logo
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
//! Pure Rust implementation of the [CAST5] block cipher ([RFC 2144]).
//!
//! # ⚠️ Security Warning: Hazmat!
//!
//! This crate implements only the low-level block cipher function, and is intended
//! for use for implementing higher-level constructions *only*. It is NOT
//! intended for direct use in applications.
//!
//! USE AT YOUR OWN RISK!
//!
//! # Examples
//! ```
//! use cast5::cipher::generic_array::GenericArray;
//! use cast5::cipher::{Key, Block, BlockEncrypt, BlockDecrypt, KeyInit};
//! use cast5::Cast5;
//!
//! let key = GenericArray::from([0u8; 16]);
//! let mut block = GenericArray::from([0u8; 8]);
//! // Initialize cipher
//! let cipher = Cast5::new(&key);
//!
//! let block_copy = block.clone();
//! // Encrypt block in-place
//! cipher.encrypt_block(&mut block);
//! // And decrypt it back
//! cipher.decrypt_block(&mut block);
//! assert_eq!(block, block_copy);
//! ```
//!
//! [CAST5]: https://en.wikipedia.org/wiki/CAST-128
//! [RFC 2144]: https://tools.ietf.org/html/rfc2144

#![no_std]
#![doc(
    html_logo_url = "https://raw.githubusercontent.com/RustCrypto/media/26acc39f/logo.svg",
    html_favicon_url = "https://raw.githubusercontent.com/RustCrypto/media/26acc39f/logo.svg",
    html_root_url = "https://docs.rs/cast5/0.11.1"
)]
#![deny(unsafe_code)]
#![cfg_attr(docsrs, feature(doc_cfg))]
#![warn(missing_docs, rust_2018_idioms)]

pub use cipher;

mod consts;
mod schedule;

use cipher::{
    consts::{U16, U8},
    AlgorithmName, BlockCipher, InvalidLength, Key, KeyInit, KeySizeUser,
};
use core::fmt;

#[cfg(feature = "zeroize")]
use cipher::zeroize::{Zeroize, ZeroizeOnDrop};

use consts::{S1, S2, S3, S4};
use schedule::key_schedule;

/// The CAST5 block cipher.
#[derive(Clone)]
pub struct Cast5 {
    masking: [u32; 16],
    rotate: [u8; 16],
    /// If this is set to true, it means a small key is used and only 12 rounds instead of 16
    /// rounds are used in the algorithm.
    small_key: bool,
}

impl Cast5 {
    fn init_state(key_len: usize) -> Cast5 {
        let small_key = key_len <= 10;

        Cast5 {
            masking: [0u32; 16],
            rotate: [0u8; 16],
            small_key,
        }
    }

    /// Implements the key schedule according to RFC 2144 2.4.
    /// https://tools.ietf.org/html/rfc2144#section-2.4
    fn key_schedule(&mut self, key: &[u8]) {
        let mut x = [
            u32::from_be_bytes(key[0..4].try_into().unwrap()),
            u32::from_be_bytes(key[4..8].try_into().unwrap()),
            u32::from_be_bytes(key[8..12].try_into().unwrap()),
            u32::from_be_bytes(key[12..16].try_into().unwrap()),
        ];

        let mut z = [0u32; 4];
        let mut k = [0u32; 16];

        key_schedule(&mut x, &mut z, &mut k);
        self.masking[..].clone_from_slice(&k[..]);

        key_schedule(&mut x, &mut z, &mut k);

        for (i, ki) in k.iter().enumerate() {
            self.rotate[i] = (ki & 0x1f) as u8;
        }
    }
}

macro_rules! f1 {
    ($D:expr, $m:expr, $r:expr) => {{
        let i = ($m.wrapping_add($D)).rotate_left(u32::from($r));
        (S1[(i >> 24) as usize] ^ S2[((i >> 16) & 0xff) as usize])
            .wrapping_sub(S3[((i >> 8) & 0xff) as usize])
            .wrapping_add(S4[(i & 0xff) as usize])
    }};
}

macro_rules! f2 {
    ($D:expr, $m:expr, $r:expr) => {{
        let i = ($m ^ $D).rotate_left(u32::from($r));
        S1[(i >> 24) as usize]
            .wrapping_sub(S2[((i >> 16) & 0xff) as usize])
            .wrapping_add(S3[((i >> 8) & 0xff) as usize])
            ^ S4[(i & 0xff) as usize]
    }};
}

macro_rules! f3 {
    ($D:expr, $m:expr, $r:expr) => {{
        let i = ($m.wrapping_sub($D)).rotate_left(u32::from($r));
        (S1[(i >> 24) as usize].wrapping_add(S2[((i >> 16) & 0xff) as usize])
            ^ S3[((i >> 8) & 0xff) as usize])
            .wrapping_sub(S4[(i & 0xff) as usize])
    }};
}

impl BlockCipher for Cast5 {}

impl KeySizeUser for Cast5 {
    type KeySize = U16;
}

impl KeyInit for Cast5 {
    fn new(key: &Key<Self>) -> Self {
        Self::new_from_slice(key).unwrap()
    }

    fn new_from_slice(key: &[u8]) -> Result<Self, InvalidLength> {
        // Available key sizes are 40...128 bits.
        if key.len() < 5 || key.len() > 16 {
            return Err(InvalidLength);
        }
        let mut cast5 = Cast5::init_state(key.len());

        if key.len() < 16 {
            // Pad keys that are less than 128 bits long.
            let mut padded_key = [0u8; 16];
            padded_key[..key.len()].copy_from_slice(key);
            cast5.key_schedule(&padded_key[..]);
        } else {
            cast5.key_schedule(key);
        }
        Ok(cast5)
    }
}

impl fmt::Debug for Cast5 {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        f.write_str("Cast5 { ... }")
    }
}

impl AlgorithmName for Cast5 {
    fn write_alg_name(f: &mut fmt::Formatter<'_>) -> fmt::Result {
        f.write_str("Cast5")
    }
}

