.23
        "decfrac" | "bigfloat" | "undefined" => return unsupported(name),

        // We failed to find this string in the standard prelude, so we will
        // assume it's a rule or group identifier.  No further validation is
        // done at this time.
        _ => Node::Rule(Rule::new_name(name)),
    };
    Ok(result)
}

// Similar to flatten_name_generic, but if a prelude type is detected,
// it returns an error.  This is for the "unwrap" operator, which can
// only be used on group references, not prelude types.
//
// This code doesn't validate that the rule name is actually a group; that
// will happen later.
fn flatten_rule_generic(name_generic: &ast::NameGeneric) -> FlattenResult<Rule> {
    let result = flatten_name_generic(name_generic);
    match result {
        Ok(Node::Rule(r)) => Ok(r),
        _ => Err(ValidateError::GenericError),
    }
}

fn flatten_name_generic(name_generic: &ast::NameGeneric) -> FlattenResult<Node> {
    // Flatten the name
    let mut node = flatten_typename(&name_generic.name)?;
    match node {
        Node::Rule(ref mut r) => {
            // Add the args to the rule.
            for arg in &name_generic.generic_args {
                // Need to flatten each individual generic arg.
                let arg_node = flatten_type1(&arg)?;
                r.generic_args.push(arg_node);
            }
        }
        _ => {
            // If the name resolves to a prelude type, and there are generic args,
            // return an error.
            if !name_generic.generic_args.is_empty() {
                return Err(ValidateError::GenericError);
            }
        }
    }
    Ok(node)
}

/// Flatten a group into a Map.
fn flatten_map(group: &ast::Group) -> FlattenResult<Node> {
    let kvs = flatten_group(group)?;
    Ok(Node::Map(Map { members: kvs }))
}

/// Flatten a group into a Map.
fn flatten_array(group: &ast::Group) -> FlattenResult<Node> {
    let kvs = flatten_group(group)?;
    Ok(Node::Array(Array { members: kvs }))
}

// Returns an ivt::Group node, or a vector of other nodes.
fn flatten_group(group: &ast::Group) -> FlattenResult<Vec<Node>> {
    let group_choices = &group.0;
    if group_choices.len() == 1 {
        let groupchoice = &group_choices[0];
        flatten_groupchoice(groupchoice)
    } else {
        // Emit a Choice node, containing a vector of Group nodes.
        let options: FlattenResult<Vec<Node>> = group_choices
            .iter()
            .map(|gc| {
                let inner_members = flatten_groupchoice(gc)?;
                Ok(Node::Group(Group {
                    members: inner_members,
                }))
            })
            .collect();
        let options = options?;
        Ok(vec![Node::Choice(Choice { options })])
    }
}

fn flatten_groupchoice(groupchoice: &ast::GrpChoice) -> FlattenResult<Vec<Node>> {
    let group_entries = &groupchoice.0;
    let kvs: FlattenResult<Vec<Node>> = group_entries
        .iter()
        .map(|group_entry| flatten_groupentry(group_entry))
        .collect();
    kvs
}

fn flatten_groupentry(group_entry: &ast::GrpEnt) -> FlattenResult<Node> {
    let node = flatten_groupentry_val(&group_entry.val)?;
    Ok(occur_wrap(&group_entry.occur, node))
}

fn flatten_groupentry_val(gev: &ast::GrpEntVal) -> FlattenResult<Node> {
    use ast::GrpEntVal;

    match gev {
        GrpEntVal::Member(m) => flatten_member(m),
        GrpEntVal::Groupname(s) => flatten_typename(s),
        GrpEntVal::Parenthesized(g) => {
            let nodes = flatten_group(g)?;
            Ok(Node::Group(Group { members: nodes }))
        }
    }
}

/* Don't delete this yet; I would like to remove usize::MAX from the parser.
/// Convert ast::Occur to ivt::OccurLimit
impl From<&ast::Occur> for OccurLimit {
    fn from(occur: &ast::Occur) -> OccurLimit {
        match occur {
            ast::Occur::Optional(_) => OccurLimit::Optional,
            ast::Occur::ZeroOrMore(_) => OccurLimit::ZeroOrMore,
            ast::Occur::OneOrMore(_) => OccurLimit::OneOrMore,
            ast::Occur::Exact { lower, upper, .. } => {
                let lower: usize = match lower {
                    Some(n) => *n,
                    None => 0,
                };
                let upper: usize = match upper {
                    Some(n) => *n,
                    None => usize::MAX,
                };
                OccurLimit::Numbered(lower, upper)
            }
        }
    }
}
*/

