1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
use variable::Variable;
use std::collections::HashMap;
use std::ops::Add;
use std::ops::Sub;
use std::ops::Mul;
use std::ops::Div;

type VariableValues = HashMap<char, f64>;

/// Terms are basic mathematical building blocks, from which are formed expressions and more complex entities.
///
/// The `Term` data type (currently) represents basic polynomial components, which can be assigned a numeric value with `Term::evaluate`/`Term::reduce`.
#[derive(Clone)]
pub enum Term {
	/// Represents a term which simply a variable, one of the two foundational term types.
	///
	/// The value of the variable is looked up against the given variable values when `Term::evaluate` is called.
	///
	/// #Examples
	/// ```
	/// use cassie::{Term, Variable};
	/// use std::collections::HashMap;
	///
	/// let mut bindings = HashMap::new();
	/// bindings.insert('φ', 68.0);
	///
	/// let f = Variable::named('φ');
	/// let f = Term::Variable(f);
	/// assert!(f.evaluate(&bindings).unwrap() - 68.0 < 0.00001);
	/// ```
	Variable(Variable),
	/// Represents a constant term, one of the two foundational term types.
	///
	/// The value of this term is fixed and is calculated by simply unpacking the associated value.
	///
	/// #Examples
	/// ```
	/// use cassie::Term;
	///
	/// let c = Term::Constant(24.0);
	/// assert!(c.reduce().unwrap() - 24.0 < 0.00001);
	/// ```
	Constant(f64),
	/// Represents a sum of multiple terms.
	///
	/// To calculate the value of this term, the components are evaluated iteratively from the first to last index.
	///
	/// #Examples
	/// ```
	/// use cassie::Term;
	///
	/// let a = Term::Constant(24.0);
	/// let b = Term::Constant(72.0);
	/// let y = Term::Sum(vec!(a, b)); // Notice that this is very ugly; see below
	/// assert!(y.reduce().unwrap() - 108.0 < 0.00001);
	///
	/// let c = Term::Constant(12.0);
	/// let d = Term::Constant(27.0);
	/// let z = c + d; // Preferred
	/// assert!(z.reduce().unwrap() - 39.0 < 0.00001);
	/// ```
	Sum(Vec<Term>),
	/// Represents a difference of terms.
	///
	/// The first term is used as-is; all others have their signs inverted and are added to the first term in ascending order of index.
	///
	/// #Examples
	/// ```
	/// use cassie::Term;
	///
	/// let a = Term::Constant(24.0);
	/// let b = Term::Constant(72.0);
	/// let y = Term::Difference(vec!(a, b)); // Notice that this is very ugly; see below
	/// assert!((y.reduce().unwrap() + 48.0).abs() < 0.00001);
	///
	/// let c = Term::Constant(12.0);
	/// let d = Term::Constant(27.0);
	/// let z = c - d; // Preferred
	/// assert!((z.reduce().unwrap() + 15.0).abs() < 0.00001);
	/// ```
	Difference(Vec<Term>),
	/// Represents a product of terms.
	///
	/// All terms are multiplied together after evaluation, with evaluation proceeding in ascending index order.
	///
	/// #Examples
	/// ```
	/// use cassie::Term;
	///
	/// let a = Term::Constant(8.0);
	/// let b = Term::Constant(9.0);
	/// let y = Term::Product(vec!(a, b)); // Notice that this is very ugly; see below
	/// assert!((y.reduce().unwrap() - 72.0).abs() < 0.00001);
	///
	/// let c = Term::Constant(3.0);
	/// let d = Term::Constant(-1.0);
	/// let z = c * d; // Preferred
	/// assert!((z.reduce().unwrap() + 3.0).abs() < 0.00001);
	/// ```
	Product(Vec<Term>),
	/// Represents a quotient of terms.
	///
	/// The first term is evaluated, then divided by each following term in order of ascending index (each term is used immediately after evaluation). Fairly aggressive sanity checks are performed to prevent division by zero; if this continues to pester you, consider multiplying by the inverse instead.
	///
	/// This variant should be considered more or less unstable; it is only due to typing constraints that simplification is implemented for more than two subterms. **Consider using `Term::Product` instead, if possible.**
	///
	/// #Examples
	/// ```
	/// use cassie::Term;
	///
	/// let a = Term::Constant(63.0);
	/// let b = Term::Constant(3.0);
	/// let y = Term::Quotient(vec!(a, b)); // Notice that this is very ugly; see below
	/// assert!((y.reduce().unwrap() - 21.0).abs() < 0.00001);
	///
	/// let c = Term::Constant(3.0);
	/// let d = Term::Constant(-1.0);
	/// let z = c / d; // Preferred
	/// assert!((z.reduce().unwrap() + 3.0).abs() < 0.00001);
	/// ```
	Quotient(Vec<Term>), // Look into limiting vector sizes to avoid confusion (due to bad input).
	/// Represents the sine function.
	///
	/// The associated term is evaluated and passed to a sine function to obtain a result.
	///
	/// Like any self-respecting sine function, this performs operations "in radians."
	Sine(Box<Term>), // TODO: Verify that this is what we want (this uses heap memory).
	/// Represents the cosine function.
	///
	/// The associated term is evaluated and passed to a cosine function to obtain a result.
	///
	/// Like any self-respecting cosine function, this performs operations "in radians."
	Cosine(Box<Term>), // TODO: Verify that this is what we want (this uses heap memory).
	/// Represents the tangent function.
	///
	/// The associated term is evaluated and passed to a tangent function to obtain a result.
	///
	/// Like any self-respecting cosine function, this performs operations "in radians."
	Tangent(Box<Term>), // TODO: Verify that this is what we want (this uses heap memory).
	/// Represents the inverse sine function.
	///
	/// The associated term is evaluated and passed to an inverse sine function to obtain a result.
	///
	/// Like any self-respecting trigonometric function, this performs operations "in radians."
	ArcSine(Box<Term>), // TODO: Verify that this is what we want (this uses heap memory).
	/// Represents the inverse cosine function.
	///
	/// The associated term is evaluated and passed to an inverse cosine function to obtain a result.
	///
	/// Like any self-respecting trigonometric function, this performs operations "in radians."
	ArcCosine(Box<Term>), // TODO: Verify that this is what we want (this uses heap memory).
	/// Represents the inverse tangent function.
	///
	/// The associated term is evaluated and passed to an inverse tangent function to obtain a result.
	///
	/// Like any self-respecting trigonometric function, this performs operations "in radians."
	ArcTangent(Box<Term>) // TODO: Verify that this is what we want (this uses heap memory).
}

