1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
use cipher::{
    consts::{U1, U16, U8},
    errors::InvalidLength,
    generic_array::GenericArray,
    BlockCipher, BlockDecrypt, BlockEncrypt, NewBlockCipher,
};

use byteorder::{BigEndian, ByteOrder};

use crate::{
    consts::{S1, S2, S3, S4},
    schedule::key_schedule,
};

type Block = GenericArray<u8, U8>;

/// The CAST5 block cipher.
#[derive(Clone, Copy)]
pub struct Cast5 {
    masking: [u32; 16],
    rotate: [u8; 16],
    /// If this is set to true, it means a small key is used and only 12 rounds instead of 16
    /// rounds are used in the algorithm.
    small_key: bool,
}

impl Cast5 {
    fn init_state(key_len: usize) -> Cast5 {
        let small_key = key_len <= 10;

        Cast5 {
            masking: [0u32; 16],
            rotate: [0u8; 16],
            small_key,
        }
    }

    /// Implements the key schedule according to RFC 2144 2.4.
    /// https://tools.ietf.org/html/rfc2144#section-2.4
    fn key_schedule(&mut self, key: &[u8]) {
        let mut x = [0; 4];
        BigEndian::read_u32_into(&key, &mut x);

        let mut z = [0u32; 4];
        let mut k = [0u32; 16];

        key_schedule(&mut x, &mut z, &mut k);
        self.masking[..].clone_from_slice(&k[..]);

        key_schedule(&mut x, &mut z, &mut k);

        for (i, ki) in k.iter().enumerate() {
            self.rotate[i] = (ki & 0x1f) as u8;
        }
    }
}

macro_rules! f1 {
    ($D:expr, $m:expr, $r:expr) => {{
        let i = ($m.wrapping_add($D)).rotate_left(u32::from($r));
        (S1[(i >> 24) as usize] ^ S2[((i >> 16) & 0xff) as usize])
            .wrapping_sub(S3[((i >> 8) & 0xff) as usize])
            .wrapping_add(S4[(i & 0xff) as usize])
    }};
}

macro_rules! f2 {
    ($D:expr, $m:expr, $r:expr) => {{
        let i = ($m ^ $D).rotate_left(u32::from($r));
        S1[(i >> 24) as usize]
            .wrapping_sub(S2[((i >> 16) & 0xff) as usize])
            .wrapping_add(S3[((i >> 8) & 0xff) as usize])
            ^ S4[(i & 0xff) as usize]
    }};
}

macro_rules! f3 {
    ($D:expr, $m:expr, $r:expr) => {{
        let i = ($m.wrapping_sub($D)).rotate_left(u32::from($r));
        (S1[(i >> 24) as usize].wrapping_add(S2[((i >> 16) & 0xff) as usize])
            ^ S3[((i >> 8) & 0xff) as usize])
            .wrapping_sub(S4[(i & 0xff) as usize])
    }};
}

impl NewBlockCipher for Cast5 {
    type KeySize = U16;

    fn new(key: &GenericArray<u8, U16>) -> Self {
        Self::new_from_slice(&key).unwrap()
    }

    fn new_from_slice(key: &[u8]) -> Result<Self, InvalidLength> {
        // Available key sizes are 40...128 bits.
        if key.len() < 5 || key.len() > 16 {
            return Err(InvalidLength);
        }
        let mut cast5 = Cast5::init_state(key.len());

        if key.len() < 16 {
            // Pad keys that are less than 128 bits long.
            let mut padded_key = [0u8; 16];
            padded_key[..key.len()].copy_from_slice(key);
            cast5.key_schedule(&padded_key[..]);
        } else {
            cast5.key_schedule(key);
        }
        Ok(cast5)
    }
}

impl BlockCipher for Cast5 {
    type BlockSize = U8;
    type ParBlocks = U1;
}

impl BlockEncrypt for Cast5 {
    #[inline]
    fn encrypt_block(&self, block: &mut Block) {
        let masking = self.masking;
        let rotate = self.rotate;