#[cfg(feature = "zeroize")]
#[cfg_attr(docsrs, doc(cfg(feature = "zeroize")))]
impl Drop for Cast5 {
    fn drop(&mut self) {
        self.masking.zeroize();
        self.rotate.zeroize();
        self.small_key.zeroize();
    }
}

#[cfg(feature = "zeroize")]
#[cfg_attr(docsrs, doc(cfg(feature = "zeroize")))]
impl ZeroizeOnDrop for Cast5 {}

cipher::impl_simple_block_encdec!(
    Cast5, U8, cipher, block,
    encrypt: {
        let masking = cipher.masking;
        let rotate = cipher.rotate;

        // (L0,R0) <-- (m1...m64). (Split the plaintext into left and
        // right 32-bit halves L0 = m1...m32 and R0 = m33...m64.)
        let b = block.get_in();
        let l = u32::from_be_bytes(b[0..4].try_into().unwrap());
        let r = u32::from_be_bytes(b[4..8].try_into().unwrap());
        // (16 rounds) for i from 1 to 16, compute Li and Ri as follows:
        //   Li = Ri-1;
        //   Ri = Li-1 ^ f(Ri-1,Kmi,Kri), where f is defined in Section 2.2
        // (f is of Type 1, Type 2, or Type 3, depending on i).
        //
        // Rounds 1, 4, 7, 10, 13, and 16 use f function Type 1.
        // Rounds 2, 5, 8, 11, and 14 use f function Type 2.
        // Rounds 3, 6, 9, 12, and 15 use f function Type 3.

        let (l, r) = (r, l ^ f1!(r, masking[0], rotate[0]));
        let (l, r) = (r, l ^ f2!(r, masking[1], rotate[1]));
        let (l, r) = (r, l ^ f3!(r, masking[2], rotate[2]));
        let (l, r) = (r, l ^ f1!(r, masking[3], rotate[3]));
        let (l, r) = (r, l ^ f2!(r, masking[4], rotate[4]));
        let (l, r) = (r, l ^ f3!(r, masking[5], rotate[5]));
        let (l, r) = (r, l ^ f1!(r, masking[6], rotate[6]));
        let (l, r) = (r, l ^ f2!(r, masking[7], rotate[7]));
        let (l, r) = (r, l ^ f3!(r, masking[8], rotate[8]));
        let (l, r) = (r, l ^ f1!(r, masking[9], rotate[9]));
        let (l, r) = (r, l ^ f2!(r, masking[10], rotate[10]));
        let (l, r) = (r, l ^ f3!(r, masking[11], rotate[11]));

        let (l, r) = if cipher.small_key {
            (l, r)
        } else {
            // Rounds 13..16 are only executed for keys > 80 bits.
            let (l, r) = (r, l ^ f1!(r, masking[12], rotate[12]));
            let (l, r) = (r, l ^ f2!(r, masking[13], rotate[13]));
            let (l, r) = (r, l ^ f3!(r, masking[14], rotate[14]));
            (r, l ^ f1!(r, masking[15], rotate[15]))
        };

        // c1...c64 <-- (R16,L16).  (Exchange final blocks L16, R16 and
        // concatenate to form the ciphertext.)
        let block = block.get_out();
        block[0..4].copy_from_slice(&r.to_be_bytes());
        block[4..8].copy_from_slice(&l.to_be_bytes());
    }
    decrypt: {
        let masking = cipher.masking;
        let rotate = cipher.rotate;

        let b = block.get_in();
        let l = u32::from_be_bytes(b[0..4].try_into().unwrap());
        let r = u32::from_be_bytes(b[4..8].try_into().unwrap());

        let (l, r) = if cipher.small_key {
            (l, r)
        } else {
            let (l, r) = (r, l ^ f1!(r, masking[15], rotate[15]));
            let (l, r) = (r, l ^ f3!(r, masking[14], rotate[14]));
            let (l, r) = (r, l ^ f2!(r, masking[13], rotate[13]));
            (r, l ^ f1!(r, masking[12], rotate[12]))
        };

        let (l, r) = (r, l ^ f3!(r, masking[11], rotate[11]));
        let (l, r) = (r, l ^ f2!(r, masking[10], rotate[10]));
        let (l, r) = (r, l ^ f1!(r, masking[9], rotate[9]));
        let (l, r) = (r, l ^ f3!(r, masking[8], rotate[8]));
        let (l, r) = (r, l ^ f2!(r, masking[7], rotate[7]));
        let (l, r) = (r, l ^ f1!(r, masking[6], rotate[6]));
        let (l, r) = (r, l ^ f3!(r, masking[5], rotate[5]));
        let (l, r) = (r, l ^ f2!(r, masking[4], rotate[4]));
        let (l, r) = (r, l ^ f1!(r, masking[3], rotate[3]));
        let (l, r) = (r, l ^ f3!(r, masking[2], rotate[2]));
        let (l, r) = (r, l ^ f2!(r, masking[1], rotate[1]));
        let (l, r) = (r, l ^ f1!(r, masking[0], rotate[0]));

        let block = block.get_out();
        block[0..4].copy_from_slice(&r.to_be_bytes());
        block[4..8].copy_from_slice(&l.to_be_bytes());
    }
);