impl Term {
	/// Evaluates a term to its numerical value.
	///
	/// # Examples
	/// ```
	/// use cassie::{Term, Variable};
	/// use std::collections::HashMap;
	///
	/// let x: Variable = "x".parse().unwrap();
	/// let x = Term::Variable(x);
	/// let c = Term::Constant(100.0);
	/// let s = x + c;
	/// let mut values = HashMap::new();
	/// values.insert('x', 28.0);
	/// assert!((s.evaluate(&values).unwrap() - 128.0).abs() < 0.00001);
	/// ```
	pub fn evaluate(&self, values: &VariableValues) -> Result<f64, String> {
		self.eval(Some(values))
	}
	/// Evaluates a term to its numerical value, assuming only constants (no variables specified).
	///
	/// # Panics
	/// This method is functionally identical to using `Term::evaluate` with an empty value table, so it inherits the panic conditions from `Term::evaluate`.
	/// Most significantly, **if a variable is present in `self`, this function will panic**, since the variable value will not be resolved.
	/// 
	/// # Examples
	/// ```
	/// use cassie::Term;
	/// let c = Term::Constant(64.0);
	/// assert!((c.reduce().unwrap() - 64.0) < 0.00001);
	///
	/// let b = Term::Constant(64.0);
	/// let a = Term::Constant(36.0);
	/// let c = &a + &b;
	/// assert!(a.reduce().unwrap() - 36.0 < 0.00001);
	/// assert!(b.reduce().unwrap() - 64.0 < 0.00001);
	/// assert!(c.reduce().unwrap() - 100.0 < 0.00001);
	/// ```
	pub fn reduce(&self) -> Result<f64, String> {
		self.eval(None)
	}