/// If the ast::Occur is Some, wrap the given Node in an ivt::Occur.
///
/// This is an adapter between the way the `ast` does occurences (extra
/// metadata attached to certain data structures) and the way `ivt` does them
/// (wrapping the Node in another Node).
///
/// If the occur argument is None, return the original node.
///
fn occur_wrap(occur: &Option<ast::Occur>, node: Node) -> Node {
    match &occur {
        Some(o) => Node::Occur(Occur::new(o.clone(), node)),
        None => node,
    }
}

fn flatten_member(member: &ast::Member) -> FlattenResult<Node> {
    match &member.key {
        Some(key) => {
            let cut = key.cut;
            let key = flatten_memberkey(&key)?;
            let value = flatten_type(&member.value)?;
            Ok(Node::KeyValue(KeyValue::new(key, value, cut)))
        }
        None => flatten_type(&member.value),
    }
}

// try_into(), remapping the error.
fn num_to_i128<T>(n: T) -> FlattenResult<i128>
where
    T: TryInto<i128> + std::fmt::Display + Copy,
{
    // This error doesn't seem possible, since isize and usize should always
    // fit into an i128.
    n.try_into().map_err(|_| {
        let msg = format!("integer conversion failed: {}", n);
        ValidateError::Structural(msg)
    })
}

fn flatten_memberkey(memberkey: &ast::MemberKey) -> FlattenResult<Node> {
    use ast::MemberKeyVal;

    match &memberkey.val {
        MemberKeyVal::Bareword(s) => {
            // A "bareword" is a literal string that appears without quote
            // marks.  Treat it just like we would a literal with quotes.
            Ok(literal_text(s.clone()))
        }
        MemberKeyVal::Type1(t1) => flatten_type1(&t1),
        MemberKeyVal::Value(v) => flatten_value(&v),
    }
}

// Useful utilities for testing the flatten code.
#[cfg(test)]
#[macro_use]
mod test_utils {
    use super::*;
    use std::collections::BTreeMap;

    // Given a string, generate a rule reference.
    impl From<&str> for Rule {
        fn from(s: &str) -> Self {
            Rule {
                name: s.to_string(),
                generic_args: vec![],
            }
        }
    }

    // Given a string, generate a Node::Rule
    impl From<&str> for Node {
        fn from(s: &str) -> Self {
            Node::Rule(Rule::from(s))
        }
    }

    // Given a Node (with no generic parameters), generate a RuleDef.
    impl From<Node> for RuleDef {
        fn from(n: Node) -> Self {
            RuleDef {
                generic_parms: Vec::default(),
                node: n,
            }
        }
    }

    // Given a list of names and Nodes, build a rules map.
    pub fn make_rules(mut list: Vec<(&str, Node)>) -> RulesByName {
        list.drain(..)
            .map(|(s, n)| (s.to_string(), RuleDef::from(n)))
            .collect()
    }

    // Given a single name/Node pair, build a rules map.
    pub fn make_rule(name: &str, node: Node) -> RulesByName {
        let mut result = BTreeMap::new();
        result.insert(name.to_string(), RuleDef::from(node));
        result
    }

    // Given a single name/Node pair, build a rules map.
    pub fn make_generic_rule(name: &str, generic_parms: &[&str], node: Node) -> RulesByName {
        let mut result = BTreeMap::new();
        let generic_parms: Vec<String> = generic_parms.iter().map(|s| String::from(*s)).collect();
        result.insert(
            name.to_string(),
            RuleDef {
                generic_parms,
                node,
            },
        );
        result
    }

    // A trait for generating literals.
    pub trait CreateLiteral {
        fn literal(self) -> Node;
    }

    // Create a literal string.
    impl CreateLiteral for &str {
        fn literal(self) -> Node {
            Node::Literal(Literal::Text(self.to_string()))
        }
    }

    // Create a literal integer.
    impl CreateLiteral for u64 {
        fn literal(self) -> Node {
            Node::Literal(Literal::Int(self.into()))
        }
    }

    // Shorthand for the tstr prelude type
    pub fn tstr() -> Node {
        Node::PreludeType(PreludeType::Tstr)
    }

    // Shorthand for creating a new map.
    pub fn make_map() -> Map {
        Map {
            members: Vec::new(),
        }
    }

    // Shorthand for creating a new array.
    pub fn make_array() -> Array {
        Array {
            members: Vec::new(),
        }
    }