        // (L0,R0) <-- (m1...m64). (Split the plaintext into left and
        // right 32-bit halves L0 = m1...m32 and R0 = m33...m64.)
        let l = BigEndian::read_u32(&block[0..4]);
        let r = BigEndian::read_u32(&block[4..8]);
        // (16 rounds) for i from 1 to 16, compute Li and Ri as follows:
        //   Li = Ri-1;
        //   Ri = Li-1 ^ f(Ri-1,Kmi,Kri), where f is defined in Section 2.2
        // (f is of Type 1, Type 2, or Type 3, depending on i).
        //
        // Rounds 1, 4, 7, 10, 13, and 16 use f function Type 1.
        // Rounds 2, 5, 8, 11, and 14 use f function Type 2.
        // Rounds 3, 6, 9, 12, and 15 use f function Type 3.

        let (l, r) = (r, l ^ f1!(r, masking[0], rotate[0]));
        let (l, r) = (r, l ^ f2!(r, masking[1], rotate[1]));
        let (l, r) = (r, l ^ f3!(r, masking[2], rotate[2]));
        let (l, r) = (r, l ^ f1!(r, masking[3], rotate[3]));
        let (l, r) = (r, l ^ f2!(r, masking[4], rotate[4]));
        let (l, r) = (r, l ^ f3!(r, masking[5], rotate[5]));
        let (l, r) = (r, l ^ f1!(r, masking[6], rotate[6]));
        let (l, r) = (r, l ^ f2!(r, masking[7], rotate[7]));
        let (l, r) = (r, l ^ f3!(r, masking[8], rotate[8]));
        let (l, r) = (r, l ^ f1!(r, masking[9], rotate[9]));
        let (l, r) = (r, l ^ f2!(r, masking[10], rotate[10]));
        let (l, r) = (r, l ^ f3!(r, masking[11], rotate[11]));

        let (l, r) = if self.small_key {
            (l, r)
        } else {
            // Rounds 13..16 are only executed for keys > 80 bits.
            let (l, r) = (r, l ^ f1!(r, masking[12], rotate[12]));
            let (l, r) = (r, l ^ f2!(r, masking[13], rotate[13]));
            let (l, r) = (r, l ^ f3!(r, masking[14], rotate[14]));
            (r, l ^ f1!(r, masking[15], rotate[15]))
        };

        // c1...c64 <-- (R16,L16).  (Exchange final blocks L16, R16 and
        // concatenate to form the ciphertext.)
        BigEndian::write_u32(&mut block[0..4], r);
        BigEndian::write_u32(&mut block[4..8], l);
    }
}

impl BlockDecrypt for Cast5 {
    #[inline]
    fn decrypt_block(&self, block: &mut Block) {
        let masking = self.masking;
        let rotate = self.rotate;

        let l = BigEndian::read_u32(&block[0..4]);
        let r = BigEndian::read_u32(&block[4..8]);

        let (l, r) = if self.small_key {
            (l, r)
        } else {
            let (l, r) = (r, l ^ f1!(r, masking[15], rotate[15]));
            let (l, r) = (r, l ^ f3!(r, masking[14], rotate[14]));
            let (l, r) = (r, l ^ f2!(r, masking[13], rotate[13]));
            (r, l ^ f1!(r, masking[12], rotate[12]))
        };

        let (l, r) = (r, l ^ f3!(r, masking[11], rotate[11]));
        let (l, r) = (r, l ^ f2!(r, masking[10], rotate[10]));
        let (l, r) = (r, l ^ f1!(r, masking[9], rotate[9]));
        let (l, r) = (r, l ^ f3!(r, masking[8], rotate[8]));
        let (l, r) = (r, l ^ f2!(r, masking[7], rotate[7]));
        let (l, r) = (r, l ^ f1!(r, masking[6], rotate[6]));
        let (l, r) = (r, l ^ f3!(r, masking[5], rotate[5]));
        let (l, r) = (r, l ^ f2!(r, masking[4], rotate[4]));
        let (l, r) = (r, l ^ f1!(r, masking[3], rotate[3]));
        let (l, r) = (r, l ^ f3!(r, masking[2], rotate[2]));
        let (l, r) = (r, l ^ f2!(r, masking[1], rotate[1]));
        let (l, r) = (r, l ^ f1!(r, masking[0], rotate[0]));

        BigEndian::write_u32(&mut block[0..4], r);
        BigEndian::write_u32(&mut block[4..8], l);
    }
}

opaque_debug::implement!(Cast5);