	fn eval(&self, values: Option<&VariableValues>) -> Result<f64, String> {
		use Term::*;
		match *self {
			Constant(value) => Ok(value),
			Sum(ref terms) => {
				let mut sum = 0.0;
				for term in terms {
					match term.eval(values) {
						Ok(value) => {
							sum += value;
						}, Err(e) => {
							return Err(e);
						}
					};
				}
				Ok(sum) // dim sum for a twosome
			}, Difference(ref terms) => {
				let first = terms[0].eval(values);
				if first.is_err() { return first; }
				let mut difference = first.unwrap();
				for term in terms[1..].iter() {
					match term.eval(values) {
						Ok(value) => {
							difference -= value;
						}, Err(e) => {
							return Err(e);
						}
					};
				}
				Ok(difference)
			}, Product(ref terms) => {
				let mut product = 1.0;
				for term in terms {
					match term.eval(values) {
						Ok(value) => {
							product *= value;
						}, Err(e) => {
							return Err(e);
						}
					};
				}
				Ok(product)
			}, Quotient(ref terms) => {
				let first = terms[0].eval(values);
				if first.is_err() { return first; }
				let mut quotient = first.unwrap();
				for term in terms[1..].iter() {
					match term.eval(values) {
						Ok(dividend) => {
							if dividend.abs() <  0.00000000000000001 {
								return Err("Attempted division by zero.".to_string());
							}
							quotient /= dividend;
						}, Err(e) => {
							return Err(e);
						}
					};
				}
				Ok(quotient)
			}, Variable(ref variable) => {
				if let Some(v) = values {
					if let Some(value) = v.get(&variable.symbol) {
						Ok(*value)
					} else {
						Err(format!("No value provided for variable {}", variable.symbol))
					}
				} else {
					Err(format!("No variable values provided (looking for {})", variable.symbol))
				}
			}, Sine(ref term) => {
				match term.eval(values) {
					Ok(value) => Ok(value.sin()),
					Err(e) => Err(e)
				}
			}, Cosine(ref term) => {
				match term.eval(values) {
					Ok(value) => Ok(value.cos()),
					Err(e) => Err(e)
				}
			}, ArcSine(ref term) => {
				match term.eval(values) {
					Ok(value) => Ok(value.asin()),
					Err(e) => Err(e)
				}
			}, ArcCosine(ref term) => {
				match term.eval(values) {
					Ok(value) => Ok(value.acos()),
					Err(e) => Err(e)
				}
			}, Tangent(ref term) => {
				match term.eval(values) {
					Ok(value) => Ok(value.tan()),
					Err(e) => Err(e)
				}
			}, ArcTangent(ref term) => {
				match term.eval(values) {
					Ok(value) => Ok(value.atan()),
					Err(e) => Err(e)
				}
			}
		}
	}
}

impl<'a, 'b> Add<&'b Term> for &'a Term {

	type Output = Term;

	fn add(self, another: &'b Term) -> Term {
		Term::Sum(vec!(self.clone(), another.clone()))
	}
}

impl Add for Term {

	type Output = Term;

	fn add(self, another: Term) -> Term {
		&self + &another
	}
}

impl<'a, 'b> Sub<&'b Term> for &'a Term {

	type Output = Term;

	fn sub(self, another: &'b Term) -> Term {
		Term::Difference(vec!(self.clone(), another.clone()))
	}
}

impl Sub for Term {

	type Output = Term;

	fn sub(self, another: Term) -> Term {
		&self - &another
	}
}

impl<'a, 'b> Mul<&'b Term> for &'a Term {

	type Output = Term;

	fn mul(self, another: &'b Term) -> Term {
		Term::Product(vec!(self.clone(), another.clone()))
	}
}

impl Mul for Term {

	type Output = Term;

	fn mul(self, another: Term) -> Term {
		&self * &another
	}
}

impl<'a, 'b> Div<&'b Term> for &'a Term {

	type Output = Term;

	fn div(self, another: &'b Term) -> Term {
		Term::Quotient(vec!(self.clone(), another.clone()))
	}
}

impl Div for Term {

	type Output = Term;

	fn div(self, another: Term) -> Term {
		&self / &another
	}
}