    // A trait for appending something (to a Map or Array)
    // since it returns Self, we can chain multiple calls.
    pub trait Append {
        fn append<T: Into<Node>>(self, t: T) -> Self;
    }

    impl Append for Map {
        fn append<T: Into<Node>>(mut self, t: T) -> Self {
            let node: Node = t.into();
            self.members.push(node);
            self
        }
    }

    impl Append for Array {
        fn append<T: Into<Node>>(mut self, t: T) -> Self {
            let node: Node = t.into();
            self.members.push(node);
            self
        }
    }

    // Shorthand for storing a Map inside a Node.
    impl From<Map> for Node {
        fn from(m: Map) -> Self {
            Node::Map(m)
        }
    }

    // Shorthand for storing an Array inside a Node.
    impl From<Array> for Node {
        fn from(a: Array) -> Self {
            Node::Array(a)
        }
    }

    // Shorthand for storing a KeyValue inside a Node.
    impl From<KeyValue> for Node {
        fn from(kv: KeyValue) -> Self {
            Node::KeyValue(kv)
        }
    }

    // Shorthand for storing a Rule inside a Node.
    impl From<Rule> for Node {
        fn from(r: Rule) -> Self {
            Node::Rule(r)
        }
    }

    #[derive(Copy, Clone)]
    pub enum KvCut {
        Cut,
        NoCut,
    }
    pub use KvCut::*;

    impl From<KvCut> for bool {
        fn from(c: KvCut) -> bool {
            match c {
                Cut => true,
                NoCut => false,
            }
        }
    }

    // Shorthand for creating a key-value pair, with explicit cut setting.
    pub fn kv(k: Node, v: Node, cut: KvCut) -> KeyValue {
        KeyValue {
            key: Box::new(k),
            value: Box::new(v),
            cut: cut.into(),
        }
    }
}

#[cfg(test)]
mod tests {
    use super::test_utils::*;
    use super::*;

    #[test]
    fn test_flatten_literal_int() {
        let cddl_input = r#"thing = 1"#;
        let result = flatten_from_str(cddl_input).unwrap();
        let expected = make_rule("thing", 1.literal());
        assert_eq!(result, expected);
    }

    #[test]
    fn test_flatten_literal_tstr() {
        let cddl_input = r#"thing = "abc""#;
        let result = flatten_from_str(cddl_input).unwrap();
        let expected = make_rule("thing", "abc".literal());
        assert_eq!(result, expected);
    }

    #[test]
    fn test_flatten_prelude_reference() {
        let cddl_input = r#"thing = int"#;
        let result = flatten_from_str(cddl_input).unwrap();
        let expected = make_rule("thing", Node::PreludeType(PreludeType::Int));
        assert_eq!(result, expected);
    }

    #[test]
    fn test_flatten_type_reference() {
        let cddl_input = r#"thing = foo"#;
        let result = flatten_from_str(cddl_input).unwrap();
        assert_eq!(result, make_rule("thing", Node::Rule(Rule::from("foo"))));
    }

    #[test]
    fn test_flatten_map() {
        // A map containing a bareword key
        let cddl_input = r#"thing = { foo: tstr }"#;
        let result = flatten_from_str(cddl_input).unwrap();
        let expected = make_rule(
            "thing",
            make_map().append(kv("foo".literal(), tstr(), Cut)).into(),
        );
        assert_eq!(result, expected);

        // A map containing a prelude type key.
        // Note: CDDL syntax requires type keys to use "=>" not ":", otherwise
        // it will assume a bareword key is being used.
        let cddl_input = r#"thing = { tstr => tstr }"#;
        let result = flatten_from_str(cddl_input).unwrap();
        let expected = make_rule("thing", make_map().append(kv(tstr(), tstr(), NoCut)).into());
        assert_eq!(result, expected);

        // A map key name alias
        let cddl_input = r#"foo = "bar" thing = { foo => tstr }"#;
        let result = flatten_from_str(cddl_input).unwrap();
        let expected = make_rules(vec![
            ("foo", "bar".literal()),
            (
                "thing",
                make_map().append(kv("foo".into(), tstr(), NoCut)).into(),
            ),
        ]);
        assert_eq!(result, expected);
    }

    #[test]
    fn test_flatten_generic() {
        let cddl_input = "message<t, v> = [t, v]";
        let result = flatten_from_str(cddl_input).unwrap();
        let expected = make_generic_rule(
            "message",
            &["t", "v"],
            make_array()
                .append(Rule::from("t"))
                .append(Rule::from("v"))
                .into(),
        );
        assert_eq!(result, expected);
    }
}