1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
#[doc = r" Value read from the register"]
pub struct R {
    bits: u32,
}
#[doc = r" Value to write to the register"]
pub struct W {
    bits: u32,
}
impl super::AESDATAOUT0 {
    #[doc = r" Modifies the contents of the register"]
    #[inline]
    pub fn modify<F>(&self, f: F)
    where
        for<'w> F: FnOnce(&R, &'w mut W) -> &'w mut W,
    {
        let bits = self.register.get();
        let r = R { bits: bits };
        let mut w = W { bits: bits };
        f(&r, &mut w);
        self.register.set(w.bits);
    }
    #[doc = r" Reads the contents of the register"]
    #[inline]
    pub fn read(&self) -> R {
        R {
            bits: self.register.get(),
        }
    }
    #[doc = r" Writes to the register"]
    #[inline]
    pub fn write<F>(&self, f: F)
    where
        F: FnOnce(&mut W) -> &mut W,
    {
        let mut w = W::reset_value();
        f(&mut w);
        self.register.set(w.bits);
    }
    #[doc = r" Writes the reset value to the register"]
    #[inline]
    pub fn reset(&self) {
        self.write(|w| w)
    }
}
#[doc = r" Value of the field"]
pub struct DATAR {
    bits: u32,
}
impl DATAR {
    #[doc = r" Value of the field as raw bits"]
    #[inline]
    pub fn bits(&self) -> u32 {
        self.bits
    }
}
#[doc = r" Proxy"]
pub struct _DATAW<'a> {
    w: &'a mut W,
}
impl<'a> _DATAW<'a> {
    #[doc = r" Writes raw bits to the field"]
    #[inline]
    pub unsafe fn bits(self, value: u32) -> &'a mut W {
        const MASK: u32 = 4294967295;
        const OFFSET: u8 = 0;
        self.w.bits &= !((MASK as u32) << OFFSET);
        self.w.bits |= ((value & MASK) as u32) << OFFSET;
        self.w
    }
}
impl R {
    #[doc = r" Value of the register as raw bits"]
    #[inline]
    pub fn bits(&self) -> u32 {
        self.bits
    }
    #[doc = "Bits 0:31 - 31:0\\] Data register 0 for output block data from the Crypto peripheral. These bits = AES Output Data\\[31:0\\] of {127:0\\] For normal operations, this register is not used, since data input and output is transferred from and to the AES engine via DMA. For a Host read operation, these registers contain the 128-bit output block from the latest AES operation. Reading from a word-aligned offset within this address range will read one word (4 bytes) of data out the 4-word deep (16 bytes = 128-bits AES block) data output buffer. The words (4 words, one full block) should be read before the core will move the next block to the data output buffer. To empty the data output buffer, AESCTL.OUTPUT_READY must be written. For the modes with authentication (CBC-MAC, GCM and CCM), the invalid (message) bytes/words can be written with any data. Note: The AAD / authentication only data is not copied to the output buffer but only used for authentication."]
    #[inline]
    pub fn data(&self) -> DATAR {
        let bits = {
            const MASK: u32 = 4294967295;
            const OFFSET: u8 = 0;
            ((self.bits >> OFFSET) & MASK as u32) as u32
        };
        DATAR { bits }
    }
}
impl W {
    #[doc = r" Reset value of the register"]
    #[inline]
    pub fn reset_value() -> W {
        W { bits: 0 }
    }
    #[doc = r" Writes raw bits to the register"]
    #[inline]
    pub unsafe fn bits(&mut self, bits: u32) -> &mut Self {
        self.bits = bits;
        self
    }
    #[doc = "Bits 0:31 - 31:0\\] Data register 0 for output block data from the Crypto peripheral. These bits = AES Output Data\\[31:0\\] of {127:0\\] For normal operations, this register is not used, since data input and output is transferred from and to the AES engine via DMA. For a Host read operation, these registers contain the 128-bit output block from the latest AES operation. Reading from a word-aligned offset within this address range will read one word (4 bytes) of data out the 4-word deep (16 bytes = 128-bits AES block) data output buffer. The words (4 words, one full block) should be read before the core will move the next block to the data output buffer. To empty the data output buffer, AESCTL.OUTPUT_READY must be written. For the modes with authentication (CBC-MAC, GCM and CCM), the invalid (message) bytes/words can be written with any data. Note: The AAD / authentication only data is not copied to the output buffer but only used for authentication."]
    #[inline]
    pub fn data(&mut self) -> _DATAW {
        _DATAW { w: self }
    }
}